• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 15
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 98
  • 51
  • 48
  • 30
  • 27
  • 20
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Tatouage conjoint a la compression d'images fixes dans JPEG2000 / joint watermarking and compression of JPEG2000 images

Goudia, Dalila 06 December 2011 (has links)
Les technologies numériques et du multimédia ont connu de grandes avancées ces dernières années. La chaîne de transmission des images est constituée de plusieurs traitements divers et variés permettant de transmettre un flux de données toujours plus grand avec toujours plus de services à la clé. Nous citons par exemple, la compression, l'augmentation de contenu, la confidentialité, l'intégrité et l'authenticité des images pendant leur transmission. Dans ce contexte, les approches conjointes ont suscité un intérêt certain de la part de la communauté du traitement d'images car elles permettent d'obtenir des systèmes de faible complexité calculatoire pouvant être utilisés dans des applications nécessitant peu de ressources matérielles. La dissimulation de données ou Data Hiding, est l'art de cacher un message dans un support numérique. L'une des branches les plus importantes du data hiding est le tatouage numérique ou watermarking. La marque doit rester présente dans l'image hôte même si celle-ci subit des modifications appelées attaques. La compression d'images a comme objectif de réduire la taille des images stockées et transmises afin d'augmenter la capacité de stockage et de minimiser le temps de transmission. La compression représente une opération incontournable du stockage ou du transfert d'images. Elle est considérée par le data hiding comme une attaque particulièrement destructrice. La norme JPEG2000 est le dernier standard ISO/ITU-T pour le codage des images fixes. Dans cette thèse, nous étudions de manière conjointe la compression avec perte et le data hiding dans le domaine JPEG2000. L'approche conjointe offre de nombreux avantages dont le plus important est que la compression ne constitue plus une attaque vis-à-vis du data hiding. Les contraintes à respecter sont exprimées en termes de compromis à atteindre: compromis entre la quantité d'information insérée (payload), le taux de compression, la distorsion induite par l'insertion du message et la robustesse de la marque dans le cas du tatouage.Nos travaux de recherche ont conduit à l'élaboration de plusieurs schémas conjoints : un schéma conjoint d'insertion de données cachées et deux schémas conjoints de tatouage dans JPEG2000. Tous ces systèmes conjoints reposent sur des stratégies d'insertion informée basées sur la quantification codée par treillis (TCQ). Les propriétés de codage de canal de la TCQ sont exploitées pour pouvoir à la fois quantifier et insérer un message caché (ou une marque) pendant l'étape de quantification de JPEG2000. / Technological advances in the fields of telecommunications and multimedia during the two last decades, derive to create novel image processing services such as copyright protection, data enrichment and information hiding applications. There is a strong need of low complexity applications to perform seveval image processing services within a single system. In this context, the design of joint systems have attracted researchers during the last past years. Data hiding techniques embed an invisible message within a multimedia content by modifying the media data. This process is done in such a way that the hidden data is not perceptible to an observer. Digital watermarking is one type of data hiding. The watermark should be resistant to a variety of manipulations called attacks. The purpose of image compression is to represent images with less data in order to save storage costs or transmission time. Compression is generally unavoidable for transmission or storage purposes and is considered as one of the most destructive attacks by the data hiding. JPEG2000 is the last ISO/ ITU-T standard for still image compression.In this thesis, joint compression and data hiding is investigated in the JPEG2000 framework. Instead of treating data hiding and compression separately, it is interesting and beneficial to look at the joint design of data hiding and compression system. The joint approach have many advantages. The most important thing is that compression is no longer considered as an attack by data hiding.The main constraints that must be considered are trade offs between payload, compression bitrate, distortion induced by the insertion of the hidden data or the watermark and robustness of watermarked images in the watermarking context. We have proposed several joint JPEG2000 compression and data hiding schemes. Two of these joint schemes are watermarking systems. All the embedding strategies proposed in this work are based on Trellis Coded Quantization (TCQ). We exploit the channel coding properties of TCQ to reliably embed data during the quantization stage of the JPEG2000 part 2 codec.
92

Enumera??o de espectro de dist?ncias de esquemas de modula??o codificada em treli?a empregando codifica??o turbo

Sousa, Aline Farias Gomes de 14 June 2010 (has links)
Made available in DSpace on 2014-12-17T14:55:43Z (GMT). No. of bitstreams: 1 AlineFGS_DISSERT.pdf: 1151209 bytes, checksum: 4ae192dd7519e3e14977154f7b70d951 (MD5) Previous issue date: 2010-06-14 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / In this work, a performance analysis of transmission schemes employing turbo trellis coded modulation. In general, the performance analysis of such schemes is guided by evaluating the error probability of these schemes. The exact evaluation of this probability is very complex and inefficient from the computational point of view, a widely used alternative is the use of union bound of error probability, because of its easy implementation and computational produce bounds that converge quickly. Since it is the union bound, it should use to expurge some elements of distance spectrum to obtain a tight bound. The main contribution of this work is that the listing proposal is carried out from the puncturing at the level of symbol rather than bit-level as in most works of literature. The main reason for using the symbol level puncturing lies in the fact that the enummerating function of the turbo scheme is obtained directly from complex sequences of signals through the trellis and not indirectly from the binary sequences that require further binary to complex mapping, as proposed by previous works. Thus, algorithms can be applied through matrix from the adjacency matrix, which is obtained by calculating the distances of the complex sequences of the trellis. This work also presents two matrix algorithms for state reduction and the evaluation of the transfer function of this. The results presented in comparisons of the bounds obtained using the proposed technique with some turbo codes of the literature corroborate the proposition of this paper that the expurgated bounds obtained are quite tight and matrix algorithms are easily implemented in any programming software language / Neste trabalho ? feita uma an?lise de desempenho de esquemas de transmiss?o empregando modula??o codificada turbo em treli?a. Em geral, a an?lise de desempenho de tais esquemas ? guiada pelo c?lculo da probabilidade de erro destes esquemas. O c?lculo exato desta probabilidade ? muito complexo e ineficiente sob o ponto de vista computacional, uma alternativa muito utilizada ? o emprego de limitante da uni?o da probabilidade de erro, por ser de f?cil implementa??o computacional e produzir limitantes que convergem rapidamente. Por se tratar do limitante da uni?o, este deve utilizar de expurgo de alguns elementos do espectro de dist?ncias do c?digo para a obten??o de um limitante apertado. A principal contribui??o deste trabalho ? que a enumera??o proposta ? realizada a partir da perfura??o a n?vel de s?mbolo e n?o a n?vel de bit como na maioria dos trabalhos da literatura. O principal motivo do uso da perfura??o a n?vel de s?mbolo reside no fato que a fun??o enumeradora do esquema turbo ? obtida diretamente das seq??ncias complexas de sinais atrav?s da treli?a e n?o de forma indireta a partir da seq??ncias bin?rias que exigem posterior mapeando bin?rio para complexo, como proposto por trabalhos anteriores. Assim, podem ser aplicados algoritmos completamente matriciais a partir da matriz adjac?ncia, que ? obtida a partir do c?lculo das dist?ncias das seq??ncias complexas da treli?a e n?o das seq??ncias bin?rias. Neste trabalho tamb?m s?o apresentados dois algoritmos matriciais de redu??o de estados do codificador bem como do c?lculo da fun??o de transfer?ncia deste. Os resultados apresentados em forma de compara??es dos limitantes obtidos utilizando a t?cnica proposta com alguns c?digos turbo da literatura corroboram com a proposi??o deste trabalho que os limitantes expurgados obtidos s?o apertados e os algoritmos completamente matriciais s?o facilmente implementados em qualquer software de programa??o simb?lica
93

Source And Channel Coding Techniques for The MIMO Reverse-link Channel

Ganesan, T January 2014 (has links) (PDF)
In wireless communication systems, the use of multiple antennas, also known as Multiple-Input Multiple-Output(MIMO) communications, is now a widely accepted and important technology for improving their reliability and throughput performance. However, in order to achieve the performance gains predicted by the theory, the transmitter and receiver need to have accurate and up-to-date Channel State Information(CSI) to overcome the vagaries of the fading environment. Traditionally, the CSI is obtained at the receiver by sending a known training sequence in the forward-link direction. This CSI has to be conveyed to the transmitter via a low-rate, low latency and noisy feedback channel in the reverse-link direction. This thesis addresses three key challenges in sending the CSI to the transmitter of a MIMO communication system over the reverse-link channel, and provides novel solutions to them. The first issue is that the available CSI at the receiver has to be quantized to a finite number of bits, sent over a noisy feedback channel, reconstructed at the transmitter, and used by the transmitter for precoding its data symbols. In particular, the CSI quantization technique has to be resilient to errors introduced by the noisy reverse-link channel, and it is of interest to design computationally simple, linear filters to mitigate these errors. The second issue addressed is the design of low latency and low decoding complexity error correction codes to provide protection against fading conditions and noise in the reverse-link channel. The third issue is to improve the resilience of the reverse-link channel to fading. The solution to the first problem is obtained by proposing two classes of receive filtering techniques, where the output of the source decoder is passed through a filter designed to reduce the overall distortion including the effect of the channel noise. This work combines the high resolution quantization theory and the optimal Minimum Mean Square Error(MMSE) filtering formulation to analyze, and optimize, the total end-to-end distortion. As a result, analytical expressions for the linear receive filters are obtained that minimize the total end-to-end distortion, given the quantization scheme and source(channel state) distribution. The solution to the second problem is obtained by proposing a new family of error correction codes, termed trellis coded block codes, where a trellis code and block code are concatenated in order to provide good coding gain as well as low latency and low complexity decoding. This code construction is made possible due to the existence of a uniform partitioning of linear block codes. The solution to the third problem is obtained by proposing three novel transmit precoding methods that are applicable to time-division-duplex systems, where the channel reciprocity can be exploited in designing the precoding scheme. The proposed precoding methods convert the Rayleigh fading MIMO channel into parallel Additive White Gaussian Noise(AWGN) channels with fixed gain, while satisfying an average transmit power constraint. Moreover, the receiver does not need to have knowledge of the CSI in order to decode the received data. These precoding methods are also extended to Rayleigh fading multi-user MIMO channels. Finally, all the above methods are applied to the problem of designing a low-rate, low-latency code for the noisy and fading reverse-link channel that is used for sending the CSI. Simulation results are provided to demonstrate the improvement in the forward-link data rate due to the proposed methods. Note that, although the three solutions are presented in the context of CSI feedback in MIMO communications, their development is fairly general in nature, and, consequently, the solutions are potentially applicable in other communication systems also.
94

Sparse graph codes on a multi-dimensional WCDMA platform

Vlok, Jacobus David 04 July 2007 (has links)
Digital technology has made complex signal processing possible in communication systems and greatly improved the performance and quality of most modern telecommunication systems. The telecommunication industry and specifically mobile wireless telephone and computer networks have shown phenomenal growth in both the number of subscribers and emerging services, resulting in rapid consumption of common resources of which the electromagnetic spectrum is the most important. Technological advances and research in digital communication are necessary to satisfy the growing demand, to fuel the demand and to exploit all the possibilities and business opportunities. Efficient management and distribution of resources facilitated by state-of-the-art algorithms are indispensable in modern communication networks. The challenge in communication system design is to construct a system that can accurately reproduce the transmitted source message at the receiver. The channel connecting the transmitter and receiver introduces detrimental effects and limits the reliability and speed of information transfer between the source and destination. Typical channel effects encountered in mobile wireless communication systems include path loss between the transmitter and receiver, noise caused by the environment and electronics in the system, and fading caused by multiple paths and movement in the communication channel. In multiple access systems, different users cause interference in each other’s signals and adversely affect the system performance. To ensure reliable communication, methods to overcome channel effects must be devised and implemented in the system. Techniques used to improve system performance and capacity include temporal, frequency, polarisation and spatial diversity. This dissertation is concerned mainly with temporal or time diversity. Channel coding is a temporal diversity scheme and aims to improve the system error performance by adding structured redundancy to the transmitted message. The receiver exploits the redundancy to infer with greater accuracy which message was transmitted, compared with uncoded systems. Sparse graph codes are channel codes represented as sparse probabilistic graphical models which originated in artificial intelligence theory. These channel codes are described as factor graph structures with bit nodes, representing the transmitted codeword bits, and bit-constrained or check nodes. Each constraint involves only a small number of code bits, resulting in a sparse factor graph with far fewer connections between bit and check nodes than the maximum number of possible connections. Sparse graph codes are iteratively decoded using message passing or belief propagation algorithms. Three classes of iteratively decodable channel codes are considered in this study, including low-density parity-check (LDPC), Turbo and repeat-accumulate (RA) codes. The modulation platform presented in this dissertation is a spectrally efficient wideband system employing orthogonal complex spreading sequences (CSSs) to spread information sequences over a wider frequency band in multiple modulation dimensions. Special features of these spreading sequences include their constant envelopes and power output, providing communication range or device battery life advantages. This study shows that multiple layer modulation (MLM) can be used to transmit parallel data streams with improved spectral efficiency compared with single-layer modulation, providing data throughput rates proportional to the number of modulation layers at performances equivalent to single-layer modulation. Alternatively, multiple modulation layers can be used to transmit coded information to achieve improved error performance at throughput rates equivalent to a single layer system / Dissertation (MEng (Electronic Engineering))--University of Pretoria, 2007. / Electrical, Electronic and Computer Engineering / unrestricted
95

Performance Analysis of STTC-Based MIMO Under Cognitive RadioScenarios

Kankantee, Sanjana, Ganta, Sai Praneeth Reddy January 2023 (has links)
This thesis presents a comprehensive investigation into improving wireless transmission rates and reliability through the implementation of Space Time Trellis Codes(STTC). The study focuses on enhancing the coding gain, diversity gain, and flexible transmission capabilities, which are crucial for Error-Correcting Codes (ECC)in wireless communications. Spectral efficiency, a primary concern, is achieved byincorporating Multiple-Input Multiple-Output (MIMO) techniques. This thesis discusses the encoding method and decoding algorithm for STTC systems. Then, the performance of MIMO using the Alamouti scheme is determined.Further, the benefits of Cognitive Radio (CR), an intelligent radio technology capable of automatically detecting the best available wireless channel in the spectrumat any given time, are utilized. Energy Detection (ED) is employed for SpectrumSensing (SS) to detect the presence of Primary Users (PUs). The thesis analyzes theperformance of Probability of Detection (PD) and Probability of False Alarm (PFA). Furthermore, the thesis evaluates the Bit Error Rate (BER) performance of STTCover an additive white Gaussian noise (AWGN) channel, considering different modulation schemes generated in MATLAB. Specifically, it investigates the performance ofSTTC-MIMO in terms of BER over Rayleigh channels with Quadrature AmplitudeModulation (QAM) for different combinations of transmitting and receiving antennas. The findings from this research contribute to advancing wireless communicationsystems by addressing the challenges of error correction, spectral efficiency, and reliable data transmission. The integration of STTC with MIMO and CR presents aprogressive approach towards maximizing the potential of wireless communicationtechnologies to cater to the increasing demands for seamless connectivity and superior performance. This research adds to the ongoing efforts of enhancing wirelesscommunication systems’ performance and efficiency, fostering advancements in wireless technology.
96

Error-robust coding and transformation of compressed hybered hybrid video streams for packet-switched wireless networks

Halbach, Till January 2004 (has links)
<p>This dissertation considers packet-switched wireless networks for transmission of variable-rate layered hybrid video streams. Target applications are video streaming and broadcasting services. The work can be divided into two main parts.</p><p>In the first part, a novel quality-scalable scheme based on coefficient refinement and encoder quality constraints is developed as a possible extension to the video coding standard H.264. After a technical introduction to the coding tools of H.264 with the main focus on error resilience features, various quality scalability schemes in previous research are reviewed. Based on this discussion, an encoder decoder framework is designed for an arbitrary number of quality layers, hereby also enabling region-of-interest coding. After that, the performance of the new system is exhaustively tested, showing that the bit rate increase typically encountered with scalable hybrid coding schemes is, for certain coding parameters, only small to moderate. The double- and triple-layer constellations of the framework are shown to perform superior to other systems.</p><p>The second part considers layered code streams as generated by the scheme of the first part. Various error propagation issues in hybrid streams are discussed, which leads to the definition of a decoder quality constraint and a segmentation of the code stream to transmit. A packetization scheme based on successive source rate consumption is drafted, followed by the formulation of the channel code rate optimization problem for an optimum assignment of available codes to the channel packets. Proper MSE-based error metrics are derived, incorporating the properties of the source signal, a terminate-on-error decoding strategy, error concealment, inter-packet dependencies, and the channel conditions. The Viterbi algorithm is presented as a low-complexity solution to the optimization problem, showing a great adaptivity of the joint source channel coding scheme to the channel conditions. An almost constant image qualiity is achieved, also in mismatch situations, while the overall channel code rate decreases only as little as necessary as the channel quality deteriorates. It is further shown that the variance of code distributions is only small, and that the codes are assigned irregularly to all channel packets.</p><p>A double-layer constellation of the framework clearly outperforms other schemes with a substantial margin. </p><p>Keywords — Digital lossy video compression, visual communication, variable bit rate (VBR), SNR scalability, layered image processing, quality layer, hybrid code stream, predictive coding, progressive bit stream, joint source channel coding, fidelity constraint, channel error robustness, resilience, concealment, packet-switched, mobile and wireless ATM, noisy transmission, packet loss, binary symmetric channel, streaming, broadcasting, satellite and radio links, H.264, MPEG-4 AVC, Viterbi, trellis, unequal error protection</p>
97

Error-robust coding and transformation of compressed hybered hybrid video streams for packet-switched wireless networks

Halbach, Till January 2004 (has links)
This dissertation considers packet-switched wireless networks for transmission of variable-rate layered hybrid video streams. Target applications are video streaming and broadcasting services. The work can be divided into two main parts. In the first part, a novel quality-scalable scheme based on coefficient refinement and encoder quality constraints is developed as a possible extension to the video coding standard H.264. After a technical introduction to the coding tools of H.264 with the main focus on error resilience features, various quality scalability schemes in previous research are reviewed. Based on this discussion, an encoder decoder framework is designed for an arbitrary number of quality layers, hereby also enabling region-of-interest coding. After that, the performance of the new system is exhaustively tested, showing that the bit rate increase typically encountered with scalable hybrid coding schemes is, for certain coding parameters, only small to moderate. The double- and triple-layer constellations of the framework are shown to perform superior to other systems. The second part considers layered code streams as generated by the scheme of the first part. Various error propagation issues in hybrid streams are discussed, which leads to the definition of a decoder quality constraint and a segmentation of the code stream to transmit. A packetization scheme based on successive source rate consumption is drafted, followed by the formulation of the channel code rate optimization problem for an optimum assignment of available codes to the channel packets. Proper MSE-based error metrics are derived, incorporating the properties of the source signal, a terminate-on-error decoding strategy, error concealment, inter-packet dependencies, and the channel conditions. The Viterbi algorithm is presented as a low-complexity solution to the optimization problem, showing a great adaptivity of the joint source channel coding scheme to the channel conditions. An almost constant image qualiity is achieved, also in mismatch situations, while the overall channel code rate decreases only as little as necessary as the channel quality deteriorates. It is further shown that the variance of code distributions is only small, and that the codes are assigned irregularly to all channel packets. A double-layer constellation of the framework clearly outperforms other schemes with a substantial margin. Keywords — Digital lossy video compression, visual communication, variable bit rate (VBR), SNR scalability, layered image processing, quality layer, hybrid code stream, predictive coding, progressive bit stream, joint source channel coding, fidelity constraint, channel error robustness, resilience, concealment, packet-switched, mobile and wireless ATM, noisy transmission, packet loss, binary symmetric channel, streaming, broadcasting, satellite and radio links, H.264, MPEG-4 AVC, Viterbi, trellis, unequal error protection
98

Viterbi Decoded Linear Block Codes for Narrowband and Wideband Wireless Communication Over Mobile Fading Channels

Staphorst, Leonard 08 August 2005 (has links)
Since the frantic race towards the Shannon bound [1] commenced in the early 1950’s, linear block codes have become integral components of most digital communication systems. Both binary and non-binary linear block codes have proven themselves as formidable adversaries against the impediments presented by wireless communication channels. However, prior to the landmark 1974 paper [2] by Bahl et al. on the optimal Maximum a-Posteriori Probability (MAP) trellis decoding of linear block codes, practical linear block code decoding schemes were not only based on suboptimal hard decision algorithms, but also code-specific in most instances. In 1978 Wolf expedited the work of Bahl et al. by demonstrating the applicability of a block-wise Viterbi Algorithm (VA) to Bahl-Cocke-Jelinek-Raviv (BCJR) trellis structures as a generic optimal soft decision Maximum-Likelihood (ML) trellis decoding solution for linear block codes [3]. This study, largely motivated by code implementers’ ongoing search for generic linear block code decoding algorithms, builds on the foundations established by Bahl, Wolf and other contributing researchers by thoroughly evaluating the VA decoding of popular binary and non-binary linear block codes on realistic narrowband and wideband digital communication platforms in lifelike mobile environments. Ideally, generic linear block code decoding algorithms must not only be modest in terms of computational complexity, but they must also be channel aware. Such universal algorithms will undoubtedly be integrated into most channel coding subsystems that adapt to changing mobile channel conditions, such as the adaptive channel coding schemes of current Enhanced Data Rates for GSM Evolution (EDGE), 3rd Generation (3G) and Beyond 3G (B3G) systems, as well as future 4th Generation (4G) systems. In this study classic BCJR linear block code trellis construction is annotated and applied to contemporary binary and non-binary linear block codes. Since BCJR trellis structures are inherently sizable and intricate, rudimentary trellis complexity calculation and reduction algorithms are also presented and demonstrated. The block-wise VA for BCJR trellis structures, initially introduced by Wolf in [3], is revisited and improved to incorporate Channel State Information (CSI) during its ML decoding efforts. In order to accurately appraise the Bit-Error-Rate (BER) performances of VA decoded linear block codes in authentic wireless communication environments, Additive White Gaussian Noise (AWGN), flat fading and multi-user multipath fading simulation platforms were constructed. Included in this task was the development of baseband complex flat and multipath fading channel simulator models, capable of reproducing the physical attributes of realistic mobile fading channels. Furthermore, a complex Quadrature Phase Shift Keying (QPSK) system were employed as the narrowband communication link of choice for the AWGN and flat fading channel performance evaluation platforms. The versatile B3G multi-user multipath fading simulation platform, however, was constructed using a wideband RAKE receiver-based complex Direct Sequence Spread Spectrum Multiple Access (DS/SSMA) communication system that supports unfiltered and filtered Complex Spreading Sequences (CSS). This wideband platform is not only capable of analysing the influence of frequency selective fading on the BER performances of VA decoded linear block codes, but also the influence of the Multi-User Interference (MUI) created by other users active in the Code Division Multiple Access (CDMA) system. CSS families considered during this study include Zadoff-Chu (ZC) [4, 5], Quadriphase (QPH) [6], Double Sideband (DSB) Constant Envelope Linearly Interpolated Root-of- Unity (CE-LI-RU) filtered Generalised Chirp-like (GCL) [4, 7-9] and Analytical Bandlimited Complex (ABC) [7, 10] sequences. Numerous simulated BER performance curves, obtained using the AWGN, flat fading and multi-user multipath fading channel performance evaluation platforms, are presented in this study for various important binary and non-binary linear block code classes, all decoded using the VA. Binary linear block codes examined include Hamming and Bose-Chaudhuri-Hocquenghem (BCH) codes, whereas popular burst error correcting non-binary Reed-Solomon (RS) codes receive special attention. Furthermore, a simple cyclic binary linear block code is used to validate the viability of employing the reduced trellis structures produced by the proposed trellis complexity reduction algorithm. The simulated BER performance results shed light on the error correction capabilities of these VA decoded linear block codes when influenced by detrimental channel effects, including AWGN, Doppler spreading, diminished Line-of-Sight (LOS) signal strength, multipath propagation and MUI. It also investigates the impact of other pertinent communication system configuration alternatives, including channel interleaving, code puncturing, the quality of the CSI available during VA decoding, RAKE diversity combining approaches and CSS correlation characteristics. From these simulated results it can not only be gathered that the VA is an effective generic optimal soft input ML decoder for both binary and non-binary linear block codes, but also that the inclusion of CSI during VA metric calculations can fortify the BER performances of such codes beyond that attainable by classic ML decoding algorithms. / Dissertation (MEng(Electronic))--University of Pretoria, 2006. / Electrical, Electronic and Computer Engineering / unrestricted

Page generated in 0.0593 seconds