• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 41
  • 15
  • 14
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 161
  • 161
  • 41
  • 31
  • 28
  • 26
  • 25
  • 21
  • 18
  • 17
  • 16
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Effect of conformal cooling in Additive Manufactured inserts on properties of high pressure die cast aluminum component

Sevastopolev, Ruslan January 2020 (has links)
Additive manufacturing can bring several advantages in tooling applications especially hot working tooling as high pressure die casting. Printing of conformal cooling channels can lead to improved cooling and faster solidification, which, in turn, can possibly result in better quality of the cast part. However, few studies on advantages of additive manufactured tools in high pressure die casting are published.The aim of this study was to investigate and quantify the effect of conformal cooling on microstructure and mechanical properties of high pressure die cast aluminum alloy. Two tools each consisting of two die inserts were produced with and without conformal channels using additive manufacturing. Both tools were used in die casting of aluminum alloy. Aluminum specimens were then characterized microstructurally in light optical microscope for secondary arm spacing measurements and subjected to tensile and hardness testing. Cooling behavior of different inserts was studied with a thermal camera and by monitoring the temperature change of cooling oil during casting. Surface roughness of die inserts was measured with profilometer before and after casting.Thermal imaging of temperature as a function of time and temperature change of oil during casting cycle indicated that conformal insert had faster cooling and lower temperature compared to conventional insert. However, thermal imaging of temperature after each shot in a certain point of time showed higher maximum and minimum temperature on conformal die surface but no significant difference in normalized temperature gradient compared to the conventional insert.The average secondary dendrite arm spacing values were fairly similar for samples from conventional and conformal inserts, while more specimens from conventional insert demonstrated coarser structure. Slower cooling in conventional insert could result in the coarser secondary dendrite arm spacing.Tensile strength and hardness testing revealed no significant difference in mechanical properties of the specimens cast in conventional and conformal die inserts. However, reduced deviations in hardness was observed for samples cast with conformal insert. This is in agreement with secondary dendrite arm spacing measurements indicating improved cooling with conformal insert.Surface roughness measurement showed small wear of the inserts. More castings are needed to observe a possible difference in wear between the conventional and conformal inserts.Small observed differences in cooling rate and secondary arm spacing did not result in evident difference in mechanical properties of the aluminum alloy but the variation in properties were reduced for samples cast with conformal cooling. Future work may include more accurate measurement of cooling behavior with a thermocouple printed into the die insert, casting of thicker specimen for porosity evaluation and fatigue testing and longer casting series to evaluate the influence of conformal cooling on tool wear.
132

Využitelnost protlačovacích zkoušek na miniaturních discích (small punch test - SPT) pro stanovování materiálových charakteristik za vysokých teplot / Application of small punch test for determination of high temperature materials characteristics

Ječmínka, Marek January 2013 (has links)
Diploma thesis is focused on mechanical properties testing by small punch test and comparison of these properties with mechanical properties obtained by conventional tensile test. Steels P92 and AISI 316L in a shape of discs were tested. There were determined values of mechanical properties, namely yield stress, and ultimate tensile stress, obtained by the small punch test – constant deflection rate in this thesis. Values of initial stress and residual stress were evaluated from relaxation small punch test. Mechanical properties obtained by small punch test – constant deflection rate, and small punch test – relaxation, respectively, are compared with mechanical properties obtained by conventional tensile test, and relaxation tensile test, respectively. There were proposed own empirical relationships for restatement of mechanical properties obtained by small punch test to mechanical properties obtained by conventional tensile test in the thesis. Relatively small agreement of results obtained by small punch test, and conventional tensile test was demonstrated by a comparison. Application of own empirical relationships resulted in better agreement. Very good agreement of results of small punch test – relaxation, and relaxation tensile test was shown by their comparison.
133

Mechanické vlastnosti a lomové chování svarových spojů a základních materiálů přívodního potrubí vodní turbíny / Mechanical properties and fracture behaviour of welded joints and base materials in water turbine supply piping

Vlk, Václav January 2014 (has links)
The master thesis is focussed on evaluation of mechanical properties and fracture behaviour of basic materials and weld joints of a water turbine supply pipe. The results of tensile tests, fracture toughness tests, hardness and micro-hardness tests and further chemical and metallography analysis are used for operating degradation level evaluation of the construction material and also for a residual operating recognition of the second, identical specimen of supply pipe.
134

Stanovování mechanických vlastností lehkých kovů a jejich slitin a kompozitů pomocí protlačovacích zkoušek na miniaturních discích / Determination of mechanical properties of light metals and alloys and composites via small punch test

Langer, Jiří January 2014 (has links)
The aim of diploma thesis is estimate mechanical properties (yield strength, maximum strength and elongation) of light alloys by means of SPT. For the experiments were selected aluminium alloys (Al 2024, Al 6082 T6, Al 7020 and NASA 398) magnesium alloys (MgZnMn, AZ31, AZ61) and composites (AZ91 + 20 % saffilu a Al + Al4C3). Theoretical part of this thesis is focused on analysis of conversion formulas, which were made from SPT data and conventional testing. Experimental part is dedicated to evaluation of experimental data and critical analysis validity of conversion formulas. In this part of thesis is discused the problematics of reproducibility methodology of SPT.
135

Strukturní a mechanické charakteristiky niklových litin s kuličkovým grafitem / Structural and Mechanical Characteristics of Nickel-Alloyed Ductile Cast Iron

Tesařová, Hana January 2010 (has links)
The aim of this dissertation work is the evaluation of the influence of nickel alloying on the structure and mechanical properties, both monotonic and dynamic, of nodular cast iron with ferritic and bainitic matrix. Two chock melts with 0.5 and 2.7 % Ni were used to study the nickel influence. The quantitative evaluation of structure of these melts using image analysis was done and basic tensile mechanical properties were determined. Subsequently, the time optimization of two-stage ferritic annealing and isothermal austempered heat treatment at 375 °C was performed with the aim to obtain optimal ferritic and bainitic structures with best static and dynamic mechanical properties. After ferritic annealing the nickel alloying contributes to substitution hardening of ferritic matrix which positively affects its strength and other mechanical properties. The higher nickel content in the bainitic structure causes the shift of phase transformation times to longer times which results in restricted production of small carbides and in bigger volume of retained austenite. These features were confirmed by observation in transmission electron microscope. Precise tensile and low cycle fatigue tests at temperatures 23 and – 45 °C were performed on the optimized structures of both nodular cast irons. As a result of the notch effect of graphite nodules, microplastic deformation of both nodular cast irons was observed at stresses which were lower than the yield stress. The Hollomon's equation very well describes the individual parts of tensile curves for both nodular cast irons including their mutual comparison. From the low cycle fatigue tests, the cyclic hardening/softening curves, the evolution of elastic modulus and hysteresis loop shape parameters, cyclic stress-strain curves and fatigue life curves were obtained for both temperatures and materials. Moreover, the decrease of retained austenite volume was measured by neutron diffraction and the evolution of surface relief was characterized during cyclic straining for both austempered nodular cast irons at both temperatures. On the basis of these results both cyclic plasticity and fatigue degradation mechanisms in relation to the cyclic strain localization were described for both nodular cast irons.
136

Mechanické vlastnosti a struktura směsí recyklovaného polyetylénu a velmi nízko hustotního polyetylénu / Mechanical properties and structure of blends of recycled polyethylene with linear low density polyethylene

Kocandová, Jana January 2019 (has links)
Recycled material produced during three months from packing polyethylene foils coming from three suppliers was analysed together with one recycled material under complaint from the point of melt flow index (MFI), composition and mechanical properties. The addition of linear low density polyethylene (LLDPE) into the recycled material was studied as well. It was measured melt flow index (MFI), Differential scanning calorimetry (DSC) together with Thermogravimetry methods were used to determine composition. Selected materials were pressed to obtain films with the thickness of 1 mm to determine tensile properties. Recycled materials contained 40–65% LLDPE, small amount of polypropylene as well as chalk. The content of LDPE and LLDPE varied within one supplier and thus mechanical properties did. The results showed the difference in quality of PE films separation among all suppliers. The problems with workability of material under complaint were caused by the material composition – the amount of LLDPE predominated. The addition of LLDPE into the recycled material in the range of 5–20 % increased MFI by 13-78%. Mechanical properties of blends rich in LLDPE were similar to those of clear LLDPE. The presence of LDPE influenced more markedly only the strength to break. The blends of LDPE and LLDPE were evaluated as immiscible but with high affinity of the components with increasing contend of LLDPE. No material was chemically degraded. The methods commonly performed in manufacture, especially MFI, are not able to differentiate LDPE form LLDPE – recommended is DSC.
137

Structural Performance and Corrosion Resistance of Fiber Reinforced Polymer Wrapped Steel Reinforcing Bars

Less, Thomas Matthew 08 August 2013 (has links)
No description available.
138

[en] AN EXPERIMENTAL STUDY OF THE VALIDITY OF THE VON MISES YIELDING CRITERION FOR ELASTO-VISCOPLASTIC MATERIALS / [pt] ESTUDO EXPERIMENTAL DA VALIDADE DO CRITÉRIO DE FALHA DE VON MISES PARA MATERIAIS ELASTOVISCOPLÁSTICOS

LUIZ UMBERTO RODRIGUES SICA 17 May 2021 (has links)
[pt] É uma prática usual em reologia medir o tensão limite de escoamento. Nessas medidas, a tensão limite de escoamento é definida como o máximo valor absoluto de tensão ao qual abaixo não ocorrem escoamentos irreversíveis. Sendo assim, tensão limite de escoamento aparente estimada é usada em conjunto com o critério de von Mises em qualquer escoamento complexo. Este critério compara esta medida a intensidade do segundo invariante do tensor deviatórico das tensões. Acontece que, para escoamento simples de cisalhamento, o mesmo é composto por tensões cisalhantes e diferenças de tensão normais, mas a contribuição do último nunca foi considerada na determinação experimental da tensão limite de escoamento. Em vista de avaliar a importância da contribuição das diferenças de tensões normais na tensão limite de escoamento aparente, foram realizadas uma sequência de testes de creep para cada material, estimando a tensão crítica que representa o valor médio obtido entre os valores das curvas de tensão nas quais o material escoa e não escoa com uma tolerância considerável. Depois disso, foram propostos testes para avaliar os valores de N1 − N2 e apenas N1 no nível de tensão crítica. E em seguida avaliando-se adequadamente a tensão limite de escoamento. Observou-se que, para alguns materiais, a contribuição das diferenças de tensões normais é muito maior do que a contribuiçõ da tensão cisalhante. Por fim, a validade do critério de von Mises para materiais elasto-viscoplásticos foi avaliada. Para este fim, com o intuito de generalizar o estudo, ensaios de compressão a volume constante e de tração foram realizados avaliando-se as correspondentes tensões limites de escoamento. Como conclusão mais importante, o critério de von Mises não foi considerado adequado como critério de falha para os materiais elasto-viscoplásticos analisados. / [en] It is usual practice in rheology to measure the yield stress in a simple shear flow. In these measurements, the yield stress is identified as the maximum value of the shear stress below which no irreversible flow occurs. Then, the thus determined yield stress is used in conjunction with the von Mises criterion in any complex flow. The latter compares it with the intensity of the deviatoric stress tensor. It happens that for simple shear flow the intensity of the deviatoric stress is composed of both the shear stress and the normal stress differences, but the contribution of the latter is never considered in the experimental determination of the yield stress. In view of assess the importance of the contribution of the normal stresses to the yield stress, a sequence o standard constant shear stress tests were performed for each material, estimating the critical stress which represents the mean value obtained between the stress values of the curves in which the material flows and does not flow with an accurate tolerance. After that, proposed tests were performed in order to obtain the values of N1 − N2 and solely N1 at the critical stresses. Following the appropriate yield stress evaluation. It was observed that for some materials the normal stress contribution is much larger than the shear stress contribution. Furthermore, the validity of the von Mises yielding criterion for elasto-viscoplastic materials was evaluated. For this purpose, in order to generalize the study for different flow conditions, constant volume squeeze flow and traction tests were performed evaluating the corresponding yield stresses. As the most important conclusion, the von Mises yielding criterion was considered not to be accurate representing yielding for the elastoviscoplastic materials analyzed.
139

Korrelation von Elastizitätsmodul und Ermüdungsschädigung von Straßenbeton

Bolz, Paul G. 23 June 2023 (has links)
Gegenstand dieser Dissertation ist die Etablierung des Elastizitätsmoduls als Parameter, der qualitative Aussagen über den Schädigungszustand des Baustoffs Straßenbeton ermöglicht. Zu diesem Zweck erfolgte eine systematische Ermüdung von labormaßstäblichen Betonprobekörpern bei zeitgleicher Messung des Elastizitätsmoduls mit Hilfe von unterschiedlichen Verfahren. Im ersten Schritt wurde ein Versuchsprogramm entwickelt, mit dem Probekörper mittels des Spaltzug-Schwellversuchs gezielt in einen definierten Ermüdungszustand versetzt werden können. Hierfür wurde der Parameter des Grenz-Elastizitätsmoduls definiert, welcher, wenn er unterschritten wird, zum Pausieren des Versuchs führt. In diesen systematisch eingehaltenen Lastpausen erfolgten begleitende Untersuchungen der Ultraschalllaufzeit und der Eigenfrequenz zur Bestimmung des Elastizitätsmoduls der Probekörper während des Ermüdungsvorganges. Es zeigt sich zwischen den Ergebnissen aller untersuchten Verfahren eine sehr gute Synchronität hinsichtlich des qualitativen ermüdungsbedingten Verlaufs des Elastizitätsmoduls. Die vier angewandten Verfahren, die sich voneinander unabhängiger physikalischer Phänomene bedienen, ermöglichen neben einer qualitativen Aussage über die Schädigung des Materials die Bestimmung von Absolutwerten des Elastizitätsmoduls. Je nach verwendetem Verfahren weichen die absoluten Elastizitätsmoduln leicht voneinander ab. Der Elastizitätsmodul bestätigt sich als geeigneter Parameter zur Beschreibung der Degradation des Baustoffs Straßenbeton im Zuge des Ermüdungsprozesses. Im zweiten Schritt wurden der Einfluss längerer Lastpausen sowie die Verminderung der Betonfestigkeit im Zuge der Materialermüdung tiefergehend untersucht. Es wurde festgestellt, dass längere Lastpausen in der zyklischen Belastung einen signifikanten Einfluss auf den ermüdungsbedingten Verlauf des Elastizitätsmoduls haben können. Weiterhin legen die Untersuchungen nahe, dass es im Zuge einer starken Ermüdung zu einer zum Teil signifikanten Verminderung der Festigkeit kommt. Als Resultat der Untersuchungen konnten sowohl ein Verfahren zur Bestimmung charakteristischer Verläufe für die Verminderung des Elastizitätsmoduls als auch ein Verfahren zur Abschätzung der materialspezifischen Verminderung der Festigkeit im Zuge der Ermüdung entwickelt werden. Diese Verfahren könnten zukünftig den Regelwerken der RSO Beton und der RDO Beton zugeführt werden, um die ermüdungsbedingte zeitliche Entwicklung des Elastizitätsmoduls und der Festigkeit in den durch die Regelwerke festgeschriebenen Prognose- und Dimensionierungsprozessen zu berücksichtigen. Durch die Einbeziehung zeitlich veränderlicher Werte im Prognoseverfahren, welches als Grundlage für die RSO Beton dienen soll, wird in dieser Dissertation exemplarisch gezeigt, dass die Berücksichtigung der Auswirkungen der Betonermüdung auf diese für die Prognose und die Dimensionierung von Betonfahrbahnbefestigungen sehr relevanten Parameter zur signifikanten Erhöhung der Ausfallrate gegenüber der Verwendung konstanter Werte führen kann. / The subject of this doctoral dissertation is the establishment of the elastic modulus as a parameter that enables qualitative statements about the state of damage of the concrete pavement building material. For this purpose, a systematic fatigue of laboratory-scale concrete specimens was carried out with simultaneous measurement of the elastic modulus by means of different methods. In the first step, a test program was developed for the targeted and systematic fatigue of concrete specimens by means of the cyclic indirect tensile test. For this purpose, a limit value for the elastic modulus was defined. When the elastic modulus fell below the limit, the test was paused to perform accompanying investigations of the ultrasonic transit time and the natural frequency in order to determine the change of the elastic modulus of the specimens during the fatigue process. There is a very good synchronicity between the results of all investigated methods for the qualitative determination of the elastic modulus. The four methods applied, which make use of physical phenomena that are independent of each other, allow, in addition to a qualitative statement about the damage to the material, the determination of absolute values of the elastic modulus. Although there are slight differences between the methods for the determination of the elastic modulus, it is confirmed as a suitable parameter for describing the degradation of the concrete pavement building material in the course of the fatigue process. In the second step, the influence of longer loading pauses and the reduction of concrete strength due to material fatigue were investigated in more detail. It was found that longer loading pauses during cyclic loading can have a significant influence on the fatigue-related course of the elastic modulus. Furthermore, the investigations suggest that in the course of severe fatigue there is a sometimes significant reduction in strength. As a result of the investigations, both a method for determining characteristic curves for the reduction of the elastic modulus and a method for estimating the material-specific reduction of strength in the course of fatigue could be developed. In the future, these methods could be implemented into the RSO Beton and RDO Beton regulations in order to take into account the fatigue-related temporal development of the elastic modulus and the strength in the forecasting and dimensioning processes specified by the regulations. By including time-varying values in the forecasting procedure, which is to serve as the basis for the RSO Beton, this doctoral dissertation exemplifies that the consideration of the effects of concrete fatigue on these very relevant parameters for the forecasting and dimensioning of concrete pavements, can lead to the significant increase of the failure rate compared to the use of constant values.
140

Fabrication, Characterisation and Optimisation of Biodegradable Scaffolds for Vascular Tissue Engineering Application of PCL and PLGA Electrospun Polymers for Vascular Tissue Engineering

Bazgir, Morteza January 2021 (has links)
Annually, about 80,000 people die in the United Kingdom due to myocardial infarction, congestive heart failure, stroke, or from other diseases related to blood vessels. The current gold standard treatment for replacing the damaged blood vessel is by autograft procedure, during which the internal mammary artery (IMA) graft or saphenous vein graft (SVG) are usually employed. However, some limitations are associated with this type of treatment, such as lack of donor site and post-surgery problems that could negatively affect the patient’s health. Therefore, this present work aims to fabricate a synthetic blood vessel that mimics the natural arteries and to be used as an alternative method for blood vessel replacement. Polymeric materials intended to be used for this purpose must possess several characteristics including: (1) Polymers must be biocompatible; (2) Biodegradable with adequate degradation rate; (3) Must maintain its structural integrity throughout intended use; (4) Must have ideal mechanical properties; and (5) Must encourage and enhance the proliferation of the cells. The feasibility of using synthetic biodegradable polymers such as poly (ε- caprolactone) (PCL) and poly (lactide-co-glycolic acid) (PLGA) for fabricating tubular vascular grafts was extensively investigated in this work. Many fundamental experiments were performed to develop porous tissue- engineered polymeric membranes for vascular graft purposes through electrospinning technique to achieve the main aim. Electrospinning was selected since the scaffolds produced by this method usually resemble structural morphology similar to the extracellular matrix (ECM). Hence, four 6mm in diameter tubular shape vascular grafts PCL only, PLGA only, coaxial (core-PCL and shell-PLGA), and bilayer (inner layer-PCL and outer layer-PLGA) was designed and fabricated successfully. The structure and properties of each scaffold membrane were observed by scanning electron microscopy (SEM), and these scaffolds were fully characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), water contact angle measurements, mechanical tensile test, as well as cell culture studies were carried out by seeding human umbilical vein cells (HUVEC) and human vascular Fibroblast cells (HVF). Moreover, all polymeric grafts underwent degradation process, and the change in their morphological structure properties was studied over 12 weeks at room temperature. All scaffolds were also exposed to a controlled temperature of 37°C for four weeks, in phosphate-buffered saline solution (pH, 7.3). It was found that all scaffolds displayed exceptional fibre structure and excellent degradability with adequate steady weight-loss confirming the suitability of the fabricated scaffolds for tissue engineering applications. The coaxial and bilayer scaffolds degraded at a much slower (and steadier) rate than the singular PCL and PLGA tubular scaffolds. Coaxial grafts fabricated via coaxial needle showed an increase in their fibre diameter and pore size volume than other membranes, but also showed to have significant tensile strength, elongation at fracture, and Young’s modulus. To conclude, all scaffolds have demonstrated to be reliable to adhere and proliferate HUVEC, and HVF cells, but these cells were attracted to the PLGA membrane more than other fabricated membranes.

Page generated in 0.086 seconds