Spelling suggestions: "subject:"térahertz"" "subject:"erahertz""
31 |
Dispositifs infrarouges à cascade quantique à base de semiconducteurs GaN/AlGaN et ZnO/ZnMgO / Infrared quantum cascade devices based on GaN/AlGaN and ZnO/ZnMgO semiconductorsJollivet, Arnaud 18 February 2019 (has links)
Ce mémoire de thèse est consacré à l’étude et au développement des hétérostructures semi-conductrices à base de GaN et ZnO. Ces matériaux sont particulièrement prometteurs pour le développement de composants optoélectroniques inter-sous-bandes infrarouges et notamment pour les dispositifs à cascade quantique. Ces semiconducteurs possèdent en effet plusieurs avantages pour la conception de dispositifs à cascade, tels qu’une grande discontinuité de potentiel en bande de conduction et une énergie du phonon LO très élevée. Ces propriétés se traduisent par la possibilité de développer des dispositifs couvrant une gamme spectrale allant du proche-infrarouge au térahertz et offrent la possibilité de réaliser des lasers à cascade quantique térahertz fonctionnant à température ambiante. / This manuscript focuses on the study and on the development of semiconductor heterostructures based on GaN and ZnO material. These materials are particularly promising for the development of infrared optoelectronic intersubband devices in particular for quantum cascade devices. These semiconductors own several advantages to design quantum cascade devices such as a large conduction band offset and a large energy of the LO phonon. These properties predict the possibility to develop devices covering a large spectral range from near-infrared to terahertz and offer the possibility to realize terahertz quantum cascade lasers operating at room temperature.
|
32 |
Contrôle de rayonnements térahertz intenses produits par lasers femtosecondes et applications à la détection de molécules / Control of intense terahertz radiations produced by femtosecond lasers and applications to the detection of moleculesNguyen, Alisée 28 January 2019 (has links)
Les ondes térahertz (THz), situées entre l'infrarouge et les micro-ondes dans le spectre électromagnétique, correspondent aux fréquences caractéristiques de nombreux mouvements moléculaires et permettent ainsi de caractériser des molécules complexes par spectroscopie dans le domaine temporel. Cette thèse a pour objectif d'étudier les champs THz émis par une source constituée d'une impulsion laser à deux couleurs générant un plasma par ionisation de l'air. En raison de l'asymétrie temporelle du champ laser, un courant électronique présentant une composante basse-fréquence dans la gamme THz est formé dans le plasma par conversion non linéaire et produit un champ secondaire comprenant une composante THz. Les effets non linéaires intervenant dans la génération du rayonnement THz sont l'effet Kerr à basse intensité (< 10¹³ W/cm²) et les photocourants à plus haute intensité (> 10¹³ W/cm²), au-dessus du seuil d'ionisation. Ce dernier mécanisme, qui génère le plus de rayonnement THz, est principalement étudié dans ce manuscrit. Si la puissance crête de l'impulsion laser est suffisamment élevée, des filaments de lumière peuvent être formés par combinaison de l'effet Kerr focalisant et de la formation d'un plasma défocalisant. Le phénomène de filamentation laser permet ainsi de créer des ondes THz à distance. En modulant l'impulsion laser, il est aussi possible de modifier les champs et spectres THz associés. En particulier, nous étudions les effets d'une dérive de fréquence et de la combinaison de multi-impulsions sur l'efficacité de conversion laser-THz. Nous consacrons en outre une large part de nos études à l'influence de l'augmentation de la longueur d'onde laser sur le rendement en énergie de l'émission THz. / The terahertz waves (THz), located between the infrared and the microwaves in the electromagnetic spectrum, correspond to the characteristic frequencies of numerous molecular motions and thus make it possible to characterize complex molecules by time-domain spectroscopy. This thesis aims to study the THz fields emitted by a source formed by a two-color laser pulse generating a plasma by air ionization. Due to the time asymmetry of the laser field, an electric current having a low-frequency component in the THz range is formed in the plasma by nonlinear conversion, generating a secondary field including a THz component. The nonlinear effects involved in the generation of THz radiation are the Kerr effect at low intensity (< 10¹³ W/cm²) and the photocurrents at higher intensity (> 10¹³ W/cm²), above the ionization threshold. This latter mechanism, which generates the most THz radiation, is mainly studied in this manuscript. If the peak power of the laser pulse is sufficiently high, light filaments can be created by combining the focusing Kerr effect and the defocusing action of the plasma. So, the filamentation process can produce THz waves remotely. By modulating the laser pulse, it is possible to modify the associated THz fields and spectra. In particular, we study the effects of pulse chirping and multi-pulse combination. We also devote a large part of our studies to the influence of increasing the laser wavelength on the THz energy yield.
|
33 |
Imagerie térahertz par réflexion interne totale pour la biologie. : Application à l'étude de la perméabilisation cellulaire. / Terahertz imaging by total internal reflection for Biology. : Application to cell permeabilization study.Grognot, Marianne 18 October 2016 (has links)
Les ondes térahertz s’étendent de 0.1 à 10x1012 Hz, à la frontière entre les domaines de l’optique et des radiofréquences. Cette position intermédiaire originale en a longtemps rendu l’accès difficile : les technologies térahertz n’ont pris leur essor qu’au cours des années 90. Le domaine n’a pas encore atteint la maturité des domaines des microondes ou de l’infrarouge qui le jouxtent. Cependant, les motivations exploratoires sont fortes, de par la sensibilité spectroscopique du térahertz aux états moléculaires (rotationnels, vibrationnels..) et aux liaisons faibles établies dans et entre les molécules. Dans le cas des objets biologiques, le térahertz est particulièrement sensible à l’eau : sa quantité, son état physico-chimique et ses solutés.Nous avons mis en œuvre un montage d’imagerie en réflexion interne totale atténuée (ATR) pour pouvoir distinguer des cellules vivantes de leur milieu physiologique. Au cours de ce travail, le montage d’imagerie ATR a été caractérisé théoriquement, puis expérimentalement. La première démonstration de l’origine du contraste sur ces images térahertz a été réalisée. Il provient du contenu intracellulaire, plus spécifiquement des protéines et peptides dissouts dans le cytoplasme.Une analyse fine des mécanismes sous-jacents à la nature protéique du contraste térahertz a également été développée. Elle donne accès à des informations spectroscopiques inédites sur l’eau, les protéines dissoutes et la couche de solvatation les entourant.Mettant à profit cette compréhension de notre montage térahertz, nous l’avons proposé comme outil non invasif de suivi quantitatif de la perméabilisation de cellules en conditions physiologiques. Lors de la perméabilisation, augmentation des transferts moléculaires à travers la membrane, notre outil permet de quantifier le passage des peptides et protéines. La perméabilisation de cellules vivantes a une gamme d’application vaste, de l’entrée de fluorochromes pour l’imagerie ou de médicaments à la thérapie génique. Afin d’assurer ces passages à travers la membrane des cellules, il est nécessaire d’altérer ses propriétés, sans pour autant compromettre la viabilité cellulaire. L’étude de deux types de perméabilisation avec notre outil térahertz est proposée : la perméabilisation chimique et l’électroporation. Dans les deux cas, des mécanismes d’effet dose ont été caractérisés quantitativement. Notre outil térahertz a démontré de grands avantages devant les méthodes actuellement utilisées pour quantifier ces dynamiques de perméabilisation et en caractériser la réversibilité. / Lying between 0.1 to 10x1012 Hz, the terahertz radiation occupies a middle ground between microwaves and infrared light waves, sometimes named “the terahertz gap” for technologies relevant to generation and detection have only risen at the beginning of the 90’s and aren’t fully developed yet. Nevertheless, there are strong exploratory incentives because of terahertz spectroscopic sensitivity to molecular states (rotational, vibrational…) and weak bounds in and between molecules. In the case of biological object, terahertz waves are especially sensitive to water: its quantity, physico-chemical state and solutes. We implemented an Attenuated Total internal Reflection (ATR) imaging setup in order to distinguish live cells from their physiological bathing medium. Throughout this work, we characterized both experimentally and experimentally the ATR setup. The first demonstration of the contrast origin in the terahertz images obtained was done. It arises from the intracellular content, more specifically the proteins and peptides dissolved in the cytoplasm.A precise analysis of the underlying mechanism of this proteinaceous terahertz contrast has also been developed. It gives access to original spectroscopic information about water, dissolved proteins and the hydration shell around them.Taking advantage of our whole setup comprehension, we proposed it as a non-invasive tool for quantitative live-cell permeabilization assessment in physiological conditions. During permeabilization, aka increased molecular transfers through the cell membrane, our tool allows to quantify the transfer of peptides and proteins. Live-cell permeabilization has a large application range, from fluorochrome entry in imaging, to drugs or gene therapy. In order to ensure molecules crossing the cell membrane, it’s necessary to alter its properties without compromising cell viability.A study of two permeabilization methods is proposed: chemical permeabilization and electroporation. In both cases dose effect mechanisms were quantitatively characterized. Our terahertz tool demonstrated great advantages over classical permeabilization quantification methods and permeabilization reversibility assessment methods.
|
34 |
Compression d'impulsions d'électrons à l'aide d'impulsions laser térahertz ultrabrèves et fortement focaliséesRobitaille, Simon 06 May 2019 (has links)
Il est possible d'accélérer des électrons par champ direct avec une impulsion laser intense de quelques cycles optiques et de polarisation radiale. Cette méthode peut générer des impulsions d'électrons convenables pour de la diffraction électronique ultrarapide. Les impulsions électroniques ainsi générées vont toutefois s'étirer en se propageant vers une cible dû à la différence d'énergie entre les électrons d'une même impulsion et à la répulsion coulombienne. Afin de comprimer ces impulsions d'électrons, nous proposons d'utiliser des impulsions laser térahertz intenses. En effet, le puissant champ électromagnétique des impulsions laser térahertz peut accélérer les électrons à l'arrière du paquet ou ralentir ceux à l'avant. Le présent mémoire de maîtrise explore la possibilité de comprimer des impulsions d'électrons en utilisant des ondes térahertz linéairement polarisées (dans le mode LP01). Des simulations numériques ont _été réalisées afin d'étudier ce schéma de compression. Les résultats montrent entre autres qu'il est possible de comprimer une impulsion électronique de 400 fs _a 150 fs avec un gain net en énergie. Cependant, les amplitudes de champ électrique nécessaires sont de l'ordre du GV/m (109 V/m), ce qui est un défi pour la technologie actuelle. Des champs électriques moins importants peuvent toutefois être utilisés pour comprimer des paquets d'électrons monoénergétiques. Les impulsions électroniques peuvent ainsi subir une compression de 350 fs _a 20 fs. Ce schéma pourrait être une alternative aux cavités radiofréquences souvent utilisées pour comprimer des impulsions électroniques. / Electrons can be directly accelerated by the longitudinal electric field component of an intense, few-cycle, radially-polarized laser pulse. It has been predicted that the method can be used to produce electron pulses suitable for ultrafast electron diffraction. However, after acceleration, electron pulses broaden as they travel up to a target due to energy dispersion and space charge effects. In ordre to achieve the compression of electron pulses, one can use intense terahertz laser pulses. In fact, the intense electromagnetic fields of terahertz laser pulses may accelerate the electrons trailing at the end of electron pulses or decelerate the electrons at the front. The present master's thesis investigate the possibility of compressing electron pulses using linearly polarized terahertz waves (LP01 mode). Numerical simulations have been made to explore this compression scheme. Some results show that a 400 fs electron pulse can be compressed to 150 fs with a net energy gain. However the required electric field amplitude must be in the GV/m scale (109 V/m), which is a challenge for actual technology. Lower electric field amplitude can be used to compress monoenergetic electron pulses. Thereby, electron pulses can be compressed from 350 fs to 20 fs. This approach may be an alternative to the radiofrequency cavity scheme often used for electron pulse compression.
|
35 |
Etude de nanojonctions Josephson à haute température critique en vue d'applications térahertzWolf, Thomas 10 December 2010 (has links) (PDF)
Nous avons développé une nouvelle technique de fabrication de jonctions Josephson à haute température critique réalisées par implantation ionique. Ces jonctions ont été caractérisées électriquement et modélisées par une simulation des équations quasi-classiques d'Usadel. Après développement d'un circuit de couplage dans les gammes 4-8 GHz et dans la gamme des quelques centaines de GHz, des mesures de mélange micro-onde ont été réalisées. Les résultats ont fait apparaître un terme non-linéaire d'amplitude importante absent des équations du modèle RSJ (« resistively-shunted junctions »). Une théorique basée sur la non-linéarité de la résistance normale des jonctions fabriquées par irradiation a été formulée et comparée avec les expériences. Elle permet d'ouvrir des perspectives intéressantes concernant les applications de détection micro-onde de ce type de jonctions Josephson.
|
36 |
Développement de capteurs THz utilisant l'hétérostructure AlGaN/GaNSpisser, Hélène January 2017 (has links)
Le domaine du spectre électromagnétique correspondant aux fréquences térahertz est encore peu exploité, pourtant, les applications nécessitant la génération, l’amplification ou la détection d’un signal térahertz sont nombreuses et intéressantes. Dans ce travail, nous nous intéressons tout particulièrement au détecteurs plasmoniques, qui constituent une alternative prometteuse à la montée en fréquence des capteurs électroniques et à l’utilisation de capteurs thermiques pour les photons de faible énergie.
Les capteurs plasmoniques fonctionnent grâce au couplage entre le photon térahertz et un plasmon au sein d’un gaz d’électrons bidimensionnel (2DEG). Le plasmon-polariton est ensuite transformé en un signal continu et détectable. Nous utilisons pour cela le 2DEG présent dans l’hétérostructure AlGaN/GaN. Le couplage entre le photon et le plasmon-polariton est réalisé par un réseau métallique déposé sur la structure semi-conductrice.
Tout d’abord, l’étude du couplage photon/plasmon par des simulations électromagnétiques nous a permis de connaître les fréquences de résonance des plasmons-polaritons en fonction des dimensions du réseau. Le motif de réseau composé de deux bandes de métal de largeurs différentes a été plus particulièrement étudié. Ce motif permettant aux détecteurs d’atteindre une très haute sensibilité [Coquillat et al., 2010] et n’avait pas encore été étudié du point de vue de son efficacité de couplage.
Des détecteurs, dimensionnés pour notre montage de test à 0,65 THz, ont ensuite été fabriqués puis mesurés avec un réseau non-polarisé, à température ambiante et refroidis à l’azote. La correspondance entre la variation de la sensibilité en fonction de la fréquence et les spectres d’absorption mesurés au spectromètre infrarouge à transformée de Fourier (FTIR) montre l’importance de l’étape de couplage dans le processus de détection.
Contrôler la densité électronique dans le 2DEG permet de modifier la fréquence de résonance des plasmons-polaritons et d’augmenter la sensibilité des détecteurs. Nous avons mené des développements technologiques de manière à pouvoir contrôler la densité électronique du 2DEG en appliquant une tension sur le réseau. Cette étape constitue un défi technologique compte tenu de la surface très étendue des réseaux (plusieurs mm²). Nous avons finalement fabriqué des détecteurs pour lesquels la fréquence de résonance de couplage peut être contrôlée grâce à la tension appliquée sur le réseau. / Abstract: The objectives of this thesis were the fabrication, the measurement and the study of gallium nitride THz detectors. These detectors are working as follows : first the incident THz photon is coupled to a plasmon in the quantum well at the interface AlGaN/GaN. This plasmon is then turned into a continuous measurable current. One of the key-components in this type of detectors is the grating coupling the incident photon and the plasmon. Electromagnetic simulations have been made to determine the dimensions of the grating depending on the detection frequency. Detectors were then fabricated using the precendently calculated grating patterns. Their working frequency depending on their dimensions were measured with a good agreement with the previously led simulations. The grating is not used only as coupling element, but can be used to monitor the electron density in the quatum well as well, what should allow an exaltation of the rectification phenomenon and a frequency tunability. A technological development was needed to achieve grating actually monitoring the electron density over a wide range. It was a real challenge to fabricate such wide grating (36 mm²) with such small periods (about one micrometer) using epitaxies developped for devices with a much smaller area.
|
37 |
Efficient Lower Layer Techniques for Electromagnetic Nanocommunication Networks / Techniques de couche basse efficaces pour les réseaux de nanocommunications électromagnétiquesZainuddin, Muhammad Agus 17 March 2017 (has links)
Nous avons proposé nanocode bloc simple pour assurer la fiabilité des communications nano. Nous proposons également la compression d'image simple, efficace de l'énergie pour les communications nano. Nous étudions les performances des méthodes proposées en termes d'efficacité énergétique, le taux d'erreur binaire et de robustesse contre les erreurs de transmission. Dans la compression d'image pour les communications nano, nous comparons notre méthode proposée SEIC avec compression standart images des méthodes telles que JPEG, JPEG 2000, GIF et PNG. Les résultats montrent que notre méthode proposée surpasse les méthodes de compression d'image standard dans la plupart des indicateurs. Dans la compression d'erreur pour les communications nano, nous proposons nanocode de simple bloc (SBN) et comparer la performance avec le code de correction d'erreur existant pour nanocommunication, tels que Canal Minimum Energy (MEC) et le faible poids de la Manche (LWC) codes. Le résultat montre que notre méthode proposée surpasse MEC et LWC en termes de fiabilité et de la complexité du matériel. / We proposed nanocode single block to ensure the reliability of nano communications. We also offer the simple image compression, power efficient for nano communications. We study the performance of the proposed methods in terms of energy efficiency, bit error rate and robustness against transmission errors. In image compression for nanocommunications, we compare our proposed method SEIC with standart compression image methods such as JPEG, JPEG 2000, GIF and PNG. The results show that our proposed method outperforms standard image compression methods in most metrics. In error compression for nanocommunications, we propose simple block nanocode (SBN) and compare the performance with existing error correction code for nanocommunication, such as Minimum Energy Channel (MEC) and Low weight Channel (LWC) codes. The result show that our proposed method outperforms MEC and LWC in terms of reliability and hardware complexity.
|
38 |
Étude théorique de métamatériaux formés de particules diélectriques résonantes dans la gamme submillimétrique : magnétisme artificiel et indice de réfraction négatif / Theoretical study of metamaterials made of resonant dielectric particles in the submillimetric range : artificial magnetism and negative index of refractionLannebere, Sylvain 30 November 2011 (has links)
Ce travail de thèse a été consacré à l'étude théorique et numérique de métamatériaux pour la gamme submillimétrique (domaine térahertz), formés de sphères diélectriques présentant des résonances dipolaires de Mie électrique et magnétique, dispersées dans un milieu-hôte. Tout d'abord, les matériaux à utiliser ainsi que les tailles et fraction volumique des sphères permettant l'obtention d'effets de perméabilité ont été précisées. Ensuite, nous avons mené une étude de la polydispersité en taille, mettant en évidence qu'une polydispersité contrôlée pouvait engendrer un élargissement des zones de perméabilité négative ou une zone de perméabilité nulle. Enfin, nous avons étudié le comportement électromagnétique d'assemblages bidisperses de sphères par simulations numériques, et avons procédé à une analyse des modes de Bloch, semblant indiquer l'existence d'une bande d'indice négatif pour des fractions volumiques élevées. / This PhD work was dedicated to the theoretical and numerical study of metamaterials in the terahertz range made of dielectric spheres embedded in a host medium and exhibiting dipolar electric and magnetic Mie resonances. The materials as well as the sizes and the filling fractions of the spheres to use to achieve magnetism in this range of frequency were precised. As a second step, we interested in the size distribution effects on the effective permeability, and showed that a controlled polydispersity can generate a widening of the negative permeability zone with a magnitude close to zero. Finally, we studied the electromagnetic behaviour of bidisperse array of TiO2 spheres with numerical simulations, and a Bloch mode analysis seems to proove the existence of a negative index band for high filling fractions.
|
39 |
Optimisation de la détection térahertz (THz) par plasmons bidimensionnels (2D) dans des hétérostructures et de la propagation THz dans des guides d’onde planaires / Optimization of THz detection by two dimensional plasmons in heterostructures and THz propagation in planar waveguidesCao, Lei 01 February 2013 (has links)
Dans la gamme de fréquence térahertz (THz), les sources et les détecteurs couramment utilisés en optique et en électronique présentent une chute de performances. Mon travail de thèse s’inscrit dans le cadre de la recherche de composants THz peu onéreux, compacts, accordables en fréquence et facile à intégrer. Le premier volet de mon travail de thèse concerne la détection THz et met à profit le couplage entre une onde incidente THz et des plasmons d’un gaz bidimensionnel d’électrons (2DEG) via des réseaux métalliques déposés au-dessus d’hétérostructures. Quatre puits quantiques à base de semi-conducteurs III/V(AlGaN/GaN, AlGaAs/GaAs, InAlN/GaN) et IV/IV (SiGe/Si/SiGe) ont été étudiés. Parmi les hétérostructures envisagées, celles réalisées à partir de matériaux III-N présentent les plus fortes résonances. Des mesures de spectre de transmission ont été effectuées avec un spectromètre à transformée de Fourier (FTIR) à température ambiante et cryogénique. Les modélisations numériques sont en bon accord avec les résultats expérimentaux. Une étude sur l’influence de la distribution homogène ou inhomogène du gaz d’électrons 2D est présentée. Le deuxième volet de la thèse concerne l’optimisation de la transmission THz. Les performances (dipsersions et les pertes) des guides d'onde planaires sont mal connues au THz. Nous avons choisi d’étudier des guides d’onde couramment utilisés en hyperfréquence. Dans un premier temps, la dispersion et les pertes (rayonnement, conduction et diélectrique) de lignes coplanaires (CPW) sur substrat polymère (BCB = benzocyclobutène) et substrat semiconducteur (InP) obtenues grâce à des modélisations numériques (Ansoft HFSS) entre 20 GHz et 1 THz sont présentées. Puis d’autres types de guides ont été envisagés tels que les lignes micro-ruban, à fente et triplaques sur substrat BCB avec HFSS et CST MWS. Leurs performances ont été comparées afin de dégager la structure la plus performante au THz. Des mesures entre 340 et 500 GHz ont pu aussi être réalisées pour les guides CPW. La comparaison avec les données numériques a montré un bon accord. / In the THz frequency gap between electronics and optics, the development of compact, tunable, less costly and room temperature operating sources, detectors, amplifiers and passive devices is growing. Electronic devices based on two dimensional (2D) plasmons in heterostructures open up the possibility of tunable emission and detection of THz radiation. For short distance THz transmission, the increased radiation loss as well as other types of loss (dielectric and ohmic loss) may handicap the applications of conventional planar waveguides well studied in the microwave band. Reevaluation of their propagation properties and comprehension of the physical nature of each kind of loss are necessary.This work is divided into two main sections. The first part deals with the optimization of THz resonant detection by quasi 2D plasmons-polaritons (PP) in the quantum wells (QW) among four heterostructures: III-V (AlGaN/GaN, InAlN/GaN, AlGaAs/GaAs) and IV-IV (SiGe/Si/SiGe). With the aid of metallic grating coupler, both ANSOFT HFSS and an indigenously developed program are used to investigate quantitatively the influences of structural parameters (grating period, metal strip width and thickness of barrier layer) and natural properties of 2D plasmons (electron concentration and mobility) on the PP resonances (frequency and amplitude) up to 5 THz. Transmission spectra of sample AlGaN/GaN have been measured by Fourier Transform Infrared Spectroscopy (FTIR) in 0.6-1.8 THz for various metal widths and at different temperatures to compare with the simulated results. At last, two types of modulated 2D electron gas in AlGaAs/GaAs are analyzed. One is the natural electron variation below and between metal fingers due to the difference between the barrier height at the interface metal/semiconductor and Fermi level pinning at the interface air/semiconductor. The other type is the forced modulated 2DEG by biasing voltage on metal fingers. These two parametric studies allow us to analyze and tune the frequency and amplitude of the THz detection. The second part separately studies the dispersions and attenuations of four waveguides (CPW, Microstrip, Stripline and Slotline) with the variation of geometric dimensions and properties of dielectric and metal by ANSOFT HFSS and CST MWS. Their performances are compared until 1 THz based on the same characteristic impedance. The advantages and the limitations of each waveguide are outlined and an optimal THz transmission line is proposed. Furthermore, preliminary measured attenuation of CPW in the frequency range 340-500 GHz are demonstrated and compared with numerical results. The design of transitions for adapting experimental probes by HFSS and the de-embedding method for extracting scattering and attenuation parameters of CPW by ADS are also presented..
|
40 |
Confinement photonique extrêmement sub-longueur d'onde pour les lasers à cascade quantique térahertz / Extreme subwavelength confinement for terahertz quantum cascade lasersStrupiechonski, Élodie 18 December 2013 (has links)
Les deux grands défis actuels pour l’optoélectronique térahertz (THz) sont d’une part, le besoin de miniaturiser les sources de rayonnement térahertz, et d’autre part, la nécessité d’améliorer leurs performances actuelles. Parmi les sources de rayonnement térahertz existantes, le laser à cascade quantique (QCL) est à ce jour le meilleur candidat pour remplir ces critères. Afin d’y parvenir, il faut cependant apporter des solutions aux verrous qui limitent la miniaturisation des QCLs THz. Le premier est d’ordre fondamental, et tient au fait que les dimensions des cavités photoniques usuelles sont soumises à la limite de diffraction. Le second verrou provient du fait que la recherche de compacité des sources se traduit généralement par la détérioration de leur puissance optique de sortie et de la directionnalité du faisceau laser. Une nouvelle famille de résonateurs THz métal - semiconducteur - métal (M-SC-M) est présentée de façon théorique et expérimentale. Ces dispositifs, inspirés des oscillateurs électroniques LC, ont permis d’atteindre un volume effectif record Veff=LxLyLz/λeff=5.10−6, où Lx,y,z sont les dimensions de la cavité et λeff est la longueur d’onde de résonance dans le cœur du résonateur (GaAs). Ces résonateurs hybrides photoniques-électroniques ont la particularité d’être libérés de la limite de diffraction dans les trois dimensions spatiales, et bénéficient pour la première fois de toutes les fonctionnalités habituellement réservées aux dispositifs électroniques. Une application aux polaritons inter-sousbandes THz a permis d’obtenir des résultats à l’état de l’art, démontrant d’une part que ces résonateurs hybrides conservent leurs propriétés photoniques, et d’autre part qu’ils permettent un couplage lumière-matière fort. En parallèle de ce travail, la faisabilité d’un QCL THz avec une région active extrêmement fine est démontrée expérimentalement. Une étude systématique des caractéristiques du laser en fonction de l’épaisseur de la région active (Lz) a permis la réduction de Lz=10 μm (≈λeff/2,7) jusqu’à la valeur record de Lz=1,75 μm (≈ λeff/13) dans une cavité Fabry-Pérot M-SC-M. Malgré l’augmentation des pertes optiques, l’effet laser est obtenu au-dessus de la température de l’azote liquide (78 K) pour la région active la plus fine. Ces résultats sont très encourageants pour le développement de régions actives plus performantes, et permettent d’envisager le développement de micro-cavités lasers avec des volumes effectifs extrêmement sub-longueur d’onde. Les perspectives de ce travail de thèse s’étendent de l’électrodynamique quantique en cavité au nanolaser. Les applications potentielles varient énormément en fonction de la configuration des résonateurs hybrides. Ils peuvent être utilisés comme des éléments passifs pour la détection, ou encore comme des éléments actifs tels que des antennes. Enfin, l’utilisation d’une région active fine en combinaison avec un résonateur hybride devrait permettre d’obtenir un QCL THz ultra-compact libéré de la limite de diffraction, tout en introduisant pour la première fois la possibilité d’accorder la fréquence du laser en adaptant l’impédance complexe équivalente de la combinaison d’éléments LC. / The development of terahertz (THz) optoelectronics faces two major challenges: first, a need for miniaturization of the existing radiative sources, and second, an improvement of their performances. Amongst the current sources of THz radiation, quantum cascade lasers (QCLs) represent to date the best candidates to match these two requirements. The integration of compact sources necessarily results in decreased optical output power and laser beam directionality. Therefore, a considerable amelioration of the active region performances must be achieved in parallel with the miniaturization of the dimensions of the photonic cavity. Because the latter are subject to the diffraction limit, which imposes on at least one dimension to be of the order of the effective half wavelength, further miniaturization of photonic devices requires a new approach. In this manuscript, a new class of metal-semiconductor-metal (M-SC-M) THz resonators is presented, both theoretically and experimentally. These devices, inspired by electronic LC resonators, allow to achieve a record effective volume Veff =LxLyLz/λeff =5.10-6, where Lx,y,z are the cavity dimensions and λeff is the effective wavelength resonance inside of the resonator core (GaAs). These devices are intrinsically free from the diffraction limit in the three spatial dimensions, and present the typical functionalities which are usually found only in a resonant electronic circuit. In order to demonstrate that their photonic properties are preserved, these devices have been successfully applied to THz intersubband polariton, demonstrating at the same time that they can be used for strong light-matter coupling. In parallel to this work, the feasibility of a THz QCL operating at λ=100 microns with an extremely thin active region is demonstrated experimentally. A systematic study of the laser characteristics for different thicknesses of the active region (Lz ) resulted in the reduction of Lz = 10 microns (≈λeff/2.7) down to the record value of Lz = 1.75 microns (≈λeff/13) in a M-SC-M Fabry-Perot waveguide. Despite a strong increase in optical losses, lasing is maintained above liquid nitrogen temperature (78 K) in the device with thinnest active region. This unexpected behavior is attributed to the existence of a large fraction of the current flowing through the active region at laser threshold being non-radiative. These results are very promising for future developments of efficient THz QCL active regions, as well as for fabrication of microcavity lasers with extremely low effective volumes. The perspectives of this work extend from cavity quantum electrodynamics to the development of a nanolasers. Potential applications of hybrid resonators can span over a broad range, depending on the chosen configuration. They can be used as passive elements for detection, as well as active elements such as antennas. Finally, the use of a thin active region in combination with an optimized version of these hybrid resonators should allow for the realization of an ultra-compact THz QCL free from the diffraction limit, with the possibility of fine tuning the laser frequency by adapting the equivalent complex impedance combination of the LC elements.
|
Page generated in 0.0364 seconds