• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 75
  • 9
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 223
  • 223
  • 223
  • 95
  • 93
  • 92
  • 50
  • 41
  • 38
  • 34
  • 33
  • 32
  • 30
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Studies on plasma catecholamines in man: analytical techniques and applications.

January 1996 (has links)
by Perpetua E. Tan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 149-157). / Abstract --- p.9 / Acknowledgments --- p.12 / List of abbreviations --- p.13 / List of Tables --- p.16 / List of Figures --- p.19 / Chapter CHAPTER 1 --- INTRODUCTION --- p.21 / Chapter CHAPTER 2 --- LITERATURE REVIEWS CATECHOLAMINES: NORADRENALINE AND ADRENALINE --- p.25 / Chapter 2.1 --- History --- p.25 / Chapter 2.2 --- Origin of plasma catecholamines --- p.25 / Chapter 2.3 --- Kinetics of entry and removal --- p.28 / Chapter 2.4 --- Levels present in plasma --- p.30 / Chapter 2.5 --- Some factors affecting plasma CA levels --- p.31 / Chapter 2.5.1 --- Effects of age --- p.31 / Chapter 2.5.2 --- Postural change --- p.32 / Chapter 2.5.3 --- Exercise --- p.32 / Chapter 2.5.4 --- Temperature change --- p.32 / Chapter 2.5.5 --- Stress --- p.33 / Chapter 2.5.6 --- Pregnancy --- p.34 / Chapter 2.5.7 --- Disease --- p.35 / Chapter 2.6 --- Actions in the body --- p.35 / Chapter 2.6.1 --- Plasma endogenous catecholamines --- p.35 / Chapter 2.6.2 --- Plasma exogenous catecholamines and medicine --- p.36 / Chapter 2.6.2.1 --- Clinical uses --- p.36 / Chapter 2.6.2.2 --- Effects --- p.37 / Chapter 2.6.2.3 --- Side effects --- p.38 / Chapter 2.7 --- Binding of catecholamines in plasma --- p.38 / Chapter 2.8 --- Measurement of catecholamines in plasma --- p.38 / Chapter 2.8.1 --- Chemistry --- p.38 / Chapter 2.8.2 --- Extraction and purification --- p.39 / Chapter 2.8.3 --- Biological methods --- p.40 / Chapter 2.8.4 --- Colorimetry --- p.41 / Chapter 2.8.5 --- Radioimmunoassay and radioenzymatic assay --- p.41 / Chapter 2.8.6 --- Enzyme-linked immunoassay --- p.42 / Chapter 2.8.7 --- Gas chromatography --- p.42 / Chapter 2.8.8 --- Liquid chromatography --- p.42 / Chapter 2.8.8.1 --- Fluorometry --- p.43 / Chapter 2.8.8.2 --- Electrochemical detection --- p.43 / Chapter 2.9 --- Plasma protein binding of basic drugs --- p.44 / Chapter 2.9.1 --- Binding to albumin --- p.45 / Chapter 2.9.2 --- Binding to alpha-1-acid-glycoprotein --- p.45 / Chapter 2.9.3 --- Binding to other proteins --- p.45 / Chapter 2.9.4 --- Factors affecting drug binding --- p.46 / Chapter 2.9.4.1 --- Pregnancy --- p.46 / Chapter 2.9.4.2 --- Age --- p.46 / Chapter 2.9.4.3 --- Disease states --- p.46 / Chapter 2.9.5 --- Separation procedures to reveal and follow drug protein binding --- p.47 / Chapter 2.9.5.1 --- Equilibrium dialysis --- p.47 / Chapter 2.9.5.2 --- Ultrafiltration --- p.48 / Chapter 2.9.5.3 --- Ultracentrifugation --- p.48 / Chapter 2.9.5.4 --- Gel Filtration --- p.48 / Chapter CHAPTER 3 --- ANALYTICAL TECHNIQUE : PLASMA CATECHOLAMINE ANALYSIS --- p.49 / Chapter 3.1 --- HPLC determination with coulometric detection of catecholamines --- p.49 / Chapter 3.1.1 --- Introduction --- p.49 / Chapter 3.1.2 --- Basic equipment --- p.49 / Chapter 3.1.3 --- Mobile phase preparation --- p.50 / Chapter 3.1.3.1 --- Reagent A (Citrate-acetate-EDTA buffer) --- p.50 / Chapter 3.1.3.2 --- Reagent B (ion pairing reagent) --- p.50 / Chapter 3.1.3.3 --- Mobile phase mixture --- p.50 / Chapter 3.1.4 --- Detector settings --- p.51 / Chapter 3.1.5 --- Sample collection and storage --- p.51 / Chapter 3.2 --- Reagents and solutions --- p.52 / Chapter 3.2.1 --- Acid-washed alumina --- p.52 / Chapter 3.2.2 --- Tris buffer solution --- p.53 / Chapter 3.2.3 --- Washing solution --- p.53 / Chapter 3.2.4 --- Acetic acid solution --- p.53 / Chapter 3.2.5 --- EDTA-HC1 solution --- p.53 / Chapter 3.2.6 --- Citric acid solution --- p.53 / Chapter 3.2.7 --- Stock solutions --- p.54 / Chapter 3.2.7.1 --- Catecholamine standards --- p.54 / Chapter 3.2.7.2 --- Dihydroxybenzylamine (Internal) standard --- p.54 / Chapter 3.2.8 --- Stripped fresh frozen plasma --- p.54 / Chapter 3.2.9 --- Sorensen's phosphate buffer containing 0.6% NaCl --- p.55 / Chapter 3.2.10 --- Control standards --- p.55 / Chapter 3.3 --- Voltammogram of catecholamines and internal standard used --- p.55 / Chapter 3.4 --- Maintenance of the HPLC-Coulometric detector system --- p.56 / Chapter 3.5 --- Optimization of the extraction method --- p.58 / Chapter 3.5.1 --- Amount of alumina for adsorption of CA --- p.58 / Chapter 3.5.2 --- pH of tris buffer for maximum uptake of CA onto alumina --- p.58 / Chapter 3.5.3 --- Optimum time for maximum uptake of CA onto alumina --- p.59 / Chapter 3.5.4 --- Optimum time for maximum desorption of CA into acid solution --- p.59 / Chapter 3.5.5 --- Optimum volume of acid solution for maximum desorption of CA --- p.60 / Chapter 3.6 --- Validation of the method --- p.60 / Chapter 3.6.1 --- Linearity --- p.60 / Chapter 3.6.2 --- Recovery --- p.61 / Chapter 3.6.3 --- Reproducibility --- p.62 / Chapter 3.6.4 --- Stability --- p.62 / Chapter 3.7 --- Results --- p.63 / Chapter 3.8 --- Discussion --- p.79 / Chapter CHAPTER 4 --- CLINICAL APPLICATIONS OF THE CATECHOLAMINE ASSAY --- p.84 / Chapter 4.1 --- Introduction --- p.84 / Chapter 4.1.1 --- Applications of catecholamines assay in clinical science --- p.84 / Chapter 4.2 --- : PLASMA CATECHOLAMINES AFTER INDUCTION OF ANAESTHESIA AT CAESARIAN SECTION --- p.84 / Chapter 4.2.1 --- Introduction --- p.84 / Chapter 4.2.2 --- Patients and methods --- p.86 / Chapter 4.2.3 --- Blood sampling and storage --- p.87 / Chapter 4.2.4 --- Statistics used --- p.87 / Chapter 4.2.5 --- Results --- p.88 / Chapter 4.2.6 --- Discussion --- p.99 / Chapter 4.3 --- EPINEPHRINE INFILTRATION IN SINUS SURGERY --- p.101 / Chapter 4.3.1 --- Introduction --- p.101 / Chapter 4.3.2 --- Patients and methods --- p.102 / Chapter 4.3.3 --- Blood sampling and storage --- p.103 / Chapter 4.3.4 --- Results --- p.104 / Chapter 4.3.5 --- Discussion --- p.108 / Chapter CHAPTER 5 --- ANALYTICAL TECHNIQUE: PLASMA PROTEIN BINDING OF CATECHOLAMINES --- p.110 / Chapter 5.1 --- Equilibrium dialysis for protein binding of drugs --- p.110 / Chapter 5.1.1 --- Introduction --- p.110 / Chapter 5.1.2 --- Dialyzing apparatus --- p.110 / Chapter 5.1.3 --- Sample collection and storage --- p.111 / Chapter 5.1.4 --- Reagents and solutions --- p.111 / Chapter 5.1.4.1 --- Ascorbic acid --- p.111 / Chapter 5.1.4.2 --- Glutathione --- p.111 / Chapter 5.1.4.3 --- Sodium metabisulfite --- p.111 / Chapter 5.1.4.4 --- Dialysis buffer --- p.111 / Chapter 5.1.5 --- Dialysis membrane --- p.112 / Chapter 5.1.6 --- Equilibrium dialysis --- p.112 / Chapter 5.2 --- Optimization of the binding parameters --- p.113 / Chapter 5.2.1 --- Types of preservatives for stability of catecholamines during dialysis --- p.113 / Chapter 5.2.2 --- Dialysis buffer --- p.114 / Chapter 5.2.3 --- Dialysis time and volume of sample --- p.114 / Chapter 5.2.4 --- Dialysis membrane --- p.115 / Chapter 5.2.5 --- Catecholamines concentration for dialysis --- p.114 / Chapter 5.3 --- Total protein analysis- Lowry Method --- p.115 / Chapter 5.3.1 --- Reagents and solutions --- p.116 / Chapter 5.3.1.1 --- Reagent A (Alkaline copper reagent) --- p.116 / Chapter 5.3.1.2 --- Reagent B (Folin-Ciocalteus phenol reagent with water) --- p.116 / Chapter 5.3.2 --- Stock standard and controls --- p.116 / Chapter 5.3.2.1 --- Human serum albumin standard --- p.116 / Chapter 5.3.2.2 --- Controls --- p.116 / Chapter 5.3.3 --- Procedure --- p.116 / Chapter 5.4 --- Results --- p.117 / Chapter 5.5 --- Discussion --- p.126 / Chapter CHAPTER 6 --- CONCLUSIONS --- p.130 / APPENDIX --- p.134 / CHEMICALS AND REAGENTS --- p.146 / REFERENCES --- p.149
52

Contribution of the sympathetic nervous system to the pathogenesis of salt-sensitive hypertension

Pazzol, Michael Lee 08 April 2016 (has links)
Dysregulation of the sodium-chloride cotransporter (NCC) is believed to significantly impact blood pressure. Recent studies have implicated overactivity of the sympathetic nervous system as a mechanism driving renal NCC dysregulation to evoke the development of salt-sensitive hypertension. It is proposed that the sympathetic nervous system accomplishes this by norepinephrine (NE)-mediated over-activation of the beta2-adrenergic receptors located in the distal tubules of the kidney. Beta2-adrenoreceptor activation is hypothesized to stimulate the protein kinases SPAK and OxSR1 to phosphorylate and thus activate NCC. This beta2-receptor-SPAK/OxSR1-NCC pathway was elucidated in studies that challenged salt-resistant mice with high-salt diets, bilateral adrenalectomies, and NE infusion. To expand the scope of these studies, we investigated the effects of elevated circulating NE on blood pressure, NCC activity, and expression of NCC proteins, SPAK, and OxSR1 in a different salt-resistant animal species (the Sprague-Dawley rat). In this study we implanted male Sprague-Dawley rats with osmotic minipumps delivering a subcutaneous infusion of either saline, NE, a 50:50 solution of DMSO/isotonic saline, a combination of NE and the NCC antagonist hydrochlorothiazide, or a combination of NE and the beta-adrenoreceptor antagonist propranolol. Following implantation of the pumps the rats were randomly assigned to either a standard diet (0.4% NaCl) or a high-salt diet (8% NaCl) for two weeks. After fourteen days all animals underwent acute femoral artery, vein, and bladder cannulation in order to monitor heart rate and blood pressure, administer drugs intravenously, and track renal function, respectively. Following surgical recovery, blood pressure and heart rate were measured continuously, and urine was collected in ten-minute intervals in order to assess peak natriuretic responses to amiloride and hydrochlorothiazide. Following this protocol the rats received an intravenous bolus of hexamethonium (30 mg/kg), and their peak drops in blood pressure were recorded. Afterwards both kidneys were harvested and frozen at -80 °C for measurement of NCC proteins, SPAK, and OxSR1 expression. This study demonstrates that increased circulating NE induces salt-sensitive hypertension in the naturally salt-resistant Sprague-Dawley rat. Chronic infusion of NE raised the blood pressure of the rats, and a high-salt diet exacerbated this effect. Furthermore, NE prevented salt-evoked suppression of NCC activity and NCC, SPAK, and OxSR1 protein expression. Co-infusion of hydrochlorothiazide with NE attenuated NE-mediated hypertension and caused no variance in the blood pressures between the standard salt and high-salt groups. This indicates that chronically antagonizing NCC eliminated the salt-sensitive component of NE-mediated hypertension. Beta-receptor antagonism combined with NE infusion completely eliminated the hypertensive influence of NE and downregulated the expression of NCC proteins, SPAK, and OxSR1. However, NCC activity still remained at a level comparable with that observed in the NE-infused rats, demonstrating dissociation between protein expression and function. These data, the first report in a rat model of an interaction of NE and a high salt intake that impairs NCC function, demonstrate that increased levels of NE in combination with a high dietary salt intake result in NCC dysregulation and the development of NE-mediated salt-sensitive hypertension. To an extent the data also support the proposition that NE activates the beta-adrenergic receptors to influence the activity of NCC and the expression of NCC proteins, SPAK, and OxSR1. Beta-antagonism combined with NE infusion attenuated the effects of NE on blood pressure and the expression of NCC proteins, SPAK, and OxSR1. However, the NE-mediated elevation of NCC activity still remained high. We propose that the beta-receptors are not the only adrenergic receptors that can influence NCC activity. The presence of alpha-adrenergic receptors in the distal tubules suggests that they may be able to keep NCC activity elevated through a pathway independent of the beta-receptors, SPAK, and OxSR1.
53

Efeito do treinamento físico no controle barorreflexo da atividade nervosa simpática e freqüência cardíaca em indivíduos hipertensos / The effects of exercise training on baroreflex control of sympathetic nerve activity and heart rate in hypertensive patients

Laterza, Mateus Camaroti 05 December 2007 (has links)
INTRODUÇÃO: Prévios estudos demonstraram que o treinamento físico melhora o controle barorreflexo da freqüência cardíaca em ratos geneticamente hipertensos. Contudo, o efeito do treinamento físico no controle barorreflexo da atividade nervosa simpática e da freqüência cardíaca em pacientes com hipertensão não é conhecido. Desta forma, foram objetivos deste estudo testar as hipóteses de que o treinamento físico poderia melhorar o controle barorreflexo da atividade nervosa simpática muscular (ANSM) e da freqüência cardíaca em pacientes hipertensos, e que o treinamento físico poderia reduzir os níveis de ANSM e pressão arterial nesses pacientes. MÉTODOS: Vinte pacientes hipertensos, sem uso de medicamentos, foram subdivididos em dois grupos: grupo hipertenso treinado (n=11, idade: 46±2 anos) e grupo hipertenso sedentário (n=9, idade: 42±2 anos). Um grupo de indivíduos normotensos pareados por idade (n=12, idade: 42±2 anos) também foi estudado. O controle barorreflexo da ANSM (microneurografia) e da freqüência cardíaca (ECG) foram avaliados pelo método de infusão venosa de doses crescentes de fenilefrina e nitroprussiato de sódio, e analisados pela equação de regressão linear. A pressão arterial foi medida batimento a batimento pelo método oscilométrico automático. O treinamento físico consistiu de três sessões por semana, com duração de 60 minutos cada, por um período de 4 meses. RESULTADOS: Antes das intervenções, em condições basais, os níveis de pressão arterial e ANSM foram semelhantes entre os grupos hipertensos, mas significativamente aumentados quando comparados com o grupo normotenso. O controle barorreflexo da ANSM e da freqüência cardíaca foi semelhante entre os grupos hipertensos, mas significativamente diminuídos quando comparados ao grupo normotenso. Nos pacientes hipertensos, o treinamento físico reduziu os níveis de pressão arterial (P<0,01) e ANSM (P<0,01), e significativamente aumentou o controle barorreflexo da ANSM e da freqüência cardíaca durante aumentos (P<0,01 e P<0,03, respectivamente) e diminuições (P<0,01 e P<0,03, respectivamente) na pressão arterial. Além disso, após o treinamento físico, não foi mais observada, a diferença inicial na sensibilidade barorreflexa arterial entre os pacientes hipertensos e indivíduos normotensos. Nenhuma mudança significativa foi observada no grupo hipertenso sedentário. CONCLUSÔES: O treinamento físico restaura o controle barorreflexo da ANSM e da freqüência cardíaca em pacientes hipertensos. Adicionalmente, o treinamento físico normaliza os níveis da ANSM e reduz os níveis de pressão arterial nesses pacientes. / Previous studies demonstrated that exercise training improves the baroreflex control of heart rate in spontaneously hypertensive rats. However, the effects of exercise training on baroreflex control of sympathetic nerve activity and heart rate in patients with hypertension are unknown. We hypothesized that exercise training would improve baroreflex control of muscle sympathetic nerve activity (MSNA) and heart rate in hypertensive patients and that exercise training would reduce MSNA and blood pressure in these patients. Twenty never-treated hypertensive patients were randomly divided into 2 groups: exercise-trained (n=11, age: 46±2 years) and untrained (n=9, age: 42±2 years) patients. An age-matched normotensive exercise-trained group (n=12, age: 42±2 years) was also studied. Baroreflex control of MSNA (microneurography) and heart rate (ECG) was assessed by stepwise intravenous infusions of phenylephrine and sodium nitroprusside and analyzed by linear regression. Blood pressure was monitored on a beat-to-beat basis. Exercise training consisted of three 60-minute exercise sessions per week for 4 months. Under baseline conditions (before training), blood pressure and MSNA were similar between hypertensive groups but significantly increased when compared with the normotensive group. Baroreflex control of MSNA and heart rate was similar between hypertensive groups but significantly decreased when compared with the normotensive group. In hypertensive patients, exercise training significantly reduced blood pressure (P<0.01) and MSNA (P<0.01) levels and significantly increased baroreflex control of MSNA and heart rate during increases (P<0.01 and P<0.03, respectively) and decreases (P<0.01 and P<0.03, respectively) in blood pressure. The baseline (preintervention) difference in baroreflex sensitivity between hypertensive patients and normotensive individuals was no longer observed after exercise training. No significant changes were found in untrained hypertensive patients. In conclusion, exercise training restores the baroreflex control of MSNA and heart rate in hypertensive patients. In addition, exercise training normalizes MSNA and decreases blood pressure levels in these patients.
54

Ação do vinho tinto sobre o sistema nervoso simpático e função endotelial em pacientes hipertensos e hipercolesterolêmicos / Red wine ingestion action upon sympathetic nervous system and endothelial function in hypertensive and hypercholesterolemic subjects

Andrade, Ana Cristina Magalhães 22 November 2006 (has links)
INTRODUÇÃO: O consumo moderado de vinho tinto está inversamente associado ao desenvolvimento de doença cardiovascular. Efeitos do vinho tinto no sistema nervoso simpático e na reatividade vascular não estão totalmente esclarecidos. MÉTODOS: Foi avaliada a atividade simpática do nervo muscular e a dilatação mediada pelo fluxo na artéria braquial por ultrassom em 10 indivíduos hipercolesterolêmicos, 9 hipertensos e 7 controles antes e após o consumo de vinho tinto durante 15 dias. Medidas hemodinâmicas foram realizadas com Finometer: pressão arterial sistólica, diastólica, freqüência cardíaca, débito cardíaco e resistência vascular sistêmica foram calculados continuamente durante a microneurografia. Para avaliação da atividade simpática, utilizou-se punção de nervo fibular - esta foi medida como bursts/min durante período basal, teste do gelo e exercício estático com 30% da contração voluntária máxima. RESULTADOS: Após 15 dias de vinho tinto, a atividade simpática aumentou de forma significante em hipertensos e hipercolesterolêmicos (p < 0,05); porém, a dilatação mediada pelo fluxo aumentou somente em hipercolesterolêmicos (p < 0,05). As pressões arteriais sistólica e diastólica não apresentaram mudança significante. Não houve mudança na freqüência cardíaca. Houve aumento do débito cardíaco em controles, diminuição da resistência arterial sistêmica durante o gelo em controles no período basal. CONCLUSÃO: O consumo de vinho tinto aumentou a atividade simpática em hipertensos e hipercolesterolêmicos; porém, somente estes experimentaram melhoria da função endotelial, o que sugere diferentes mecanismos na regulação da função endotelial. / Introduction: Moderate red wine intake is inversely associated with development of cardiovascular disease. Red wine effects in sympathetic activity and vascular reactivity are not fully understood. Methods: Muscle sympathetic nerve activity and flow mediated dilatation of brachial artery by ultrasound were evaluated in 10 hypercholesterolemic, 9 hypertensive, and 7 controls subjects before and after red wine intake during 15 days. Hemodynamic measures were done with Finometer: arterial blood pressure, heart rate, cardiac output, and systemic vascular resistance were assessed during mycroneurography. The sympathetic activity was evaluated during baseline, cold test and isometric exercise. Results: After 15 days of red wine intake, sympathetic activity increased significantly in hypertensives and hypercholesterolemics (p < 0.05). On the other hand, flow mediated dilation increased after red wine only in hypercholesterolemics (p < 0.05). Systolic and diastolic blood pressure as well as heart rate did not change significantly. Cardiac output increased in controls and systemic vascular resistance decreased during cold test in controls. Conclusion: There were similar increases in sympathetic activity in hypertensive and hypercholesterolemic subjects; however, endothelial function was restored only in the latter group, which suggests different mechanisms regulating endothelial function.
55

Basis for a sympatholytic approach in the treatment of human heart failure

Aggarwal, Anuradha, 1964- January 2002 (has links)
Abstract not available
56

Neural Crosstalk Between Sympathetic Nervous System and Sensory Circuits to Brown Adipose Tissue

Liu, Yang 08 April 2013 (has links)
Brown adipose tissue (BAT) is a critical organ for non-shivering thermogenesis, which is under control of both sympathetic and sensory neural innervation. We utilized both a retrograde sympathetic nerve tract tracer pseudorabies virus and an anterograde sensory tract tracer the H129 strain of herpes simplex virus-1 to locate individual neurons across the neuroaxis that are part of the SNS outflow from brain to interscapular BAT and are part of the sensory input to the brain. We found specific neuronal phenotype of the double-infected neurons distributed from the hindbrain to the forebrain with highest densities in several discrete brain regions: the paraventricular hypothalamus (PVH), lateral hypothalamus (LHA), parabrachial nucleus (PB) and raphe pallidus (RPa). The neuroanatomical reality of the SNS-sensory feedback loops suggests coordinated control of BAT thermogenesis at several sites and indicates plasticity of SNS-sensory crosstalk.
57

Parental Problem Drinking and Children’s Adjustment: Are Associations Moderated by Patterns of Sympathetic and Parasympathetic Nervous System Activity?

Bi, Shuang 01 January 2015 (has links)
Parental problem drinking (PPD) is associated with various forms of child psychopathology, including hyperactivity, conduct disorder, delinquency, depression and anxiety. However, not all children share the same risk for developing adjustment problems in the context of PPD. In this study, we examined patterns of sympathetic and parasympathetic nervous system activity account for differential susceptibility to the adverse effects of PPD in middle childhood. We found that reciprocal SNS activation protects against child internalizing symptoms in the context of mother problem drinking. We also found consistent interactions between PNS and SNS in predicting child internalizing problems. Coinhibition is linked to more internalizing symptoms including anxiety and depression. This study provides further support for Autonomic Space Theory and demonstrates the importance of taking both PNS and SNS into account when studying physiological response to stress.
58

The effect of aerobic fitness on the cardiovascular and sympathetic nervous system response to physiological stress at rest and during dynamic exercise

Raymond, Duncan A Unknown Date
No description available.
59

HYPOTHALAMIC MEDIATION OF ACUTE INCREASES IN ARTERIAL BLOOD PRESSURE AND RENAL SYMPATHETIC NERVE ACTIVITY DURING ELECTRICAL STIMULATION OF THE LAMINA TEMRINALIS

Carmichael II, Samuel Paterson 01 January 2008 (has links)
Discrete electrical stimulation of the organum vasculosum of the lamina terminalis (OVLT) produces sympathetically-mediated increases in peripheral resistance and arterial blood pressure (ABP). Since efferent fibers from the lamina terminalis innervate the kidney through polysynaptic connections, the present study determined whether electrical stimulation of the OVLT increased sympathetic outflow to the kidney. In anesthetized male, Sprague-Dawley rats (n=5) electrical stimulation of OVLT neurons produced frequency and current intensity dependent increases in renal sympathetic nerve activity (RSNA) and ABP that were abolished by ganglionic blockade with the nicotinic antagonist chlorisondamine (5mg/kg,i.v.). Since neurons from the OVLT terminate within the hypothalamic paraventricular nucleus (PVH), the present study also determined whether these connections mediate a portion of sympathetic and pressor responses to electrical stimulation of the OVLT. Bilateral inhibition of the PVH with the GABAA agonist muscimol (5mM/100nl) significantly attenuated the increase in ABP at all frequencies and current intensities. Spike-triggered averaging of RSNA revealed that PVH inhibition significantly blunted the RSNA responses to OVLT stimulation at 100, 200, but not 400andamp;igrave;A. The present findings indicate that electrical stimulation of the OVLT increases RSNA and ABP and that these responses are partially mediated by the tonic activity of PVH neurons.
60

Nociception, pain and the sympathetic nervous system: neural and effector organ responses in healthy and spinal cord injured human subjects

Burton, Alexander Robert, Clinical School - Prince of Wales Hospital, Faculty of Medicine, UNSW January 2009 (has links)
Relatively few studies have examined the effects of nociception pe se on sympathetic nerve activity in awake healthy human subjects. Painful stimuli can produce differential responses from cutaneous and muscle postganglionic sympathetic neurones in the anaesthetised cat, and some animal and human studies suggest that nociceptive stimuli originating in different tissues may produce differential sympathetic effects- deep nociception causing vasodepressive and superficial nociception triggering an excitatory effect on cardiovascular state. It is important to understand how the sympathetic nervous system responds to nociception in healthy subjects in order to make more meaningful comparisons with the behaviour which occurs following damage to sympathetic pathways, e.g. nerve lesions (chronic regional pain syndromes) and spinal cord injury (autonomic dysreflexia (AD)). Additionally, it has been suggested that muscle spindles afferents may play a role in chronic pain, most notably the 'vicious cycle' of pain. While this has been investigated in animal studies, it has not been thoroughly investigated in healthy human subjects. Muscle spindle and sympathetic nerve activity from muscle and skin postganglionic neurones were directly recorded in healthy awake human subjects using microneurography; effector organ responses (blood pressure, heartrate, skin blood flow and sweat release) were recorded in both healthy and spinal cord injured subjects. Deep and superficial nociception was induced by intramuscular and subdermal injections of hypertonic saline given at unexpected times and in quasi-random order. Regardless of the origin of nociception (deep or superficial), general responses tended to be excitatory with increases seen in muscle and skin sympathetic nerve activity, heartrate, blood pressure and sweat release. A gender effect was noted regarding skin blood flow, with males largely showing decreases and females increases. No changes were noted in spindle firing rates and painful stimuli did not significantly increase effector organ responses in spinal cord injured subjects. Contrasting with previous studies, we did not see a differential sympathetic response or change in spindle firing rate to painful stimuli originating in different tissues. While it is believed that noxious stimuli trigger AD, we did not see exaggerated sympathetic responses in spinal cord injured subjects. More investigation is required regarding innocuous triggers of AD.

Page generated in 0.0788 seconds