• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 65
  • 26
  • 17
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 290
  • 61
  • 39
  • 38
  • 32
  • 30
  • 29
  • 29
  • 26
  • 24
  • 23
  • 22
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

The Evolutionary History and Preservation of Melanins and Melanosomes

Peteya, Jennifer Anita, Peteya 14 September 2018 (has links)
No description available.
122

THE IMPACT OF HURRICANE LENNY ON CORAL REEFS AND ITS RELEVANCE TO PLEISTOCENCE REEF COMMNUNITIES: CURACAO, NETHERLANDS ANTILLES

Bries, Jill M. 11 October 2001 (has links)
No description available.
123

Forensic archaeology and forensic taphonomy experience in the UK: implications for the recovery of physical evidence.

Janaway, Robert C. January 2006 (has links)
Yes / For the printed issue of the journal in which this article appears, please see the library catalogue.
124

Modelling the buried human body environment in upland climes using three contrasting field sites

Wilson, Andrew S., Janaway, Robert C., Holland, Andrew D., Dodson, Hilary I., Baran, Eve N., Pollard, A. Mark, Tobin, Desmond J. January 2007 (has links)
No / Despite an increasing literature on the decomposition of human remains, whether buried or exposed, it is important to recognise the role of specific microenvironments which can either trigger or delay the rate of decomposition. Recent casework in Northern England involving buried and partially buried human remains has demonstrated a need for a more detailed understanding of the effect of contrasting site conditions on cadaver decomposition and on the microenvironment created within the grave itself. Pigs (Sus scrofa) were used as body analogues in three inter-related taphonomy experiments to examine differential decomposition of buried human remains. They were buried at three contrasting field sites (pasture, moorland, and deciduous woodland) within a 15km radius of the University of Bradford, West Yorkshire, UK. Changes to the buried body and the effect of these changes on hair and associated death-scene textile materials were monitored as was the microenvironment of the grave. At recovery, 6, 12 and 24 months post-burial, the extent of soft tissue decomposition was recorded and samples of fat and soil were collected for gas chromatography mass spectrometry (GCMS) analysis. The results of these studies demonstrated that (1) soil conditions at these three burial sites has a marked effect on the condition of the buried body but even within a single site variation can occur; (2) the process of soft tissue decomposition modifies the localised burial microenvironment in terms of microbiological load, pH, moisture and changes in redox status. These observations have widespread application for the investigation of clandestine burial and time since deposition, and in understanding changes within the burial microenvironment that may impact on biomaterials such as hair and other associated death scene materials.
125

The impact of shallow burial on differential decomposition to the body

Schotsmans, Eline M.J., Van de Voorde, W., De Winne, J., Wilson, Andrew S. January 2010 (has links)
No / Extant literature contains a number of specific case studies on differential decomposition involving adipocere formation or desiccation, but few describe the co-occurrence of these features within a temperate climate. The case of a 65-year-old male, partially buried in a shallow grave for 7 months, is presented in which the soft tissues of the body were outwardly well preserved. The right leg was desiccated, some parts of the body were covered with adipocere (head, neck, right shoulder, upper torso and left leg) and other parts could be classified as in the early stages of decomposition. In this study the taphonomic variables resulting in differential decomposition with desiccation and adipocere formation are discussed.
126

Taphonomic change to the buried body and associated materials in an upland peat environment: experiments using pig carcasses as human body analogues

Janaway, Robert C., Wilson, Andrew S., Holland, Andrew D., Baran, Eve N. January 2013 (has links)
No
127

‘Not All That Is White Is Lime’—White Substances from Archaeological Burial Contexts: Analyses and Interpretations

Schotsmans, Eline M.J., Toksoy-Köksal, F., Bretterl, Rhea C., Bessou, M., Corbineau, R., Lingle, A.M., Bouquin, D., Blanchard, P., Becker, K., Castex, D., Knüsel, C.J., Wilson, Andrew S., Chapoulie, R. 01 November 2019 (has links)
Yes / Archaeological burial contexts may include a variety of white substances, but few analyses have been published. This study reports on the physico‐chemical characterization of such residues from seven archaeological sites. It is often assumed that white materials from burial contexts are lime. Our findings demonstrate that they can be gypsum, calcite (chalk), aragonite, brushite, degraded metal, natural (gum) resins or synthetic polymer–based products. These may be present as the result of diagenetic processes, funerary practices or modern contamination. This paper provides an analytical approach for the holistic investigation of white materials encountered in burial contexts. / Investments for the future’ (IdEx Bordeaux ANR‐10‐IDEX‐03‐02). Grant Number: ANR‐10‐IDEX‐03‐02; Collaborative Projects of the France‐Stanford Center for Interdisciplinary Studies; Collaborative Projects of the France–Stanford Center; French State. Grant Number: IdEx Bordeaux ANR‐10‐IDEX‐03‐02; Northern Archaeological Associates Ltd; PACEA; Wessex Archaeology; INRAP; Mersea Island Museum Trust; Vatican's Pontifical Commission for Sacred Archaeology; University of Reading; IRAMAT-CRP2A; University of Bradford; CEREGE
128

Adaptation of the microbial decomposer community to the burial of skeletal muscle tissue in contrasting soils

Luitingh, Taryn Leigh January 2008 (has links)
Microorganisms are known to be agents involved in the decomposition of organic matter. However, little is known about the participation of the microbial communities during the decomposition of mammalian skeletal muscle tissue. This study investigates the capacity of the soil microbial community to adapt to the decomposition of skeletal muscle tissue in differing soils. This has implications for the study of mass graves and sites of repeated burial. A controlled laboratory experiment was designed to assess the adaptability of microbial communities present in three distinct soil types (sand, loamy sand and sandy clay loam) found near Perth, Western Australia. This experiment was split into two main stages. The initial decomposition stage involved the addition of porcine skeletal muscle tissue (SMT) (Sus scrofa) to each of the three soil types which were then left to decompose for a period of time. Controls were run in parallel, which had no porcine SMT present. The second decomposition stage involved a second addition of SMT to the soils obtained from the initial decomposition stage. Therefore, for each soil, SMT was either decomposed in the soil that had been pre-exposed to SMT or not. The rate of decomposition, microbial activity (CO2 respiration) and microbial biomass (substrate-induced respiration) were monitored during the second decomposition stage. The functional diversity of the microbial populations in the soil were assessed using Community-Level Physiological Profiling (CLPP). Across the three soil types, the re-introduction of SMT to the soil has led to its enhanced decomposition (measured by tissue mass loss and microbial activity) by the microbial communities. This microbial adaptation may have been facilitated by a functional change in the soil microbial communities.
129

Dating death : forensic taphonomy and the postmortem interval

Rogers, Christopher January 2010 (has links)
Determining the postmortem interval (PMI) remains one of the most important but challenging factors to establish in a suspicious death investigation. Unfortunately, as time passes current methods lose accuracy and only allow investigators to approximate how long ago death occurred. Bodies interred in clandestine graves prove particularly challenging due to an abundance of variables that need to be taken into consideration. Due to the problems associated with determining the PMI of buried remains this study will utilise macroscopic, microscopic, molecular, chemical and microbiological analyses to systematically document the decompositional changes to human hair and porcine cartilage and bone in a burial environment. The aim was to correlate decompositional changes with time and develop new methods for estimating the PMI of remains found in this context. Whole trotters (from which the cartilage was harvested) exhibited decompositional changes including darkening of the dermis, skin slippage, liquefaction of soft tissues and complete skeletonisation. The decompositional changes to cartilage included a loss of cartilage covering articular facets, changes in colour and texture, formation of orthorhombic crystals, a change in surface pH and colonisation by bacteria. The bacteria found on the cartilage surface were in close proximity to the crystals and when cultured on a B-41 medium were found to precipitate crystals of the same morphology and chemical composition to those found on the cartilage surface. Three species of bacteria (Acinetobacter calcoaceticus, Acinetobacter iwoffii and Grimontia hollisae) were identified based on gas chromatography–mass spectrometry (GC-MS) of their fatty acids and one species (Comamonas sp.) was identified by DNA analysis. Formation of crystals on goat and cow cartilage proved that this was not a porcine specific phenomenon. Human hair exhibited a gradual degradation over time but this was dependent on the characteristics of the burial environment. Decompositional changes included colonisation by fungi, erosions to the cortical surface and formation of tunnels and breaks to the hair shaft. Two fungal species (Aspergillus fumigatus and Penicillium sp.) were identified based on DNA analysis of fungal ribosomal (rDNA) internally transcribed spacer (ITS) regions. The Penicillium sp. was linked with fungal tunnelling of hair. Bone exhibited little modification over time but changes were observed. These included a change in colour of the cortical surface, a change in colour and gradual loss of bone marrow and erosions, cracking and flaking of the cortical bone. Fungi were found to colonise both the bone marrow and bone surface. Whole piglets were buried to document the time period taken to reach skeletonisation. This data was used as a correction factor and combined with the bone results to give an overall time period for the decomposition changes observed. The results of this study suggest that the decompositional changes to cartilage could be used to determine the postmortem interval of buried remains. However, the degradation of hair and bone was too variable to be of use in this context.
130

Mid-Pleistocene Extinction of Deep-Sea Ostracoda?

Gaiger, Frances Jean January 2006 (has links)
A global extinction event has been documented in protozoan foraminifera in the late Pliocene to Pleistocene. The timing of the extinction event varied depending on location, however for Ocean Drilling Project Site 1125, disappearances occurred between 2.5 and 0.57 Ma, with the major decline approximately 1.1 Ma. In order to determine if this event affected benthic organisms other than protozoans, this study was undertaken to determine how podocopid ostracods (Crustacea) recovered Ocean Drilling Program Site 1125 responded. The present study was hindered by the small number of valves recovered; the fact that a large proportion of taxa found were undescribed and new to science; and the current state of taxonomic scheme that is under significant revision. These factors meant that a comprehensive comparison could not be achieved. Despite this, counts of ostracod valves and assessments of diversity from this study reveal a significant increase in both parameters from approximately 900-600 ka. Three possible causes were investigated to account for this increase, sediment type and sample size; affects of taphonomy, mainly dissolution; or an actual biotic 'event'. Statistical analyses showed that although sample size did have some effect, it was not the sole reason for the increase in ostracod numbers. Dissolution had an expected affect on the percentage of juveniles but no correlations were found with other sample characteristics. Sedimentation rate was investigated but this also proved unrelated. Therefore, it is suggested that the increase in total ostracod valves and diversity which occurs between 900 and 600 ka was in fact a natural, biotic 'event'. This preliminary evidence suggests that an oceanographic event that has negatively impacted on the foraminifers has had the reverse affect on the ostracod assemblage, in the sense that both population size and diversity increase during that time.

Page generated in 0.0549 seconds