• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • Tagged with
  • 20
  • 10
  • 9
  • 9
  • 9
  • 8
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Automatisk trimning av drivsystemreglering från MATLAB

Köhlström, Jonas January 2007 (has links)
This master thesis covers the development of an automatic tuning process for the existing speed controller for drive systems. The drive systems are resonant two-mass systems where a motor is used to drive a load connected by a shaft. The developed method relies heavily on system identification and the construction of a complete mechanical model of the process. With this approach, the common problem with poor load speed control that derives from measuring only the motor speed can be addressed and solved for a majority of such processes. The automatic tuning method has along with general test functions been implemented in a complete tool for automatic tuning, testing and performance evaluation and reporting for drive systems.
12

Learning in the Loop : On Neural Network-based Model Predictive Control and Cooperative System Identification

Winqvist, Rebecka January 2023 (has links)
Inom reglerteknik har integrationen av maskininlärningsmetoder framträtt som en central strategi för att förbättra prestanda och adaptivitet hos styrsystem. Betydande framsteg har gjorts inom flera viktiga aspekter av reglerkretsen, såsom inlärningsbaserade metoder för systemidentifiering och parameterskattning, filtrering och brusreducering samt reglersyntes. Denna avhandling fördjupar sig i området inlärning för reglerteknik med särskild betoning på inlärningsbaserade regulatorer och identifieringsmetoder.  Avhandlingens första del behandlar undersökningen av neuronnätsbaserad Modellprediktiv Reglering (MPC). Olika nätstrukturer studeras, både generella black box-nät och nät som väver in MPC-specifik information i sin struktur. Dessa nät jämförs och utvärderas med avseende på två prestandamått genom experiment på realistiska två- och fyrdimensionella system. Den huvudsakliga nyskapande aspekten är inkluderingen av gradientdata i träningsprocessen, vilket visar sig förbättra noggrannheten av de genererade styrsignalerna. Vidare påvisar de experimentella resultaten att en MPC-informerad nätstruktur leder till förbättrad prestanda när mängden träningsdata är begränsad.  Med insikt om vikten av noggranna matematiska modeller av styrsystemet, riktar den andra delen av avhandlingen sitt fokus mot inlärningsbaserade identifieringsmetoder. Denna forskningsgren behandlar karakterisering och modellering av dynamiska system med hjälp av maskininlärning. Avhandlingen bidrar till området genom att introducera kooperativa systemidentifieringsmetoder för att förbättra parameterskattningen. Specifikt utnyttjas verktyg från Optimal Transport för att introducera en ny och mer generell formulering av ramverket Correctional Learning. Detta ramverk är baserat på en mästare-lärlingsmodell, där en expertagent (mästare) observerar och modifierar den insamlade data som används av en lärande agent (lärling), med syftet att förbättra lärlingens skattningsprocess. Genom att formulera correctional learning som ett optimal transport-problem erhålls ett mer flexibelt ramverk, bättre lämpat för skattning av komplexa systemegenskaper samt anpassning till alternativa handlingsstrategier. / In the context of control systems, the integration of machine learning mechanisms has emerged as a key approach for improving performance and adaptability. Notable progress has been made across several aspects of the control loop, including learning-based techniques for system identification and estimation, filtering and denoising, and controller design. This thesis delves into the rapidly expanding domain of learning in control, with a particular focus placed on learning-based controllers and learning-based identification methods. The first part of this thesis is devoted to the investigation of Neural Network approximations of Model Predictive Control (MPC). Model-agnostic neural network structures are compared to networks employing MPC-specific information, and evaluated in terms of two performance metrics. The main novel aspect lies in the incorporation of gradient data in the training process, which is shown to enhance the accuracy of the network generated control inputs. Furthermore, experimental results reveal that MPC-informed networks outperform the agnostic counterparts in scenarios when training data is limited. In acknowledgement of the crucial role accurate system models play in in the control loop, the second part of this thesis lends its focus to learning-based identification methods. This line of work addresses the important task of characterizing and modeling dynamical systems, by introducing cooperative system identification techniques to enhance estimation performance. Specifically, it presents a novel and generalized formulation of the Correctional Learning framework, leveraging tools from Optimal Transport. The correctional learning framework centers around a teacher-student model, where an expert agent (teacher) modifies the sampled data used by the learner agent (student), to improve the student's estimation process. By formulating correctional learning as an optimal transport problem, a more adaptable framework is achieved, better suited for estimating complex system characteristics and accommodating alternative intervention strategies. / VR 2018-03438 projekt 3224
13

Data driven estimation of cabin dynamics in heavy-duty vehicles

Markovic, Bratislav January 2019 (has links)
With increasing demand for autonomous systems and self-driving heavy-dutyvehicles there is an even more increasing demand for safety. In order to achievedesired safety level on the public roads, engineers have to tackle many technicalissues, like decision making, object detection and perception. In order to detect anobject or to have an understanding of its surroundings, autonomous heavy-dutyvehicles are equipped with different types of sensors. These sensors are placed ondifferent parts of the autonomous truck. The fact that some parts of the truckare highly dynamical introduces additional disturbances to the signals comingfrom onboard sensors. One of the most dynamic parts of every truck is its cabin.Moving cabin may induce additional disturbances into data coming from sensorsattached to it. This corrupted data may lead the autonomous trucks to make wrongdecisions. In the worst case, such decisions may be fatal.This thesis uses a data driven modeling approach for creating a mathematicaldescription of cabin movements based on data from onboard sensors. For thatpurpose, tools from system identification field are used. The resulting modelsare aimed to be used for implementation of real-time estimation algorithm forthe cabin dynamics, which in turn can be used for real-time compensation of thedisturbances. / Ee ökad efterfrågan efter autonoma fordon sätter ännu högre krav på säkerhet.Eftersom mäniskors säkerhet alltid prioriteras högst så måste ingenjörer runtom i världen att se till att framtida självkörande lastbilar inte bara är heltautonoma utan framför allt säkra. För att uppnå önskad säkerhetsnivå på deallmänna vägarna måste ingenjörerna ta itu med många tekniska problem, somexempelvis beslutsfattande, objektdetektering och perception. För att upptäckaett föremål eller att förstå sin omgivning är autonoma lastbilar numera utrustademed olika typer av sensorer. Dessa sensorer är monterade på olika delar av denautonoma lastbilen. Det faktum att vissa delar av en lastbil är mycket dynamiskaintroducerar ytterligare störningar i signler som kommer från de sensorer somfinns monterade på fordonet. En av de mest dynamiska delarna av varje lastbilär hytten. Hyttens rörelser kan orsaka ytterligare störningar i data som kommerfrån sensorer som är anslutna till den. Den felaktiga informationen kan ledatill att det autonoma fordonet fattar felaktiga beslut, som i värsta skulle kunnaorsaka dödsfall. Detta examensarbete använder sig av datadriven modelleringför att beskriva det matematiska förhållandet mellan hytt och chassi baserat pådata som kommer från de sensorer som finns monterade på fordonet. För attdetta ändamål skulle kunna uppnås används systemidentifieringsteknik. Bådegrey-box och black-box systemidentifieringsmetod användas och jämföras för attkunna erhålla ett resultat som visar vilken av de två teknikerna är bäst lämpad fördetta ändamål.
14

Modeling and Simulation of a Remote Controlled Weapon Station / Modellering och Simulering av Fjärrmanövrerad Vapenstation

Svalstedt, Mats January 2022 (has links)
Understanding how a system behaves when exposed to different scenarios is key when improvingand developing complex structures. The amount of different approaches is immense and variesfrom case to case. One of the simpler approaches is black-box modelling as it only targetsan input and output to a system, and not necessarily the mathematical interpretations. Fora nonlinear system such as a remote controlled weapon station, this approach is appropriate,as it allows to only focus on a certain scenario and the results obtained for that case. In thisstudy, a remote controlled weapon station is further investigated when exposed to disturbancesfrom a combat vehicle. The data obtained is simulated on a platform and the results are usedin Matlab to analyze and find the best model from these tests. A Hammerstein-Wiener modelwith nonlinear wavelet networks is deemed the best as it gives the most accurate representationof the station’s behavior. The results obtained are considered to be moderately accurate dueto its precision and should only be used as reference point, rather than being interpreted as atrue representation of the system. / Att förstå hur ett system beter sig när det utsätts för olika scenarier är viktigt när man skaförbättra och utveckla komplexa strukturer. Mängden olika tillvägagångssätt är näst intillobegränsad och varierar från fall till fall. Ett av de enklare tillvägagångssätten är "blackbox" modellering eftersom det bara riktar sig till in- och utsignal till ett system, och intenödvändigtvis de matematiska tolkningarna. För ett icke-linjärt system så som en fjärrstyrdvapenstation, är detta tillvägagångssätt lämpligt, eftersom det tillåter att bara fokusera på ettvisst scenario och de resultat som erhålls för det fallet. I denna studie undersöks en fjärrstyrdvapenstation när den utsätts för störningar från ett stridsfordon. Den erhållna datan simuleraspå en plattform och resultaten används i Matlab för att analysera och hitta den bästa modellenfrån dessa tester. En Hammerstein-Wiener-modell med icke-linjära wavelet-nätverk anses varaden bästa eftersom den ger den mest exakta representationen av stationens beteende. Deerhållna resultaten anses vara mediokra på grund av dess precision och bör endast användassom en referenspunkt, snarare än att tolkas som en sann representation av systemet.
15

System Identification of continuous-time systems with quantized output data using indirect inference

Persson, Frida January 2021 (has links)
Continuous-time system identification is an important subject with applications within many fields. Many physical processes are continuous in time. Therefore, when identifying a continuous-time model, we can use our insight into the system to decide the system structure and have a direct interpretation of the parameters. Furthermore, in systems such as network control systems and sensor networks, there is a common feature that the output data is quantized meaning we can only represent our data with a limited amount of distinct values. When performing continuous-time system identification of a system with quantized output data, we have errors from process and measurement noise and also a quantization error. This will make it more difficult to estimate the system parameters. This thesis aims to evaluate if it is possible to obtain accurate estimates of continuous-time systems with quantized output data using the indirect inference method. Indirect Inference is a simulation-based method that first estimates a misspecified auxiliary model to the observed data and in the second step, the parameters of the true system are estimated by simulations. Experiments are done both on one linear and two non-linear Hammerstein systems with quantized output data. The indirect inference estimator is shown to have the means to yield accurate estimates on both linear systems as well as non-linear Hammerstein systems with quantized output. The method performs better than the simplified refined instrumental variable method for continuous-time systems (SRIVC), which is commonly used for system identification of continuous-time systems, on a linear system. Furthermore, it performed significantly better compared to the Hammerstein Simplified Refined Instrumental Variable method for continuous-time systems (HSRIVC) for one of the non-linear systems and slightly better for the second one. The downside is that indirect inference is computationally expensive and time-consuming, hence not a good choice when computation time is a critical factor / Identifiering av Tidskontinuerlig system är ett viktigt ämne med användningsområde inom många områden. De flesta fysiska processer är tidskontinuerliga och när vi identifierar tidskontinuerliga modeller av dessa system kan vi använda vår insikt av systemet för att bestämma systemstrukturen och även direkt tolka dessa parametrar. I nätverkssystem och sensor-nätverk är det vanligt att vår utdata är kvantiserad, därav kan vi endast representera vår data med ett begränsat antal distinka värden. När vi identifierar tidskontinuerliga system med kvantiserad utdata, har vi därför både fel som ett resultat av process och mätbrus ovh ett kvantiseringsfel. Detta gör det svårare att identifiera parametrarna av systemet. I detta projekt var målet att utvärdera om det är möjligt att erhålla bra estimat för ett tidskontinuerligt system med kvantiserad utdata genom att använda metoden indrect inference. Indirect inference är en simuleringsbaserad metod som först estimerar en misspecificerad model från det observerade datat och i nästa steg, estimerar paramtrarna av det sanna systemet via simulering. Experiment utfördes både på ett linjärt och två olinära Hammerstein system med kvantiserad utdata. Indirect inference metoden visas ha potential att genere bra estimat på både linjära och icke-linära Hammerstein system med kvantiserad utdata. Metoden presterar bättre än SimplifiedRefined Instrumental Variable Method for continuous-time systems (SRIVC) på det linjära systemet och även mycket bättre än Hammerstein Simplified Refined InstrumentalVariable method for continuous-time systems (HSRIVC) för ett av det olinjära systemen och lite bättre för det andra. En nackdel med indirect inference är att det är beräkningstungt och att det tar lång tid att generera estimaten. Därav är denna metod inte att rekomendera när tid är en kritisk faktor.
16

Dynamic Modelling of the Patient Circuit for High Frequency Ventilation / Modellering av patientkretsen för högfrekvent mekanisk ventilation

Eriksson, Samuel January 2022 (has links)
Artificial breathing is vital when it comes to treatment of critically ill patients where the natural breathing mechanism is insufficient. With the help of mechanical ventilators, the natural breathing mechanism of the patient can be assisted or even exchanged with the artificial breathing from the machine. Small errors and unexpected events in these systems may lead to serious damages on the patients, causing even more harm than good. Therefore, these systems require a lot of testing and monitoring to ensure functionality. With the use of accurate simulation models, testing time can be reduced by running test in the simulation environment instead of on the actual machine. The simulation models can also be used for monitoring functions in real time, making sure the ventilation of the patient is working as expected. When it comes to simulating a ventilator system controlled with high frequency ventilation techniques, the existing simulation models fail to reproduce the high frequency dynamics that appear during high frequency ventilation. This paper proposes a modelling approach for mechanical ventilator systems exposed to high frequency dynamics. Focus is placed on modeling the patient circuit including the inspiratory and expiratory tubes, the humidifier with the dry line tube, the Y-piece, the tracheal tube and the patient lungs. The model is based on mathematical models representing the thermodynamic and pneumatic behaviour of the system. It is built using Simulink with regular and customized building blocks from Simscape. Compared to pre-existing simulation models, this model includes the inertia effects of the gas which is crucial when it comes to accurately modeling the system while being exposed to fast changes in flow and pressure. To evaluate the model performance, the simulated pressure and flow at the patient port are compared to measured data from an experimental setup. From the results of this thesis it was seen that the model is very sensitive to the patient model used in the simulation environment, which means that the patient model has to be remodeled in order to archive a better model performance. Compared to the pre-existing model used for comparison in this thesis, it is seen that an increased parameter model produces more accurate results. / Konstgjord andning är livsavgörande när det kommer till behandling av kritiskt sjuka patienter där den naturliga andningsmekanismen inte fungerar som den ska. Med hjälp av mekanisk ventilation kan den naturliga andningsmekanismen hos patienten assisteras eller helt ersättas av denna konstgjorda andning. Små fel eller oväntade händelser i dessa system kan vara livsfarliga för patienten och kan orsaka mer skada än nytta. Detta gör att dessa system kräver mycket testning och övervakning för att säkerställa att allt fungerar som tänkt. Med hjälp av noggranna simuleringsmodeller kan testtiden minskas samtidigt som dessa simuleringsmodeller kan användas för övervakning av systemet i realtid, detta för att säkerställa systemets funktion. När det kommer till simulering av ventilatorsystem som ventileras med högfrekventa ventilationstekniker, misslyckas de befintliga simuleringsmodellerna att återskapa den högfrekventa dynamik som uppstår under högfrekvent ventilation. Denna uppsatts föreslår en modelleringsmetod för att kunna modellera mekaniska ventilatorsystem som utsätts för högfrekvent dynamik. Fokus för projektet har varit att modellera patientkretsen inklusive inandnings- och utandningsslangarna, luftfuktaren med torrlinjeslangen, Y-kopplingen, trakealtuben och patientens lungor. Modellen är baserad på matematiska modeller som representerar systemets termodynamiska och pneumatiska beteende. Den är byggd i Simulink med existerande och anpassade block från Simscape. Jämfört med redan existerande simuleringsmodeller inkluderar denna modell gasens tröghetseffekter, vilket är avgörande när det gäller att noggrant modellera systemet samtidigt som det utsätts för snabba förändringar i flöde och tryck. För att utvärdera modellens prestanda jämförs det simulerade trycket och flödet vid patientporten med uppmätta data från en experimentell uppställning i labbmiljö. Resultaten från detta projekt visar att modellen är väldigt känslig för patientmodellen som används i simuleringsmiljön, vilket innebär att patientmodellen måste rekonstrueras för att uppnå en bättre prestanda för modellen. Jämfört med den redan existerande modellen som används för jämförelse i denna avhandling, syns det att en ökad parametermodell ger ett resultat närmare de uppmätta signalerna från det verkliga systemet.
17

Controller Design for a Gearbox Oil ConditioningTestbed Through Data-Driven Modeling / Regulatordesign för en växellåda oljekonditionering testbädd genom datadriven modellering.

Brinkley IV, Charles, Wu, Chieh-Ju January 2022 (has links)
With the exponential development of more sustainable automotive powertrains, new gearbox technologies must also be created and tested extensively. Scania employs dynamometer testbeds to conduct such tests, but this plethora of new and rapidly developed gearboxes pose many problems for testbed technicians. Regulating oil temperature during tests is vital and controllers must be developed for each gearbox configuration; this is difficult given system complexity, nonlinear dynamics, and time limitations. Therefore, technicians currently resort to a manually tuned controller based on real-time observations; a time-intensive process with sub-par performance. This master thesis breaks down this predicament into two research questions. The first employs a replicate study to investigate whether linear system identification methods can model the oil conditioning system adequately. A test procedure is developed and executed on one gearbox setup to capture system behavior around a reference point and the resulting models are compared for best fitment. Results from this study show that such data-driven modeling methods can sufficiently represent the system. The second research question investigates whether the derived model can then be used to create a better-performing model-based controller through pole placement design. To draw a comparison between old and new controllers, both are implemented on the testbed PLC while conducting a nominal test procedure varying torque and oil flow. Results from this study show that the developed controller does regulate temperature sufficiently, but the original controller is more robust in this specific test case. / Med den exponentiella utvecklingen av mer hållbara drivlinor i fordonsindustrin måste nya växellådsteknologier skapas och testas på en omfattande skala. Scania använder sig utav dynamometer testbäddar för att utföra sådana tester, men denna uppsjö av nya och snabbt utvecklade växellådor skapar utmaningar för testbäddsteknikerna. Reglering av oljetemperaturen under testerna är avgörande och därmed måste nya regulatorer utvecklas för varje växellådskonfiguration; detta är problematiskt med tanke på systemkomplexitet, olinjär dynamik samt tidsbegränsning. På grund av detta använder sig testbäddsteknikerna för tillfället av en manuell metod för att ta fram parametrarna till regulatorerna baserat på realtidsobservationer vilket är en tidskrävande process som ofta leder till en underpresterande regulator. Det här masterarbetet bryter ner den nämnda problematiken i två forskningsfrågor. Den första behandlar en replikationsstudie för att undersöka om linjära systemidentifikations metoder kan modellera oljekonditioneringssytemet på ett adekvat sätt. En testprocedur utvecklas och utförs på en växellådskonfiguration för att ta fram en modell för systemet kring en referenspunkt. De resulterande modellerna jämförs för att fastställa vilken metod som bäst beskriver systemet. Resultatet från denna studie visar att sådana data-drivna modelleringsmetoder kan beskriva systemet på ett tillfredsställande sätt. Den andra forskningsfrågan undersöker om den härledda modellen kan användas för att skapa en bättre presterande modellbaserad regulator med hjälp av polplaceringsmetoden. För att kunna göra en jämförelse mellan gamla samt nya regulatorer implementeras båda på testbäddens PLC varvid en nominell testprocedur utförs som varierar vridmoment och oljeflöde. Resultatet från denna studie visar att den framtagna regulatorn kan reglera oljetemperaturen på ett tillfredsställande sätt, däremot är den ursprungliga regulatorn mer robust i det behandlade testfallet.
18

Data Driven Modeling for Aerodynamic Coefficients / Datadriven Modellering av Aerodynamiska Koefficienter

Jonsäll, Erik, Mattsson, Emma January 2023 (has links)
Accurately modeling aerodynamic forces and moments are crucial for understanding thebehavior of an aircraft when performing various maneuvers at different flight conditions.However, this task is challenging due to complex nonlinear dependencies on manydifferent parameters. Currently, Computational Fluid Dynamics (CFD), wind tunnel,and flight tests are the most common methods used to gather information about thecoefficients, which are both costly and time–consuming. Consequently, great efforts aremade to find alternative methods such as machine learning. This thesis focus on finding machine learning models that can model the static and thedynamic aerodynamics coefficients for lift, drag, and pitching moment. Seven machinelearning models for static estimation were trained on data from CFD simulations.The main focus was on dynamic aerodynamics since these are more difficult toestimate. Here two machine learning models were implemented, Long Short–TermMemory (LSTM) and Gaussian Process Regression (GPR), as well as the ordinaryleast squares. These models were trained on data generated from simulated flighttrajectories of longitudinal movements. The results of the study showed that it was possible to model the static coefficients withlimited data and still get high accuracy. There was no machine learning model thatperformed best for all three coefficients or with respect to the size of the training data.The Support vector regression was the best for the drag coefficients, while there wasno clear best model for the lift and moment. For the dynamic coefficients, the ordinaryleast squares performed better than expected and even better than LSTM and GPR forsome flight trajectories. The Gaussian process regression produced better results whenestimating a known trajectory, while the LSTM was better when predicting values ofa flight trajectory not used to train the models. / Att noggrant modellera aerodynamiska krafter och moment är avgörande för att förståett flygplans beteende när man utför olika manövrar vid olika flygförhållanden. Dennauppgift är dock utmanande på grund av ett komplext olinjärt beroende av många olikaparametrar. I nuläget är beräkningsströmningsdynamik (CFD), vindtunneltestningoch flygtestning de vanligaste metoderna för att kunna modellera de aerodynamiskakoefficienterna, men de är både kostsamma och tidskrävande. Följaktligen görs storaansträngningar för att hitta alternativa metoder, till exempel maskininlärning. Detta examensarbete fokuserar på att hitta maskininlärningmodeller som kanmodellera de statiska och de dynamiska aerodynamiska koefficienterna för lyftkraft,luftmotstånd och stigningsmoment. Sju olika maskininlärningsmodeller för destatiska koefficienterna tränades på data från CFD–simuleringar. Huvudfokus lågpå den dynamiska koefficienterna, eftersom dessa är svårare att modellera. Härimplementerades två maskininlärningsmodeller, Long Short–Term Memory (LSTM)och Gaussian Process Regression (GPR), samt minstakvadratmetoden. Dessa modellertränades på data skapad från flygbanesimuleringar av longitudinella rörelser. Resultaten av studien visade att det är möjligt att modellera de statiskakoefficienterna med begränsad data och ändå få en hög noggrannhet. Ingen avde testade maskininslärningsmodelerna var tydligt bäst för alla koefficienterna ellermed hänsyn till mängden träningsdata. Support vector regression var bäst förluftmotstånds koefficienterna, men vilken modell som var bäst för lyftkraften ochstigningsmomentet var inte lika tydligt. För de dynamiska koefficienterna presterademinstakvadratmetoden bättre än förväntat och för vissa signaler även bättre än LSTMoch GPR. GPR gav bättre resultat när man uppskattade koefficienterna för enflygbanan man tränat modellen på, medan LSTM var bättre på att förutspå värdenaför en flybana man inte hade tränat modellen på.
19

Optimal simultaneous excitation for identification of multivariable systems / Optimal simultan excitation för identifiering av multivariabla system

Sigurðsson, Gunnar January 2023 (has links)
Having a accurate model of a system is essential for many applications today, especially those related to advanced process control. When executing a project often a lot of time is spent performing experiments on the real system to estimate a model. By designing higher quality experiments the time needed to estimate and identify these models can be reduced saving both resources and engineering efforts. This masters thesis investigates optimal input design to minimize the time needed to identify a linear time-invariant multivariable system fulfilling certain requirements on the model accuracy. Previous input designs mostly focused on sequential excitation but here the effects of using combined simultaneous and sequential excitation is investigated. The design is performed in simulations and evaluated in closed loop using a model predictive controller to further guarantee that the output constraints are not violated. The results indicate that there are many cases where using combined simultaneous and sequential excitation outperforms the previous methods. The effects of the color of the noise on the input design is investigated and the ability of different designs to estimate system delay is also studied. In addition it is shown how an iterative scheme can be used to guarantee that the accuracy requirements on the estimated model are met. / Att ha en god modell av ett system är viktigt för många applikationer idag, särskilt de som är relaterade till avancerad processtyrning. När man genomför ett projekt läggs ofta mycket tid på att utföra experiment på det verkliga systemet för att identifiera en modell. Genom att utforma experiment av hög kvalitet kan den tid som behövs för att identifiera dessa modeller minskas, vilket minimerar både processpåverkan och ingenjörsinsatsen. Denna masteruppsats undersöker metoder för optimal experimentdesign för att minimera tiden som behövs för att identifiera ett multivariabelt system där det finns krav på modellens noggrannhet. Tidigare metoder fokuserade mest på sekventiella experiment, men här undersöks effekterna av att använda en kombination av samtidiga och sekventiella experiment. Här används simuleringar som utvärderas i sluten loop med hjälp av en modellprediktiv regulator för att undvika att utsignalbegränsningarna inte överskrids. Resultatet indikerar att det finns många fall där användning av kombinerade samtidiga och sekventiella experiment överträffar tidigare metoder. Effekterna av färgat brus på ingångsdesignen undersöks och olika metoders förmåga att uppskatta systemfördröjning studeras också. Dessutom visas hur ett iterativt schema kan användas för att garantera att noggrannhetskraven på den uppskattade modellen uppfylls.
20

Optimal torque split strategy for BEV powertrain considering thermal effects

Yadav, Dhananjay January 2021 (has links)
A common architecture for electric vehicles is to have two electric machines one each on the front and rear axle. Despite the redundancy, this configuration ensures performance. Being energy efficient is equally important for electric vehicles to deliver a sufficiently high range. Hence, operating a single machine at low to medium torque requirement is desirable. A clutch can be implemented on the front axle and its engagement dynamically controlled to reduce the magnetic drag losses in the front machine. With clutch disengaged, the entire torque will be delivered by the rear machine causing it to heat up quickly. As electric machine and inverter losses are also temperature dependent, this work attempts to derive an optimal torque split strategy between the two machines considering thermal effects. An upper-temperature limit for both electric machine and inverter is imposed for component protection. Thermal models for the electric machine, inverter and coolant circuit are simplified using system identification and model order reduction approach. Dynamic optimal torque split is realized by minimizing the energy loss over the entire drive cycle. Dynamic programming is used to investigate the benefits of including thermal losses and to generate a benchmark solution for optimal torque split strategy. Further, two online controllers are developed, one based on non-linear model predictive control and the other being a static controller with added heuristic rules to prevent temperatures of critical components to exceed the limits. A high-fidelity plant model was developed using VSIM as master and GT-Suite thermal model as slave to compare the performance of these controllers. The results show that it is possible to obtain decent thermal performance of electric motor and inverter with one node lumped parameter thermal model and a five-node lumped parameter model for the coolant circuit. Including thermal dynamics in the controller can constraint the temperature within the limits and give an optimal torque split. The benefit of adding temperature-dependent thermal maps is found to be limited to certain operating regions. The static controller with torque split based on instantaneous power loss also performed well for the given configuration. The major contribution to energy saving was obtained by dynamic disengagement of clutch in the form of reduced magnetic drag losses. / En vanlig arkitektur för elfordon är att ha två elmaskiner en vardera på fram- och bakaxeln. Trots redundansen säkerställer denna konfiguration prestanda. Att vara energieffektiv är lika viktigt för att elfordon ska leverera en tillräckligt hög räckvidd. Det är därför önskvärt att driva en enda maskin med lågt till medelhögt vridmoment. En koppling kan implementeras på framaxeln och dess ingrepp kan styras dynamiskt för att minska de magnetiska motståndsförlusterna i den främre maskinen. Med kopplingen urkopplad kommer hela vridmomentet att levereras av den bakre maskinen vilket gör att den snabbt värms upp. Eftersom förluster av elektriska maskiner och växelriktare också är temperaturberoende, försöker detta arbete härleda en optimal vridmomentsdelningsstrategi mellan de två maskinerna med tanke på termiska effekter. En övre temperaturgräns för både elektrisk maskin och växelriktare är införd för komponentskydd. Termiska modeller för den elektriska maskinen, växelriktaren och kylvätskekretsen förenklas med hjälp av systemidentifiering och modellbeställningsreduktion. Dynamisk optimal vridmomentdelning realiseras genom att minimera energiförlusten under hela körcykeln. Dynamisk programmering används för att undersöka fördelarna med att inkludera termiska förluster och för att generera en benchmarklösning för optimal vridmomentsdelningsstrategi. Vidare utvecklas två online-styrenheter, en baserad på icke-linjär modell för prediktiv styrning och den andra är en statisk styrenhet med tillagda heuristiska regler för att förhindra att temperaturer på kritiska komponenter överskrider gränserna. En högfientlig anläggningsmodell utvecklades med VSIM som master och GT-Suite termisk modell som slav för att jämföra prestandan hos dessa styrenheter. Resultaten visar att det är möjligt att erhålla hyfsad termisk prestanda för elmotor och växelriktare med en termisk modell med en nodklumpad parameter och en femnodsmodell med klumpparametrar för kylvätskekretsen. Att inkludera termisk dynamik i regulatorn kan begränsa temperaturen inom gränserna och ge en optimal vridmomentfördelning. Fördelen med att lägga till temperaturberoende termiska kartor har visat sig vara begränsad till vissa driftsområden. Den statiska styrenheten med vridmomentdelning baserad på momentan effektförlust fungerade också bra för den givna konfigurationen. Det största bidraget till energibesparingen erhölls genom dynamisk urkoppling av kopplingen i form av minskade magnetiska motståndsförluster.

Page generated in 0.5139 seconds