• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 25
  • 5
  • Tagged with
  • 95
  • 52
  • 30
  • 23
  • 17
  • 16
  • 15
  • 14
  • 14
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Développement de sources térahertz intenses et applications en optique non-linéaire / Development of intense Terahertz sources and applications to nonlinear optics

Cornet, Marion 15 October 2015 (has links)
Ces travaux de thèse portent sur l’étude de différents phénomènes non-linéaires ayantlieu dans le domaine térahertz (THz) au sein de cristaux de structure zinc-blende.En premier lieu, nous avons mis en place au laboratoire deux sources de rayonnementTHz intense, aux caractéristiques temporelles et spectrales bien distinctes. La premièrerepose sur le redressement optique d’une impulsion laser de durée femtoseconde dansun cristal de niobate de lithium, et la seconde est, quant à elle, basée sur la créationd’un plasma par focalisation d’un champ optique compos´e de l’impulsion fondamentalede pompe et de son second harmonique. Ces deux sources permettent de générer desondes THz dont l’amplitude est bien adaptée à la mise en oeuvre d’expériences d’optiquenon-linéaire.Nous avons ensuite caractérisé le comportement non-linéaire de cristaux de structurezinc-blende soumis à des champs THz intenses. Nous nous sommes ainsi intéressés àl’effet Pockels lors de l’interaction d’une impulsion THz intense et d’un champ optiquede faible intensité, dit sonde, au sein du matériau. Ceci nous a conduits à démontrerexpérimentalement et numériquement la possibilité de caractériser la phase spectrale del’impulsion sonde, à l’aide d’une technique équivalente au X-FROG. Nous avons égalementidentifié l’existence d’un processus non-linéaire dit de cascade, consistant en la générationde second harmonique induite par effet Pockels. Enfin, nous avons observé expérimentalementl’apparition d’un effet Kerr THz dans le cristal, nous permettant de déduire unevaleur moyenne de la susceptibilité non-linéaire du troisième ordre de ce matériau, `a l’aidede calculs théoriques et de simulations numériques. / This thesis project aims to study different non-linear processes in zinc-blende crystals,which take place in the terahertz (THz) range.First of all, two different light sources have been built in the laboratory, allowing us togenerate intense THz radiations with different temporal and spectral characteristics. Thefirst source is based on the optical rectification of a femtosecond laser pulse in a lithiumniobate crystal using the tilted pulse front technique, while the second one is based on aplasma, created through the focalization of a two-color femtosecond laser field. These twoTHz sources reach very high amplitudes, which allows us to study non-linear phenomenain the THz range.Among these, we have measured the non-linear behavior of zinc-blende crystals underintense THz radiation. We were particularly interested in the Pockels effect happeningduring the interaction of an intense THz field and a weak optical probe beam. This droveus to the experimental and numerical demonstration of a new method to characterize thespectral phase of the optical probe field. This method is equivalent to the X-FROG technique.We also identified a new non-linear phenomenon, consisting of the cascade of twosecond-order processes, namely the Pockels effect and the Second Harmonic Generation.Finally, we experimentally observed some THz Kerr effect in a gallium phosphide crystal,which allowed us to calculate an average value of its third-order non-linear susceptibility,thanks to theoretical considerations and simulations.
92

Nano-mélangeurs bolométriques supraconducteurs à électrons chauds en Y-Ba-Cu-O pour récepteur térahertz en mode passif / Superconducting Y-Ba-Cu-O hot electron bolometric nano-mixers for terahertz passive receivers

Ladret, Romain 06 July 2016 (has links)
Nous étudions un mélangeur d'ondes térahertz (THz) réalisé avec le supraconducteur à haute température critique YBaCuO en couches ultraminces (10 à 50 nm). Le travail vise à concevoir un démonstrateur portable pour la détection hétérodyne térahertz passive, avec une cryogénie simplifiée à 60-80 kelvin (projet ANR MASTHER).Le principe de détection est le bolomètre à électrons chauds (HEB) jusqu'à présent développé avec des supraconducteurs à basse température critique. L'effet HEB est mis en ¿uvre dans une constriction en YBaCuO (quelques centaines de nm de dimensions latérales). Cette structure conduit à un détecteur THz sensible et rapide (bande passante instantanée de 100 GHz). Le rayonnement THz est couplé à la constriction par une antenne planaire large bande.En premier lieu, les échanges thermiques entre réservoirs d'électrons et de phonons (YBaCuO et son substrat) sont modélisés. Nous établissons ainsi les conditions optimales pour le HEB en termes de dimensions de la constriction et de puissance de l'oscillateur local requises pour un mélange performant (gain et bruit). Par rapport aux modèles antérieurs, nous introduisons une approche de "point chaud" nouvelle incluant l'influence de la fréquence THz dans YBaCuO, ainsi que l'adaptation d'impédance entre la constriction et l'antenne. En second lieu, nous décrivons l'optimisation des étapes de micro-fabrication des HEB, en particulier les lithographies électronique et optique, pour obtenir des constrictions de 300 nm de côté. De premiers dispositifs ont été testés en détection directe infrarouge. Les performances entre des couches d'YBaCuO ultraminces préparées suivant différentes techniques sont comparées. / We report on the development of a terahertz (THz) wave mixer made from high critical temperature superconducting YBaCuO ultrathin films (10 to 50 nm). The work is part of the MASTHER ANR project aiming at a portable demonstrator for passive terahertz heterodyne detection, implementing simplified cryogenics (60 to 80 kelvin). The detection principle is that of the hot electron bolometer (HEB) so far mainly developed with low critical temperature superconductors. The HEB effect is implemented in an YBaCuO constriction (a few hundred nm in lateral dimensions). This structure can lead to a sensitive and fast THz detector (theoretical instantaneous bandwidth of 100 GHz). The THz radiation is coupled to the YBaCuO constriction by means of a wideband planar antenna. The new aspects first concern the modeling of heat exchange between electrons and phonons reservoirs (YBaCuO and its substrate). Our results establish the optimum operating conditions in terms of dimensions of the constriction and the local oscillator power required for high performance THz mixing (conversion gain and noise temperature). We are introducing in particular a new "hot spot" modeling approach, which takes into account the influence of the terahertz frequency in the YBaCuO material and the impedance matching between the antenna and the constriction. Second, we have developed and optimized the HEB micro-fabrication process in clean room, especially the electronic and optical lithography steps, to obtain constrictions of 300 nm lateral size. Our first devices have been tested by direct detection in the infrared. The performance between YBaCuO ultrathin films prepared using various techniques are compared.
93

Generation of intense terahertz sources by ultrashort laser pulses / Génération de sources térahertz intenses par des impulsions laser ultrabrèves / Generación de fuentes de radiación terahertz intensas mediante pulsos láser ultrabreves

González de Alaiza Martínez, Pedro 21 October 2016 (has links)
Le spectre électromagnétique possède une zone étroite, localisée entre les micro-ondes et l'infrarouge, appelée région des ondes térahertz (THz), qui est comprise entre 0.1 et 30 THz. Ces ondes, longtemps inaccessibles car situées à la frontière entre l'électronique et l'optique, connaissent aujourd'hui un intérêt grandissant et possèdent des applications prometteuses dans divers secteurs de la science comme l'imagerie médicale et l'identification des explosifs à distance. Cependant, la production de rayonnement THz intense, d'amplitude proche du GV/m, qui devrait permettre de sonder efficacement des matériaux à distance, reste encore une question en suspens. Cette thèse a précisément pour but d'étudier la génération d'un tel rayonnement THz par couplage de deux impulsions laser ultracourtes -une onde fondamentale et son harmonique deux- capables d'ioniser un gaz (par exemple, l'air ou l'argon). Le plasma ainsi créé joue le rôle de convertisseur nonlinéaire de fréquence, transformant une partie de l'énergie du champ laser dans la bande THz via une gamme riche de mécanismes physiques, notamment l'effet Kerr, la photoionization et les forces pondéromotrices induites dans le plasma. Grâce à un travail de modélisation analytique et numérique de ces principaux mécanismes, nous avons examiné de manière complète la génération d'impulsions THz pour des intensités allant de celles rencontrées en filamentation laser (10¹²-10¹⁴ W cm⁻²) jusqu'aux intensités relativistes (10¹⁵-10¹⁸ W cm⁻²), une fourchette d'intensités peu étudiée jusqu'à présent dans ce domaine. Il est déjà connu qu'à basses intensités la photoionization induite par le champ laser domine l'émission térahertz, laquelle dépend fortement de la configuration des couleurs (ou harmoniques) laser. Nous démontrons ici que, au-delà de la configuration laser ''classique'' à deux couleurs, coupler plusieurs fréquences laser suivant les harmoniques d'une forme d'onde en dents de scie est optimal pour renforcer la production de rayonnement. Les simulations prévoient une efficacité de conversion d'énergie THz de 2% avec quatre couleurs, valeur record inégalée à ce jour. De plus, en nous aidant d'une expérience faite dans l'air, nous identifions la signature de l'effet Kerr dans le spectre THz émis, qui, plus faible, se révèle complémentaire de la signature plasma. Quand l'intensité de l'impulsion laser est augmentée au-delà de 10¹⁵ W cm⁻², nous démontrons que le rayonnement térahertz émis croît de manière non-monotone, dû au fait qu'il existe une valeur d'intensité maximisant l'énergie THz produite par chaque couche électronique. Finalement, nous avons étudié en géométrie 2D l'effet combiné de la photoionization et des forces pondéromotrices plasma à des intensités proches de 10¹⁸ W cm⁻², nous permettant d'obtenir des champs THz excédant le GV/m dans l'argon. Ces dernières forces augmentent avec l'intensité laser et ouvrent des perspectives intéressantes pour la génération de champs térahertz très intenses dans le régime relativiste de l'interaction laser-matière. / The electromagnetic spectrum has a narrow frequency band, lying between microwaves and infrared, known as terahertz (THz) waves and extending from 0.1 to 30 THz. These waves, inaccessible until a recent past because they are situated at the boundary between electronics and optics, are raising interest because of their promising applications in several areas such as medical imaging and remote identification of explosives. However, producing intense THz radiation with amplitude belonging to the GV/m range should allow us to probe efficiently remote materials, which still remains an open issue. The goal of this thesis is precisely to study the generation of such intense THz radiation by coupling two ultrashort laser pulses -the fundamental and its second harmonic- able to ionize a gas target (for example, air or argon). The plasma created by photoionization then acts as a nonlinear frequency converter, transforming part of the laser energy into the THz band via a wide range of physical mechanisms including the Kerr effect, the photoionization and ponderomotive forces induced inside the plasma. By means of an analytical and numerical modeling of these key mechanisms, we have comprehensively examined the generation of THz pulses at laser intensities ranging from characteristic intensities met in laser filamentation (10¹²-10¹⁴ W cm⁻²) to sub-relativistic intensities (10¹⁵-10¹⁸ W cm⁻²), this latter intensity range having been little investigated so far in this domain. It is already known that at low intensities laser-induced photionization dominates in terahertzgeneration, which strongly depends on the configuration of the laser colours (or harmonics). We demonstrate here that, beyond the classical two-colour laser setup, coupling several laser frequencies following the harmonics of a sawtooth waveform is optimal to enhance THz production. Simulations predict a laser-to-THz energy conversion efficiency of 2% with four colours, a record value unequalled so far. Moreover, with an experiment realized in air, we identify the Kerr signature in the emitted THz spectrum, which, even weaker, looks complentary to the plasma signature. When the intensity of the laser pulse is increased beyond 10¹⁵ W cm⁻², we prove that the growth of the emitted terahertz radiation is nonmonotonic, due to the fact that that there exists an optimal intensity value that maximizes the THz energy produced by each electronic shell of the irradiated atom. Finally, we have studied in 2D geometry the combined effect of photoionization and ponderomotive forces at intensities close to 10¹⁸ W cm⁻², allowing us to obtain THz fields exceeding the GV/m threshold in argon. These latter forces increase with the laser intensity and thus open interesting perspectives for the generation of very intense terahertz fields in the relativistic regime of laser-matter interaction. / El espectro electromagnético posee una zona estrecha, localizada entre las microondas y la radiación infrarroja, llamada región de las ondas Terahertz (THz), que está comprendida entre 0.1 et 30 THz. Estas ondas, durante mucho tiempo inaccesibles debido a que se encuentran situadas en la frontera entre la electrónica y la óptica, están despertando un interés creciente por la gran cantidad de aplicaciones prometedoras que poseen en diversos sectores científicos, como la imagen médica y la identificación de explosivos a distancia. No obstante, la producción de radiación THz intensa, de amplitud cercana al GV/m, la cual debería permitir sondar materiales energéticos a distancia, sigue siendo una cuestión abierta. Esta tesis tiene precisamente como objetivo el estudio de la generación de dicha radiación THz intensa acoplando dos pulsos láser —una onda fundamental y su segundo armónico— capaces de ionizar un gas (por ejemplo, aire o argón). El plasma creado de este modo desempeña el papel de convertidor no lineal de frecuencia, transformando una parte de la energía del láser en la banda THz mediante una rica gama de mecanismos físicos, entre los que destacan el efecto Kerr, la fotoionización y las fuerzas ponderomotrices inducidas dentro del plasma. Gracias a un trabajo de modelización tanto numérico como analítico de estos mecanismos clave, hemos examinado de forma integral la generación de pulsos THz a intensidades láser yendo desde las encontradas en la filamentación láser (10¹²-10¹⁴ W cm⁻²) hasta las cercanas al límite relativista (10¹⁵-10¹⁸ W cm⁻²), habiendo sido este último rango de intensidades poco estudiado en este campo hasta el presente. Ya es sabido que a bajas intensidades la fotoionización inducida por el láser domina la emisión Terahertz, la cual depende enormemente de la configuración de los colores (o armónicos) del láser. Demostramos aquí que, más allá de la “clásica” configuración del láser en dos colores, acoplar varias fréquencias láser siguiendo los armónicos de una forma de onda en diente de sierra es óptimo para incrementar la producción THz. Las simulaciones predicen una eficacia de conversión de energía THz de 2% empleando cuatro colores, un valor récord inigualado hasta hoy. Además, ayudándonos de un experimento realizado en aire, identificamos la firma del effecto Kerr en el espectro THz emitido, la cual, pese a ser más débil, resulta complementaria a la firma del plasma. Cuando se aumenta la intensidad del láser más allá de 10¹⁵ W cm⁻², demostramos que la radiación Terahertz emitida crece de manera no monotóna, debido a que existe un valor de intensidad que maximiza la energía THz producida por cada capa electrónica. Finalmente, hemos estudiado en geometría 2D el efecto conjunto de la fotoionización y de las fuerzas ponderomotrices a intensidades próximas a 10¹⁸ W cm⁻², lo que nos permite obtenter campos THz cuyas amplitudes exceden el GV/m en argon. Estas últimas fuerzas aumentan con la intensidad láser y, por tanto, ofrecen perspectivas interesantes para la generación de campos Terahertz muy intensos en un régimen de interacción láser-materia relativista.
94

Optique des ondes de surface : super-résolution et interaction matière-rayonnement / Surface wave optics : super-resolution and wave-matter interaction

Archambault, Alexandre 09 December 2011 (has links)
Il existe au niveau d’interfaces séparant des milieux de constantes diélectriques de signes opposés des ondes électromagnétiques confinées à proximité de ces interfaces. On parle d’ondes de surface. C’est notamment le cas des métaux et des cristaux polaires : on parle alors de plasmons-polaritons de surface et de phonons-polaritons de surface respectivement. L’objectif de cette thèse est de revisiter certains aspects théoriques associés à ces ondes de surface.Dans un premier temps, en nous basant sur le formalisme de Green, nous donnons un moyen d’obtenir une expression du champ des ondes de surface sous forme de somme de modes. En présence de pertes, ces ondes ont nécessairement un vecteur d’onde ou une pulsation complexe. Nous donnons ainsi deux expressions de leur champ, correspondant à chacun de ces deux cas, et discutons de l’opportunité d’utiliser l’une ou l’autre de ces expressions.Nous posons par la suite les bases d’une optique de Fourier et d’une optique géométrique des ondes de surface. Nous montrons comment obtenir une équation de Helmholtz à deux dimensions pour les ondes de surface, un principe d’Huygens-Fresnel pour les ondes de surface, ainsi qu’une équation eikonale pour les ondes de surface, qui s’applique sous certaines hypothèses. Nous nous intéressons également à la superlentille proposée par Pendry, qui s’appuie sur les ondes de surface. Nous étudions notamment le fonctionnement de cette superlentille en régime impulsionnel, et montrons qu’en présence de pertes, il est possible d’obtenir une meilleure résolution avec certaines formes d’impulsion par rapport au régime harmonique, au prix d’une importante baisse de signal toutefois.Nous développons ensuite un traitement quantique des ondes de surface. Nous calculons au préalable une expression de leur énergie, et nous donnons une expression de leur hamiltonien et de leurs opérateurs champ. Sans pertes, nous montrons que le facteur de Purcell prédit par notre théorie quantique est rigoureusement égal au facteur de Purcell calculé avec des outils classiques. Nous comparons ensuite ce facteur de Purcell à celui calculé classiquement avec pertes, et montrons sur un exemple que les pertes peuvent être négligées dans de nombreux cas. Nous donnons enfin une expression des coefficients d’Einstein associés aux ondes de surface permettant d’étudier la dynamique de l’inversion de population d’un milieu fournissant un gain aux ondes de surface. Nous appliquons par la suite ce formalisme quantique à l’interaction électrons-phonons-polaritons de surface dans les puits quantiques, notamment leur interaction avec un mode de phonon du puits particulièrement confiné grâce à un effet de constante diélectrique proche de zéro (epsilon near zero, ENZ). / Interfaces between materials having opposite dielectric constants support electromagnetic waves confined close to these interfaces called surface waves. For metals and polar crystals, they are respectively called surface plasmon-polaritons and surface phonon-polaritons. The goal of this thesis is to revisit some theoretical aspects associated to these surface waves.Using the Green formalism, we derive an expression of the surface wave field as a sum of modes. With losses, these waves must have a complex wave vector or frequency. Thus we give two expressions of their field, for each of these cases, and discuss when each of these expressions should be used.We then give the basis of a surface wave Fourier optics and geometrical optics. We derive a 2D Helmholtz equation for surface waves, a Huygens-Fresnel principle for surface waves, and an eikonal equation for surface waves. We then take a look at Pendry’s superlens, in which surface waves play a major role. We study the behavior of the superlens in pulsed mode taking losses into account, and show that its resolution can be increased for some pulse shapes compared to the steady state, at the expense of a signal decay.We then develop a quantum treatment of surface waves. We first calculate their energy, and then give an expression of their hamiltonian and field operators. Without losses, we show that the Purcell factor given by our quantum theory is perfectly equal to the Purcell factor given by the classical theory. We then compare this Purcell factor to the lossy case on an example, and show that losses can often be neglected. We then derive the Einstein coefficients associated to surface wave emission and absorption, which allow studying the population inversion dynamics of a gain medium. We then use this quantum formalism to study the interaction between electrons and surface phonon-polaritons in quantum wells, particularly their interaction with a phonon mode which features high confinement thanks to an epsilon near zero (ENZ) effect.
95

Electrothermal device-to-circuit interactions for half THz SiGe∶C HBT technologies / Interactions électrothermiques du transistor au circuit pour des technologies demi-THz TBH SiGe∶C

Weisz, Mario 25 November 2013 (has links)
Ce travail concerne les transistors bipolaires à hétérogène TBH SiGe. En particulier, l'auto-échauffement des transistors unitaires et le couplage thermique avec leurs plus proches voisins périphériques sont caractérisés et modélisés. La rétroaction électrothermique intra- et inter-transistor est largement étudiée. En outre, l’impact des effets thermiques sur la performance de deux circuits analogiques est évalué. L'effet d'autoéchauffement est évalué par des mesures à basse fréquence et des mesures impulsionnelles DC et AC. L'auto-échauffement est diminué de manière significative en utilisant des petites largeurs d'impulsion. Ainsi la dépendance fréquentielle de l’autoéchauffementa été étudiée en utilisant les paramètres H et Y. De nouvelles structures de test ont été fabriqués pour mesurer l'effet de couplage. Les facteurs de couplage thermique ont été extraits à partir de mesures ainsi que par simulations thermiques 3D. Les résultats montrent que le couplage des dispositifs intra est très prononcé. Un nouvel élément du modèle de résistance thermique récursive ainsi que le modèle de couplage thermique a été inclus dans un simulateur de circuit commercial. Une simulation transitoire entièrement couplée d'un oscillateur en anneau de 218 transistors a été effectuée. Ainsi, un retard de porte record de 1.65ps est démontré. À la connaissance des auteurs, c'est le résultat le plus rapide pour une technologie bipolaire. Le rendement thermique d'un amplificateur de puissance à 60GHz réalisé avec un réseau multi-transistor ou avec un transistor à plusieurs doigts est évalué. La performance électrique du transistor multidoigt est dégradée en raison de l'effet de couplage thermique important entre les doigts de l'émetteur. Un bon accord est constaté entre les mesures et les simulations des circuits en utilisant des modèles de transistors avec le réseau de couplage thermique. Enfin, les perspectives sur l'utilisation des résultats sont données. / The power generate by modern silicon germanium (SiGe) heterojunction bipolar transistors (HBTs) can produce large thermal gradients across the silicon substrate. The device opering temperature modifies model parameters and can significantly affect circuit operation. This work characterizes and models self-heating and thermal coupling in SiGe HBTs. The self-heating effect is evaluated with low frequency and pulsed measurements. A novel pulse measurement system is presented that allows isothermal DC and RF measurements with 100ns pulses. Electrothermal intra- and inter-device feedback is extensively studied and the impact on the performance of two analog circuits is evaluated. Novel test structures are designed and fabricated to measure thermal coupling between single transistors (inter-device) as well as between the emitter stripes of a multi-finger transistor (intra-device). Thermal coupling factors are extracted from measurements and from 3D thermal simulations. Thermally coupled simulations of a ring oscillator (RO) with 218 transistors and of a 60GHz power amplifier (PA) are carried out. Current mode logic (CML) ROs are designed and measured. Layout optimizations lead to record gate delay of 1.65ps. The thermal performance of a 60GHz power amplifier is compared when realized with a multi-transistor array (MTA) and with a multi-finger trasistor (MFT). Finally, perspectives of this work within a CAD based circuit design environment are discussed.

Page generated in 0.0245 seconds