• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sustainable Urban Drainage System to Avoid Flooding of Rain Origin and Improving Green Areas, Lima, Peru

Amaro, López, Luis, José, Cuya, Villavicencio, Lorena, Raquel, Dávila, Silva, Rosana, Marisa 01 January 2022 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / Lima’s Villa El Salvador is one of the cities of Peru with the highest population growth rate in recent decades, and still it is needing to develop many urban infrastructure services. However, this process of urbanization has also produced a decrease in the permeability of the terrain causing in recent years flooding and severe damages by the occurrence of heavy rains in the district. It was proposed the implementation of a sustainable urban drainage system (SUDS) to provide an engineering solution to this problem. It consists of a set of elements of the drainage network that will allow the collection, transport, retention, infiltration, and rainwater evacuation sustainably. Four SUDS alternatives were analyzed using well-founded methodologies to select the best alternative solution for the existing problem using technical, economic, and environmental criteria. The implementation of a retention tank and green ditches is the solution adopted to reduce the risk of flooding because of urbanization in the studied area. Runoff from the upper part of the basin will be collected through the green ditches, and the collected water will be distributed to increase the green spaces of the district. However, it will be necessary to supplement with irrigation to preserve them since this locality is climatologically arid. Successful storm water management requires integration with the urban and regional development plans.
2

Assessing the performance of combined sustainable drainage and ground source heat devices in a domestic building

Faraj, A. January 2013 (has links)
A field study of the feasibility and the performance of a sustainable drainage technique combined with a renewable energy device to provide heating in a domestic setting was carried out from March 2008 to November 2010 to acquire practical data about the system’s operation. Among all the sustainable drainage techniques, permeable pavement system (PPS) was selected to be applied in this project since this particular technique can be used for driveways and car-parking hard standings, but more specially they can be designed as a tanked system whereby an impermeable membrane is installed at the bottom of the tank in order to hold the rainwater collected as runoff from hard areas and roofs before releasing it in a controlled manner. The renewable energy device applied in this study is a ground source heat pump system (GSHP), which has been found in previous studies to provide a better performance when installed in wet conditions. Based on this, the PPS and the GSHP with horizontal ground heat exchanger (GHE) were integrated in a 350mm deep reservoir under ‘real life’ conditins. The combined system operated in heating mode in a family–sized, three bedrooms detached EcoHouse at the Building Research Establishment Innovation Park, Watford, UK. Monitoring the combined system included taking measurements of the temperature of the conditioned space, the ground around the PPS/GSHP system, and of the ambient air every 10 minutes. Assessing the performance of the PPS/GSHP system involved investigating the effect of extracting heat via the GHE on the ground temperature, the impact of the PPS/GSHP on the thermal profile of the air above the surface of the reservoir, and computing the PPS/GSHP coefficient of performance (CoP). The thesis includes information about the design of the PPS/GSHP system including the structure of the sub-base, types and size of the used aggregate and stone, the depth of the excavated reservoir amongst others, also the technical problems that materialized, largely due to the fact that the PPS/GSHP was installed and operating under real-life circumstances. Results obtained from the study provided evidence for the workability of the combined system in regards of stormwater management and of providing heat to the EcoHouse. However, monitoring the rainwater stored in the reservoir showed that, due to leakage, the top part of the buried coil was not covered with water. The monitoring also revealed that the rainwater surrounding parts of the coil was, in severe weather, frozen. Moreover, highly significant correlations (p<0.01) were calculated for the ambient air and the ground temperature relationships with the CoP. All of these factors resulted in a 1.8 coefficient of performance being obtained. This low figure was related to the shallow depth of the reservoir since it became clear that its ground temperature was greatly influenced by the ambient air temperature. The study also revealed that the evaporation process was prevented from occurring due to the Inbitex™ composite layer, as a result there was no significant effect on cooling the thermal profile of the air near the surface of the pavement. Furthermore, it was concluded that continuous heat extraction from the ground contributed to an underground temperature drop.
3

The use of compost and recycled aggregates in the treatment of runoff pollutants in vegetated sustainable drainage devices such as swale

Oyelola, O. O. January 2013 (has links)
Urbanisation, a process associated with industrialisation and development has been characterised by unsustainable impacts such as increased impervious surfaces, increased air pollution, increased use of natural resources, increased volume of surface run-off, decreased quality of surface run-off, and depletion of biodiversity and habitats. The effects of these impacts on the environment include climate change, flooding, erosion, pollution of water bodies, and destruction of aquatic life and biodiversity. Studies have shown that sustainable designs such as Sustainable Drainage Systems (SuDS) would help mitigate some of these effects sustainably. SuDS are natural drainage systems that simulate the natural drainage of a site/catchment and work in harmony to achieve increase in ground infiltration and treatment of runoff; and reduction in flow rates and volume of surface runoff, thereby improving storm water quality, reducing erosion, recharging groundwater, improving biodiversity and ultimately improving sustainability. However, sustainability of SuDS devices are questionable because their component parts involve the use of natural resources i.e. topsoil and gravel. The overall aim of this research was to evaluate the efficacy of the application of recycled/waste materials in performing at least as well as topsoil and gravel in vegetative SuDS, thereby improving water quality and overall sustainability. The materials applied were compost and recycled aggregates. In assessing their efficacy in vegetative SuDS, the risk these materials could pose to water quality was not overlooked but was considered in establishing an ideal model for the treatment of pollutants in vegetative SuDS. Results of this research showed that overall compost and recycled aggregates were able to perform at least as well as gravel and topsoil in vegetative SuDS in terms of characterisation, biofilm and vegetative development, and remediation of runoff pollutants thereby improving the sustainability of vegetative SuDS. Compared to gravel and topsoil, characterisation of compost and recycled aggregates was shown to be less expensive, less time consuming (except for recycled aggregates) and more sustainable, in terms of conserving natural resources. It was deduced that compost would be able to biodegrade organic pollutants in vegetative SuDS in varying conditions, compared to topsoil, thereby improving water quality. Vegetative growth in profiles containing compost were more prolific than those with topsoil alone, indicating that vegetative SuDS containing compost would attenuate stormwater and remediate pollutants by phytoremediation, better than topsoil. Results showed that compost and recycled aggregates performed as well as gravel and topsoil in remediating pollutants, with >98% of pollutants being retained mostly within the growth media, confirming that most pollutants are treated within the growth media of vegetative SuDS devices. This research was able to establish that SuDS components can be as unsustainable as components of conventional drainage systems in terms of their social, economic and environmental impacts; and that recycled materials could perform just as well as conventional materials, whilst improving their sustainability. This research further established that compost and recycled aggregates can be used in vegetative SuDS, such as swales, as literature has shown that the use of compost and recycled aggregates in vegetative SuDS has been limited to compost blankets and socks and substrates for green roofs. Suggestions for other waste materials that can be used instead topsoil and gravel in vegetative SuDS were also made. Results from this research were applied in the development of a swale model for the treatment of pollutants in vegetative SuDS.
4

Laboratory and field trials of the ability of vegetated porous paving to remediate pollutants

Mayer, M. January 2013 (has links)
Flooding is impossible to prevent completely, consequences of excess water can however, be reduced and often avoided via flood risk management. With the increase in impermeable surfaces, approaches that have the intention of imitating natural drainage to manage storm-water are known as Sustainable (Urban) Drainage Systems (SUDS). Pollutants from vehicles have been identified as a concern in the urban environment, with origins including exhaust emissions, engine oil leakage and erosion of vehicle components. Investigation of vegetated parking surfaces (VPS) to limit the impact of pollutants are scarce, therefore this study aims to determine pollution tolerance of grass species for use in VPSs, prior to investigating the effects that vehicles have on a vegetated surfaces and alternative methods in which to analyse them. A pot trial investigated effects of increasing oil concentrations on the growth of four grass species. F. rubra L. was found to tolerate contamination to a higher degree than the other species and L. perenne L. produced more cumulative biomass throughout the investigation. A parallel study determined that Ca, Cu, K, Mg, Mo, P and Zn accumulated in grass shoots, indicating that F. rubra L. and L. perenne L. may be suitable for further analysis. field trial focused on a regularly-used L. perenne L.-covered VPS at a local school, analysing the influence of vehicles on vegetated parking bays. Compaction and mean element concentrations increased across the VPS, with distance from the roadside. Use of mineral magnetism as a proxy for geochemical detection did not prove successful as no significant correlation was identified between magnetic susceptibility (χ) and element concentration. Use of GIS provided this study with an alternative method for data presentation. Usually covering large scale analyses, an interactive geovisual map of geochemical dispersal and compaction across the VPS provided a novel method of visualising results from an investigation of this scale.
5

Review and gap analysis of Water Sensitive Urban Design (WSUD) in Windhoek, Namibia

Nambinga, Linekela Elias 24 January 2020 (has links)
With an ever-increasing population and global warming, fresh water resources are nearing depletion resulting in a global water crisis. As a consequence, cases of drought have been reported worldwide especially in sub-Saharan Africa. In addition to climate change, urbanisation adds strain to infrastructure as well as water supply and the management of water resources. As a result, most developing countries are faced with a water management challenge. There is thus a need for a paradigm shift towards an Integrated Water Management (IWM) approach. Worldwide, countries have responded to the Integrated Urban Water Management (IUWM) concept through the implementation of various management strategies; with Water Sensitive Urban Design (WSUD) emerging from Australia. Some closely allied management strategies in response to IUWM emerged in the USA as Low-Impact Development (LID), in the UK as Sustainable Drainage Systems (SuDS), and in New Zealand as Low-Impact Urban Design and Development (LIUDD). Namibia is situated along the south-west coast of Africa and is considered the driest country in sub-Saharan Africa. It is characterised by a semi-arid environment, with more than 80% covered by desert or semi-desert. The country is regularly afflicted by drought and has fluctuating and unreliable rainfall patterns, often accompanied by high evaporation rates. The City of Windhoek, as the capital city, the biggest municipality and also the largest densely populated town in Namibia, is faced with an ever-increasing shortage of water for its inhabitants. For close to 50 years, the water scarcity situation has led to direct waste water reclamation for potable re-use in Windhoek. Other measures implemented by the City of Windhoek (CoW) towards IUWM include Water Demand Management (WDM), Managed Aquifer Recharge (MAR) and Water Conservation (WC). In order for Windhoek to transform into a Water Sensitive City, the implementation of WSUD is imperative. Although the CoW has implemented measures towards IUWM, more options still need to be explored in order to contribute to IUWM processes and to ultimately become a Water Sensitive City. This research was aimed at conducting a comprehensive review of existing WSUD practices within the CoW and identifying gaps pertaining to WSUD implementation. The research confirmed, via a review of relevant literature, that the implementation of WSUD mainly flourishes when documented policies and regulations drive implementation. To review WSUD implementation in the CoW, this study followed a qualitative research approach by gathering data via online questionnaires using the SurveyMonkey platform. To validate the survey outcomes, structured interviews were conducted with selected survey participants to gain more insight into the outcomes. For the data collection, the study targeted a sample of managers and specialists from the three departments within the CoW that deal with urban infrastructure design and planning. A 72% response rate was achieved. The study revealed that there was a general understanding and knowledge of WSUD concepts among all the CoW stakeholders involved in water management, planning and design. This was mostly due to their academic knowledge and sometimes via exposure to existing WSUD practices within the city. Water Demand Management, Water Recycling, and Voluntary Green Roofs and Rainwater Harvesting were identified as existing WSUD options currently practised within the CoW. The study identified lack of capacity, lack of knowledge, lack of management support, a fragmented approach, the absence of policies and legislation, and no perceived financial benefits as barriers to WSUD implementation within the CoW. Based on the above findings, the study recommended that the City of Windhoek address existing barriers to WSUD implementation, increase awareness of WSUD within the city, secure government funding and apply for carbon credits to upscale the implementation of WSUD.
6

Rainwater harvesting for drought mitigation and flood management

Melville-Shreeve, Peter January 2017 (has links)
Rainwater harvesting (RWH) in the UK has seen a low level of uptake relative to similar settings such as Australia and Germany. The relatively low cost of municipal water in the UK limits the financial savings associated with RWH systems, especially in a domestic setting. Although financial benefits can be relatively low (in terms of reduced water bills), academic and practitioner studies have demonstrated the potential for RWH to significantly reduce potable water demands at typical UK houses. Hence, increased uptake of RWH has potential to contribute to mitigating droughts in water scarce regions. Stormwater management in the UK is receiving increasing attention at all levels; from grass-roots sustainable drainage systems (SuDS) such as downpipe disconnections and raingardens; through to implementation of urban realm attenuation schemes and continued development of guidance from UK policy makers. The public realm nature of most SuDS presents a need for partnership approaches to be fostered between infrastructure mangers and the general public. The application of RWH as a technology within the SuDS management train has been limited in the UK as policy makers have taken the view that RWH tanks may be full at the start of a design storm, and thus the potential for attenuation and peak discharge reduction has been largely ignored. However, in the last few years there has been a shift in emphasis; from RWH perceived purely as a water demand management technology to a focus on its wider benefits e.g. mitigating surface water flooding through improved stormwater management. RWH systems examined in this thesis are now available which offer multiple benefits to both end-users and water service providers. The application of RWH in a dual purpose configuration (to displace potable water demands and control stormwater discharges) has seen increasing interest during the development of this thesis. However, the successful design of RWH as a stormwater management tool requires a series of calculations to be completed. To date, practitioners have frequently relied upon low-resolution heuristic methods which lead to a small range of configurations being deployed, with minimal demonstrable stormwater control benefits. In this thesis, full details of novel and traditional RWH technologies were identified and described. Empirical data was collected, both in laboratory conditions and at field sites, to identify the real world operating characteristics of a range of RWH configurations. Additionally a new time series evaluation methodology was developed to enable RWH systems to be designed and analysed. This method quantifies water demand benefits and also focusses on stormwater management metrics (i.e. largest annual discharge and total discharge volume per year). The method was developed to enable a range of RWH configurations to be evaluated at a given site. In addition, a decision support tool (RainWET) was developed and tested which enabled the methods to be deployed in real world settings. The application of the RainWET software allowed a UK-wide, time series analysis of RWH configurations to be completed and the holistic benefits of a range of dual purpose RWH systems to be analysed and described. Evidence from the UK study suggests that a traditional RWH installation (3000l storage, 300l/day demand and 60m2 roof) installed at a house in a water scarce region (London, SAAR 597mm) was able to fully mitigate stormwater overflows over a 20 year analysis whilst providing a mean water saving of 31,255l/annum. An equivalent system located in the wettest region studied (Truro, SAAR 1099mm) saw mean reductions in the largest annual storm of 62% (range 35-86%) whilst satisfying a mean rainwater demand of 50,912l/annum. The study concluded that suitably designed dual purpose RWH systems offered better stormwater management benefits than those designed without a stormwater control device. In addition, the integration of smart RWH controls were shown to maximise stormwater control benefits with little or no reduction in a system’s ability to satisfy non-potable water demands.
7

A regenerative urban stormwater management methodology. The role of SuDS construction and monitoring in the transition of a Mediterranean city

Perales Momparler, Carmen Sara 21 December 2015 (has links)
[EN] Under the well-known slogan 'think global, act local', cities in the 21st century face the enor-mous challenge of catalyzing, intensifying and accelerating sustainable urban transformations. Without losing a holistic view, the methodology presented in this thesis places the focus on 're-source management and climate mitigation and adaptation', in particular in urban stormwater management, proposing processes that can bring about the required change, shaped by the place-based approach of the regenerative sustainability paradigm. Building upon literature and practice that supports a flexible approach to stormwater manage-ment in urban environments that mimic natural processes and predevelopment hydrology (Sus-tainable Drainage Systems, SuDS) as one way to, amongst others, help to prevent and adapt to climate change, the thesis highlights the relevance of the connection to the place for adoption of best practices that conduct towards a regenerative system. Hence, it incorporates this con-nection to the place to the SuDS representation, naming it the SuDS 'landed rocket'. The proposed methodology includes a conceptual framework, specific method and tools, that allows for the understanding and the characterization of the current situation of a urban stormwater system in a process that guides future actions to move towards the desired regen-erative urban built environment concept, with a place-based holistic view. This methodology has been applied to Benaguasil, a Mediterranean city, where stormwater management is the local authority's responsibility and has been historically guided by main-stream conventional drainage practices. The thesis shows how, by taking a multi-dimensional and trans-disciplinary approach to solve environmental problems, future actions can be proper-ly addressed. Working with academia has been essential to develop wider evidence base. In this case, a sequence of research projects has advanced the innovative approach to stormwater management in Benaguasil, but it is contended that this methodology could be applied to any urban context. The thesis aims to enhance smart governance by providing information about the successful implementation and monitoring of SuDS showcase sites in Mediterranean Spain. These show-case sites are catalysts in the transition towards regenerative urban built environments in the region. In addition, it provides international examples that add further credence for improved urban ecological infrastructure by demonstrating what success can look like. / [ES] Bajo el conocido eslogan 'piensa global, actúa local', las ciudades del siglo XXI se enfrentan al gran reto de catalizar, intensificar y acelerar las transformaciones hacia un urbanismo sostenible. Desde una perspectiva holística, la metodología presentada en esta tesis se centra en 'la gestión de los recursos y la adaptación y mitigación al cambio climático', en particular en la gestión de las escorrentías urbanas, proponiendo los procesos que pueden ayudar al cambio requerido, bajo el enfoque del paradigma de la sostenibilidad regenerativa local. A partir de las referencias bibliográficas y experiencias que avalan a los Sistemas de Drenaje Sostenible (SuDS) como enfoque flexible a la gestión de las escorrentías urbanas, tratando de mimetizar los procesos hidrológicos previos al desarrollo urbano (que entre otros, contribuyen a la prevención y adaptación frente al cambio climático de las ciudades), la tesis subraya la relevancia de la conexión con el lugar para la selección de las mejores soluciones que lo conduzcan hacia un sistema regenerativo. Así, se incorpora esta conexión con el lugar a la representación de los SuDS, dándole el nombre de 'SuDS landed rocket'. La metodología propuesta incluye un marco conceptual, un método y herramientas específicas que permiten el entendimiento y caracterización de la situación actual de un sistema de drenaje urbano en un proceso que guíe acciones futuras para progresar hacia el concepto del medioambiente urbano regenerativo deseado, con una perspectiva holística local. La metodología se ha aplicado en Benaguasil, una ciudad mediterránea, donde la gestión del agua de lluvia es responsabilidad local y que ha estado influenciada históricamente por prácticas convencionales de drenaje. La tesis muestra cómo adoptando un enfoque multidimensional y multidisciplinar para resolver problemas medioambientales, las acciones futuras se pueden plantear correctamente. El trabajo con las instituciones académicas se ha demostrado esencial para desarrollar evidencias de base más amplias. En este caso, una serie de proyectos de investigación ha permitido el avance de Benaguasil hacia una gestión del agua de lluvia más innovadora. La experiencia demuestra que la metodología podría ser aplicada a cualquier otro contexto urbano. La tesis pretende mejorar la gobernanza inteligente proveyendo información respecto de la implementación y monitorización exitosas de SuDS en experiencias piloto en la España mediterránea. Estas demostraciones son catalizadoras de la transición hacia un medio ambiente urbano regenerativo en la región. Además, presenta ejemplos que se añaden al catálogo internacional de experiencias, mostrando el camino del éxito hacia un entorno urbano más saludable y habitable. / [CAT] Sota el conegut lema 'pensa global, actua local', les ciutats del segle XXI s'enfronten al gran repte de catalitzar, intensificar i accelerar les transformacions cap a un urbanisme sostenible. Des d'una perspectiva holística, la metodologia presentada en esta tesis es centra en 'la gestió dels recursos i la adaptació i mitigació al canvi climàtic', en particular en la gestió de les escorrenties urbanes, proposant processos que poden ajudar al canvi requés, des d'una òptica del paradigma de la sostenibilitat regenerativa local. A partir de les referències bibliogràfiques i experiències que avalen els Sistemes de Drenatge Sostenible (SuDS) com una aproximació flexible a la gestió de les escorrenties urbanes, tractant de mimetitzar els processos hidrològics previs al desenvolupament urbà (que entre altres, contribueixen a la prevenció i adaptació al canvi climàtic de les ciutats), la tesis subratlla la rellevància de la connexió al lloc per a la selecció de les millors solucions que el puguen conduir cap a un sistema regeneratiu. D'esta manera, s'incorpora esta connexió al lloc en la representació dels SuDS, donant-li el nom de 'SuDS landed rocket'. La metodologia proposta inclou un marc conceptual, un mètode i unes eines especifiques que permeten l'enteniment i caracterització de la situació actual d'un sistema de drenatge urbà en un procés que guie accions futures per a progressar cap al concepte de medi ambient urbà regeneratiu desitjat, amb una perspectiva holística local. La metodologia s'ha aplicat a Benaguasil, una ciutat mediterrània, on la gestió de l'aigua de pluja és responsabilitat local, i que ha estat influenciada històricament per pràctiques convencionals de drenatge. La tesis mostra com adoptant un punt de mira multidimensional i multidisciplinari per a resoldre problemes medi ambientals, les accions futures es poden plantejar correctament. El treball amb les institucions acadèmiques s'ha demostrat essencial per a crear evidències de base més amples. En este cas, una sèrie de projectes europeus d'investigació ha permès l'avanç de Benaguasil cap a una gestió de l'aigua de pluja més innovadora. L'experiència demostra que la metodologia podria ser aplicada a qualsevol altre context urbà. La tesis pretén millorar la governança intel¿ligent aportant informació respecte de la implementació i monitorització exitoses de SuDS en experiències pilot en la Espanya mediterrània. Estes demostracions son catalitzadores de la transició cap a un medi ambient urbà regeneratiu en la regió. A més a més, presenta exemples que s'afegeixen al catàleg internacional d'experiències, mostrant el camí del èxit cap a un entorn urbà més saludable i habitable. / Perales Momparler, CS. (2015). A regenerative urban stormwater management methodology. The role of SuDS construction and monitoring in the transition of a Mediterranean city [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59063 / TESIS
8

SuDS water storage capacity calculator : A decision support tool for the implementation ofSustainable Drainage Systems in Östersund.

van der Hulle, Tess January 2022 (has links)
Heavy precipitation events are expected to increase in intensity and frequency, due to global warming. Sewer systems might overload during heavy rainfall, resulting in floods which potentially affect all municipalities in Sweden. Traditionally, stormwater is seen as pipe-related problem, but a transition towards Sustainable Drainage Systems (SuDS) has started. SuDS aim to reduce the quantity of the runoff from the site, slow down the runoff to allow (in)filtration, and provide treatment of the surface water before discharge. In Sweden, municipalities are responsible for the sewer system and realization and implementation of climate change adaptation measures, like SuDS. Tools and models support the highly complex selection, location, and design of SuDS, by systematically providing the most relevant information that represents the actual drainage system in the best way possible. Furthermore, models are used to predict the behaviour of SuDS, which may form Decision Support Systems (DSS). The highest interest in SuDS modelling and DSS lies in water quantity, however existing models are complex and lack flexibility, transferability, and stakeholder inclusion. The aim of this project is to provide a tool for the Municipality of Östersund that aids in the decision-making and design process for the implementation of SuDS, concerning their capacity to store stormwater. The ‘SuDS water storage capacity calculator’ can be used to test what (combinations of) SuDS are able to store the stormwater of a heavy rainfall event.The following SuDS components were included in the calculator: extensive green roofs, underground infiltration systems, infiltration basins, swales, porous pavements, detention basins, ponds, and wetlands. Secondly, the technical criteria forming the basis of the calculator were identified through a literature review. These criteria were used to calculate precipitation and the water storage capacity of each SuDS. The calculator was then built in Microsoft Powerpoint using Visual Basic for Applications (VBA). Two case studies were selected in Östersund and explored using the calculator. The water storage capacity of each SuDS component was calculated using scenarios in which 25%, 50%, 75%, and 100% of the total available area in each case study was used as input. Finally, four combinations of SuDS were tested concerning their water storage capacity. All calculated water storage capacity was compared to the amount of water falling on the case study areas during a heavy precipitation event that only occurs once every 100 years.The developed calculator can be used to calculate water storage capacity of SuDS and precipitation in a simple way. The tool contains user input and default values, which can still be changed. Furthermore, the calculator allows comparison between the amount of precipitation and water storage capacity. The results of the scenarios show that underground infiltration systems and detention basins have the highest potential to store stormwater, followed by infiltration basins, porous pavements, and ponds or wetlands. The calculator has limited design options, due to its simplification of reality. However, its limits are mostly applicable further in the designing process. The4calculator gives a rough estimate of the potential water storage capacity of a variety of SuDS components. The calculator is a useful tool before the design process has started, by providing an indication of the options that are worthwhile to consider in terms of water storage capacity. Furthermore, opportunities for optimization of the tool were recognized. The water storage capacity resulting from the different scenarios was compared to the precipitation falling on each case study area. Realistically, the amount of precipitation that exceeds the capacity of the sewer system might not fall directly where the SuDS are located. Finally, the calculator allows applications of a wider range of combinations of SuDS components. / <p>2022-06.16</p>
9

Storm Water Management with BlueGreen Infrastructure in Urban Planning : A case-study in Krokom, Sweden

Suleiko Allansson, Lena January 2023 (has links)
As changing climate and growing urban populations present new challenges for managing both the quantity and the quality of storm waterin cities, nature-based solutions such as blue-green infrastructure arebecoming widely considered as an alternative to grey infrastructure. The benefits, above providing storm water management at a lower cost, are increased ecosystem services. One of such solutions is SuDS: a collective name for drainage systems thatare designed to manage the quantity of runoff, protect or enhance water quality, increase amenity and foster biodiversity. In Sweden there is a lack of research on applying nature-based solutions in planning urban water management. This case study aims to contribute with knowledge of how working with blue-green infrastructure in a systematic way effects the outcome of urban planning and what ecosystem gains can be expected. ASuDS design was created following the SuDS guidelines for a greenfield residential area in the city of Krokom. The design was then compared with the original proposal by the municipality.The results show that the systematic method that SuDS brings to watermanagement planning leads to a different design of a residence area than what traditional methods produce. At the same time the ability to handle extreme rain event is at least as robust, with the ability of the system to generate other ecosystem services and further strengthen the resilience of the area. Further research is needed for a more detailed analysis of the generated ecosystem services. / <p>2023-06-02</p>
10

Bacias hidrográficas urbanizadas: renaturalização, revitalização e recuperação. Um estudo da bacia do Jaguaré. / Urban watershed: restoration, revitalization, recovery. A study of Jaguaré watershed.

Silva, Juliana Caroline de Alencar da 01 June 2017 (has links)
A urbanização traz consigo diversos desafios, dentre eles, o manejo das águas, o qual se destaca por englobar aspectos de diversas áreas do conhecimento e demandar soluções multidisciplinares, o que nem sempre é fácil de alcançar. O presente estudo se dedicou à analise dos principais aspectos e desafios envolvidos no processo de requalificação de corpos d\'água em áreas urbanas. Discute-se a renaturalização, a revitalização e a recuperação, e suas dificuldades, como o controle efetivo das cargas poluidoras na bacia hidrográfica, o reestabelecimento das funções ecossistêmicas dos corpos d\'águas e a promoção da integração da população no processo a fim de garantir sua efetividade e durabilidade. Este estudo compreende a análise crítica das principais técnicas existentes de manejo da água no meio urbano; das metodologias de tratamento de canais atualmente empregadas; das novas técnicas de drenagem, consideradas sustentáveis; e das estruturas utilizadas para controle de cargas poluidoras. Para tanto as técnicas estudadas foram aplicadas em uma proposta de requalificação da bacia hidrográfica do córrego Jaguaré, situada na zona oeste do município de São Paulo, a fim de auxiliar estudos futuros no melhor entendimento dos processos envolvidos e na escolha da melhor técnica de manejo (renaturalização, revitalização ou recuperação) a ser empregada para distintos cenários. A bacia do córrego Jaguaré conta com uso do solo heterogêneo, possuindo desde áreas verdes bem preservadas, até remanescentes industriais e rodovias e, portanto, apresenta diversos problemas e usos conflituosos do espaço, o que garante a ela um campo fértil para estudos relativos ao manejo das águas. Para validar a proposta de requalificação foi realizada ainda uma consulta pública junto aos moradores da bacia a fim de compreender as demandas da sociedade. / Urbanization brings with it several challenges, among them water management that stands out because it involves aspects of several areas of knowledge and demands multidisciplinary solutions, which is not always easy to achieve. The present study was devoted to the analysis of the main aspects and challenges involved in the process of urban watercourses requalification. The restoration, revitalization and recovery, and their difficulties, such as the effective pollution control in the watershed, the reestablishment of the ecosystem functions of the watercourses and the population integration in order to ensure the process effectiveness and durability. This study includes the critical analysis of the main existing water management techniques, such as methodologies of channels treatment currently employed, sustainable drainage, and structures used for pollutant control. The techniques studied were applied in a proposal for the Jaguaré watershed requalification, located in the western zone of São Paulo city, in order to help future studies to better understand the processes involved. Besides that it helps to choose the best management techniques (Restoration, revitalization or recovery) to be used for different scenarios. The Jaguaré watershed has a heterogeneous land occupation, preserving green areas, residential use, industrial remnants, and highways. Therefore, it presents several problems and conflicting land uses, which ensures it is a fertile field for water management studies. In order to validate the requalification proposal, a public consultation was also held with the watershed residents, in order to understand the society\'s demands.

Page generated in 0.0672 seconds