• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 21
  • 16
  • 7
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 219
  • 81
  • 49
  • 49
  • 48
  • 44
  • 42
  • 33
  • 31
  • 30
  • 26
  • 25
  • 25
  • 24
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Development and Validation of a Numerical Tool for the Aeromechanical Design of Turbomachinery

Mayorca, María Angélica January 2010 (has links)
In aeromechanical design one of the major rules is to operate under High Cyclic Fatigue (HCF) margins and away from flutter. The level of dynamic excitations and risk of HCF can be estimated by performing forced response analyses from blade row interaction forces or Low Engine Order (LEO) excitation mechanisms. On the other hand, flutter stability prediction can be assessed by calculation of aerodynamic damping forces due to blade motion. In order to include these analyses as regular practices in an industrial aeromechanical design process, interaction between the fields of fluid and structural dynamics must be established in a rather simple yet accurate manner. Effects such as aerodynamic and structural mistuning should also be taken into account where parametric and probabilistic studies take an important role. The present work presents the development and validation of a numerical tool for aeromechanical design. The tool aims to integrate in a standard and simple manner regular aeromechanical analysis such as forced response analysis and aerodynamic damping analysis of bladed disks. Mistuning influence on forced response and aerodynamic damping is assessed by implementing existing model order reduction techniques in order to decrease the computational effort and assess results in an industrially applicable time frame.  The synthesis program solves the interaction of structure and fluid from existing Finite Element Modeling (FEM) and Computational Fluid Dynamics (CFD) solvers inputs by including a mapping program which establishes the fluid and structure mesh compatibility. Blade row interaction harmonic forces and/or blade motion aerodynamic damping forces are inputs from unsteady fluid dynamic solvers whereas the geometry, mass and stiffness matrices of a blade alone or bladed disk sector are inputs from finite element solvers. Structural and aerodynamic damping is also considered. Structural mistuning is assessed by importing different sectors and any combinations of the full disk model can be achieved by using Reduced Order Model (ROM) techniques. Aerodynamic mistuning data can also be imported and its effects on the forced response and stability assessed. The tool is developed in such a way to allow iterative analysis in a simple manner, being possible to realize aerodynamically and structurally coupled analyses of industrial bladed disks. A new method for performing aerodynamic coupled forced response and stability analyses considering the interaction of different mode families has also been implemented. The method is based on the determination of the aerodynamic matrices by means of least square approximations and is here referred as the Multimode Least Square (MLS) method. The present work includes the program description and its applicability is assessed on a high pressure ratio transonic compressor blade and on a simple blisk. / QC 20110324 / Turbopower / AROMA
172

Experimental Investigation of the Influence of Local Flow Features on the Aerodynamic Damping of an Oscillating Blade Row

Sanz Luengo, Antonio January 2014 (has links)
The general trend of efficiency increase, weight and noise reduction has derived in the design of more slender, loaded, and 3D shaped blades. This has a significant impact on the stability of fan, and low pressure turbine blades, which are more prone to aeroelastic phenomena such as flutter. The flutter phenomenon is a self-excited, self-sustained unstable vibration produced by the interaction of flow and structure. These working conditions will induce either blade overload, or High Cycle Fatigue (HCF) produced by Limited Cycle Oscillation (LCO). The main objectives of the present work are on the investigation of the aeroelastic properties of a high-lift low-pressure in the light of the local flow features present in such profiles, in nominal and extreme off-design conditions both in high and low subsonic Mach number, for three dif-ferent rigid body modes. In addition, the validity of the linearity assump-tion of the influence coefficient technique has also been investigated, in order to expand the understanding of the physical limits of this assumption. This work has been designed as experimental investigation in the influence coefficient domain focused on a high-lift low-pressure turbine designed by ITP within the framework of the European FP7 project FU-TURE. These experiments have been carried out in the Aeroelastic test rig (AETR), at KTH Stockholm, which consist of an instrumented annular sector cascade with a single oscillating blade. The results acquired have been supported by numerical results provided by a non-propietary commercial software package (ANSYS CFX). The results suggest that the typical three-dimensional effects associated secondary flow features and tip leakage flows have a significant influence on the aeroelastic performance and the cascade stability. However the major influence appears as a consequence of the separation surface on the pressure side which appears at extreme off-design operating conditions. The contribution to stability of this local feature depend on the oscillation mode showing for the axial and torsion mode a neutral stability contribution, which is directly associated with the geometrical properties of the cascade. However, on the circumferential mode this separation surface has a stabilizing effect much more independent of the blade geometry. The study of the linearity assumption of the influence coefficient domain has revealed, that an apparent linear relation between the integrated unsteady response and the vibrational amplitude, does not necessary imply that the local unsteady response is linear with respect to the oscillation amplitude. The results also suggest that the validity of the linearity as-sumption is more sensitive to high oscillation amplitudes at high Mach conditions. / <p>QC 20140609</p>
173

The Influence of Stator Endwall Clearances on Multistage Axial Compressor Aerodynamics

Douglas R Matthews (18433422) 28 April 2024 (has links)
<p dir="ltr">Investigating clearance flows and blockage generation in axial compressors represents a longstanding area of research for enhancing aerodynamic performance and operational stability in turbomachinery. With advancements in computational fluid dynamics (CFD), opportunities to explore these phenomena have expanded, allowing a deeper understanding of the turbomachine's inherently complex and highly unsteady flow fields. This work delves into these topics, focusing on the Purdue 3-Stage (P3S) compressor, an engine-representative, multistage, high-speed compressor.</p><p dir="ltr">The primary objective of this research is to compare the performance and stability characteristics of two distinct stator configurations: a shrouded baseline configuration and a cantilevered stator configuration. This comparison reveals the impacts of clearance flows and blockage generation on compressor operation. Through a series of experimental investigations, this study aims to identify the differences in performance and stability traits between these configurations and the flow structures responsible.</p><p dir="ltr">Experimental characterization has a central role in this study, involving the analysis of leakage flow structures, corner separations, wake structures, and resulting endwall blockage generation. This research seeks to provide detailed insights into the flow phenomena within the compressor by utilizing detailed measurement techniques, such as circumferential interrogation of the flow field using 7-element Kiel-head rakes. Pressure deficits associated with leakage flows, corner separations, and wakes are quantified to assess their impact on compressor performance.</p><p dir="ltr">In conjunction with experimental investigations, this work outlines the development and validation of the supporting high-fidelity CFD models. These models, employing scale-adaptive turbulence model simulations, aim to simulate the flow field within the compressor with accuracy and reliability. Validation of these models against experimental data ensures their fidelity in capturing the complex flow phenomena observed experimentally. Furthermore, a detailed exploration of convergence aspects, including iterative convergence, grid convergence, and periodic-unsteady signals, lays the foundations for building confidence in the model predictions.</p><p dir="ltr">The computational models complement experimental findings, allowing for a comprehensive flow field analysis focusing on endwall flow structures. Visualization of vortex core and three-dimensional blockage regions provides valuable insights into the flow physics governing compressor performance. Moreover, the comparative nature of computational simulations facilitates systematic exploration of geometric changes and their effects on compressor operation. This study leverages complementary methodologies of experimental measurements and high-fidelity computational models to advance the understanding of clearance flows and blockage generation in axial compressors.</p><p dir="ltr">The experimental analysis concludes that the cantilevered configuration achieves better performance and stability than the shrouded stator configuration. However, this conclusion is not apparent when the machine is considered holistically. The cantilevered stages show significant performance improvements, with increases in total pressure ratio of up to 1% and an increase in isentropic efficiency of as much as 2%. However, the common Stage 3 shrouded Stator 3 shows a corresponding deficit of as much as 2% loss in efficiency relative to the fully shrouded stator configuration baseline. These contrasting benefits in the cantilevered stator compressor show that Stage 3 seems to cancel the overall benefits gained by the cantilevered stator. Similar studies have been done on low-speed multistage compressors, but this shows the value of the study in a high-speed research compressor with appreciable stagewise temperature and density increase.</p>
174

Development and Validation of a Numerical Tool for theAeromechanical Design of Turbomachinery

Mayorca, María Angélica January 2010 (has links)
<p>In aeromechanical design one of the major rules is to operate under High Cyclic Fatigue (HCF) margins and away from flutter. The level of dynamic excitations and risk of HCF can be estimated by performing forced response analyses from blade row interaction forces or Low Engine Order (LEO) excitation mechanisms. On the other hand, flutter stability prediction can be assessed by calculation of aerodynamic damping forces due to blade motion. In order to include these analyses as regular practices in an industrial aeromechanical design process, interaction between the fields of fluid and structural dynamics must be established in a rather simple yet accurate manner. Effects such as aerodynamic and structural mistuning should also be taken into account where parametric and probabilistic studies take an important role.</p><p>The present work presents the development and validation of a numerical tool for aeromechanical design. The tool aims to integrate in a standard and simple manner regular aeromechanical analysis such as forced response analysis and aerodynamic damping analysis of bladed disks.</p><p>Mistuning influence on forced response and aerodynamic damping is assessed by implementing existing model order reduction techniques in order to decrease the computational effort and assess results in an industrially applicable time frame.  The synthesis program solves the interaction of structure and fluid from existing Finite Element Modeling (FEM) and Computational Fluid Dynamics (CFD) solvers inputs by including a mapping program which establishes the fluid and structure mesh compatibility. Blade row interaction harmonic forces and/or blade motion aerodynamic damping forces are inputs from unsteady fluid dynamic solvers whereas the geometry, mass and stiffness matrices of a blade alone or bladed disk sector are inputs from finite element solvers. Structural and aerodynamic damping is also considered.</p><p>Structural mistuning is assessed by importing different sectors and any combinations of the full disk model can be achieved by using Reduced Order Model (ROM) techniques. Aerodynamic mistuning data can also be imported and its effects on the forced response and stability assessed. The tool is developed in such a way to allow iterative analysis in a simple manner, being possible to realize aerodynamically and structurally coupled analyses of industrial bladed disks. A new method for performing aerodynamic coupled forced response and stability analyses considering the interaction of different mode families has also been implemented. The method is based on the determination of the aerodynamic matrices by means of least square approximations and is here referred as the Multimode Least Square (MLS) method.</p><p>The present work includes the program description and its applicability is assessed on a high pressure ratio transonic compressor blade and on a simple blisk.</p> / Turbopower / AROMA
175

Experimental Investigation of Three-Dimensional Mechanisms in Low-Pressure Turbine Flutter

Vogt, Damian January 2005 (has links)
<p>The continuous trend in gas turbine design towards lighter, more powerful and more reliable engines on one side and use of alternative fuels on the other side renders flutter problems as one of the paramount challenges in engine design. Flutter denotes a self-excited and self-sustained aeroelastic instability phenomenon that can lead to material fatigue and eventually damage of structure in a short period of time unless properly damped. The design for flutter safety involves the prediction of unsteady aerodynamics as well as structural dynamics that is mostly based on in-house developed numerical tools. While high confidence has been gained on the structural side unanticipated flutter occurrences during engine design, testing and operation evidence a need for enhanced validation of aerodynamic models despite the degree of sophistication attained. The continuous development of these models can only be based on the deepened understanding of underlying physical mechanisms from test data.</p><p>As a matter of fact most flutter test cases treat the turbomachine flow in two-dimensional manner indicating that the problem is solved as plane representation at a certain radius rather than representing the complex annular geometry of a real engine. Such considerations do consequently not capture effects that are due to variations in the third dimension, i.e. in radial direction. In this light the present thesis has been formulated to study three-dimensional effects during flutter in the annular environment of a low-pressure turbine blade row and to describe the importance on prediction of flutter stability. The work has been conceived as compound experimental and computational work employing a new annular sector cascade test facility. The aeroelastic response phenomenon is studied in the influence coefficient domain having one blade oscillating in various three-dimensional rigid-body modes and measuring the unsteady response on several blades and at various radial positions. On the computational side a state-of-the-art industrial numerical prediction tool has been used that allowed for two-dimensional and three-dimensional linearized unsteady Euler analyses.</p><p>The results suggest that considerable three-dimensional effects are present, which are harming prediction accuracy for flutter stability when employing a two-dimensional plane model. These effects are mainly apparent as radial gradient in unsteady response magnitude from tip to hub indicating that the sections closer to the hub experience higher aeroelastic response than their equivalent plane representatives. Other effects are due to turbomachinery-typical three-dimensional flow features such as hub endwall and tip leakage vortices, which considerably affect aeroelastic prediction accuracy. Both effects are of the same order of magnitude as effects of design parameters such as reduced frequency, flow velocity level and incidence. Although the overall behavior is captured fairly well when using two-dimensional simulations notable improvement has been demonstrated when modeling fully three-dimensional and including tip clearance.</p>
176

Thermal control of gas turbine casings for improved tip clearance

Choi, Myeonggeun January 2015 (has links)
A thermal tip clearance control system provides a robust and flexible means of manipulating the closure between the casing and the rotating blade tips in a jet engine, reducing undesirable tip leakage flows. This may be achieved using an impingement cooling scheme on the external casing of the engine in conjunction with careful thermal management of internal over-tip seal segment cavity. For a reduction in thrust specific fuel consumption, the mass flow rate of air used for cooling must be minimised, be at as low a pressure as possible and delivered through a light weight structure surrounding the rotating components in the turbine. This thesis first characterises the effectiveness of a range of external impingement cooling arrangements in typical engine casing closure system. The effects of jet-to-jet pitch, number of jets, inline and staggered alignment of jets, arrays of jets on flange, on an engine representative casing geometry are assessed through comparison of the convective heat transfer coefficient distributions in a series of numerical studies. A baseline case is validated experimentally. The validation data allowed the suitability of different turbulence closure models to be assessed using a commercial RANS solver. Importantly for each configuration the thermal contraction of an idealised engine casing is predicted using thermo-mechanical finite element models, at a series of operating conditions representing engine idle to maximum take-off conditions. Cooling is provided by manifolds attached to the outside of the engine. The assembly tolerance of these components leads to variation in the standoff distance between the manifold and the casing. For cooling arrangements with promising performance, the study is extended to characterise the variation in closure with standoff distance. It is shown that where a sparse array of non-interacting jets is used the system can be made tolerant of large build misalignments. The casing geometry itself contributes to the thermal response of the system, and, in an additional study, the effect of casing thickness and circumferential thermal control flanges are investigated. Restriction of the passage of heat into the flanges was seen to be dramatically change their effectiveness and slight necking of the flanges at their root was shown to improve the performance disproportionally. High temperature secondary air flowing past the internal face of the engine casing tends to heat the casing, causing it to grow. Experimental and numerical characterisation of a heat transfer within a typical over-tip segment cavity heat transfer is presented in this thesis for the first time. A simplified modelling strategy is proposed for casing and a means to reduce the casing heat pickup by up to 25 % was identified. The overall validity of the modelling approach used is difficult to validate in the engine environment, however limited data from a test engine temperature survey became available during the course of the research. By modelling this engine tip clearance control system it was shown that good agreement to the temperature distribution in the engine casing could be achieved where full surface external heat transfer coefficient boundary conditions were available.
177

Nonlinear transient dynamics of on-board rotors supported by Active Magnetic Bearings / Prévision du comportement dynamique d'une turbomachine supportée par des Paliers Magnétiques Actifs durant un évènement critique

Jarroux, Clément 19 July 2017 (has links)
De manière générale, les turbomachines sont des machines tournantes permettant la conversion des différents types d’énergie. Ces dernières sont composées d’une partie mécanique en rotation, appelée rotor, interagissant avec un fluide. La rotation a donc un rôle clé pour ces machines et la liaison entre les parties fixes et les parties tournantes, appelée palier, est primordiale pour un fonctionnement fiable et optimal. Les turbomachines supportées par des paliers magnétiques actifs (PMAs) sont de plus en plus utilisées par les industriels notamment grâce à l’absence de contact direct entre parties fixes et parties tournantes, permettant un gain d’énergie et une réduction des émissions de CO2. La plupart du temps, ces machines sont « embarquées » et reposent sur des supports mobiles. Les mouvements générés par ces supports doivent être considérés dans la prévision du comportement dynamique des turbomachines afin d’améliorer les designs en conséquence. Cette thèse est une contribution à l’étude des turbomachines supportées par des PMAs sujettes à de fortes sollicitations extérieures. L’approche est numérique et expérimentale. L’utilisation d’un banc d’essais académique composé d’un système rotor-PMA, aux propriétés d’une turbomachine industrielle, a permis de tester les modèles développés pour des cas de sollicitations extérieures de type séisme et choc, générées grâce à l'excitateur 6-axes de l'equipex PHARE. Il est montré que le modèle permet la bonne prévision du comportement réel de la machine. Cet outil pourra donc être utilisé pour des designs de type industriel. / Turbomachines are rotating machines enabling the conversion of the different types of energy. The latter are composed of a rotating mechanical part, called rotor, interacting with a fluid. Therefore, rotation play a key role in these machines and the mechanical link between the fixed and the rotating parts, called bearing, is essential for reliable and optimal operations. Turbomachines supported by active magnetic bearings (AMBs) are increasingly used by industrial companies, especially thanks to the absence of direct contact between fixed and rotating parts, enabling energy savings and reduction of CO2 emissions. Most of the time, these machines are "on-board" and are fixed on mobile supports. The motions generated by these supports must be considered in the prediction of the dynamic behaviour of turbomachinery in order to improve the designs accordingly. This PhD is a contribution to the study of turbomachines supported by AMBs subjected to strong external base motions. The approach is numerical and experimental. The use of an academic scale test rig comprising a rotor-AMB system, with the properties of an industrial turbomachine, allowed to test the developed models for cases of external solicitations such as earthquake and shock, thanks to the 6-axis shaker of the equipex PHARE. It is shown that the model provides good predictions of the behaviour of the machine for the tested cases. This tool can therefore be used for industrial designs.
178

Implementations of Fourier Methods in CFD to Analyze Distortion Transfer and Generation Through a Transonic Fan

Peterson, Marshall Warren 01 June 2016 (has links)
Inlet flow distortion is a non-uniform total pressure, total temperature, or swirl (flow angularity) condition at an aircraft engine inlet. Inlet distortion is a critical consideration in modern fan and compressor design. This is especially true as the industry continues to increase the efficiency and operating range of air breathing gas turbine engines. The focus of this paper is to evaluate the Computational Fluid Dynamics (CFD) Harmonic Balance (HB) solver in STAR-CCM+ as a reduced order method for capturing inlet distortion as well as the associated distortion transfer and generation. New methods for quantitatively describing and analyzing distortion transfer and generation are investigated. The geometry used is the rotor 4 fan geometry, consisting of one rotor and one stator. The inlet boundary condition is a 90-degree sector total pressure distortion profile with total pressure and swirl held constant. Multiple HB simulations with varying mode combinations and distortion intensities are analyzed and compared against full annulus Unsteady Reynolds Averaged Navier-Stokes (URANS) simulations. Best practices and recommendations for the implementation of the HB solver are given. The pre-existing Society of Automotive Engineers Aerospace Recommended Practice (SAE-ARP) 1420b descriptors are demonstrated to be inadequate for the purposes of analyzing distortion transfer and generation on a stage-to-stage basis. New implementations of Fourier methods are presented as an alternative to the SAE-ARP 1420b descriptors. These Fourier descriptors are shown to describe distortion transfer and generation to a higher degree of fidelity than the SAE-ARP 1420b descriptors. These new descriptors are demonstrated on the analysis of full annulus URANS and HB simulations. The HB solver is shown to be capable of capturing distortion transfer, generation and performance degradation. Recommendations for the optimal implementation of the HB method are given.
179

Experimental Investigation of Three-Dimensional Mechanisms in Low-Pressure Turbine Flutter

Vogt, Damian January 2005 (has links)
The continuous trend in gas turbine design towards lighter, more powerful and more reliable engines on one side and use of alternative fuels on the other side renders flutter problems as one of the paramount challenges in engine design. Flutter denotes a self-excited and self-sustained aeroelastic instability phenomenon that can lead to material fatigue and eventually damage of structure in a short period of time unless properly damped. The design for flutter safety involves the prediction of unsteady aerodynamics as well as structural dynamics that is mostly based on in-house developed numerical tools. While high confidence has been gained on the structural side unanticipated flutter occurrences during engine design, testing and operation evidence a need for enhanced validation of aerodynamic models despite the degree of sophistication attained. The continuous development of these models can only be based on the deepened understanding of underlying physical mechanisms from test data. As a matter of fact most flutter test cases treat the turbomachine flow in two-dimensional manner indicating that the problem is solved as plane representation at a certain radius rather than representing the complex annular geometry of a real engine. Such considerations do consequently not capture effects that are due to variations in the third dimension, i.e. in radial direction. In this light the present thesis has been formulated to study three-dimensional effects during flutter in the annular environment of a low-pressure turbine blade row and to describe the importance on prediction of flutter stability. The work has been conceived as compound experimental and computational work employing a new annular sector cascade test facility. The aeroelastic response phenomenon is studied in the influence coefficient domain having one blade oscillating in various three-dimensional rigid-body modes and measuring the unsteady response on several blades and at various radial positions. On the computational side a state-of-the-art industrial numerical prediction tool has been used that allowed for two-dimensional and three-dimensional linearized unsteady Euler analyses. The results suggest that considerable three-dimensional effects are present, which are harming prediction accuracy for flutter stability when employing a two-dimensional plane model. These effects are mainly apparent as radial gradient in unsteady response magnitude from tip to hub indicating that the sections closer to the hub experience higher aeroelastic response than their equivalent plane representatives. Other effects are due to turbomachinery-typical three-dimensional flow features such as hub endwall and tip leakage vortices, which considerably affect aeroelastic prediction accuracy. Both effects are of the same order of magnitude as effects of design parameters such as reduced frequency, flow velocity level and incidence. Although the overall behavior is captured fairly well when using two-dimensional simulations notable improvement has been demonstrated when modeling fully three-dimensional and including tip clearance.
180

Numerical Investigation of the Aerodynamic Vibration Excitation of High-Pressure Turbine Rotors

Jöcker, Markus January 2002 (has links)
The design parameters axial gap and stator count of highpressure turbine stages are evaluated numerically towards theirinfluence on the unsteady aerodynamic excitation of rotorblades. Of particular interest is if and how unsteadyaerodynamic considerations in the design could reduce the riskofhigh cycle fatigue (HCF) failures of the turbine rotor. A well-documented 2D/Q3D non-linear unsteady code (UNSFLO)is chosen to perform the stage flow analyses. The evaluatedresults are interpreted as aerodynamic excitation mechanisms onstream sheets neglecting 3D effects. Mesh studies andvalidations against measurements and 3D computations provideconfidence in the unsteady results. Three test cases areanalysed. First, a typical aero-engine high pressure turbinestage is studied at subsonic and transonic flow conditions,with four axial gaps (37% - 52% of cax,rotor) and two statorconfigurations (43 and 70 NGV). Operating conditions areaccording to the resonant conditions of the blades used inaccompanied experiments. Second, a subsonic high pressureturbine intended to drive the turbopump of a rocket engine isinvestigated. Four axial gap variations (10% - 29% ofcax,rotor) and three stator geometry variations are analysed toextend and generalise the findings made on the first study.Third, a transonic low pressure turbine rotor, known as theInternational Standard Configuration 11, has been modelled tocompute the unsteady flow due to blade vibration and comparedto available experimental data. Excitation mechanisms due to shock, potential waves andwakes are described and related to the work found in the openliterature. The strength of shock excitation leads to increasedpressure excitation levels by a factor 2 to 3 compared tosubsonic cases. Potential excitations are of a typical wavetype in all cases, differences in the propagation direction ofthe waves and the wave reflection pattern in the rotor passagelead to modifications in the time and space resolved unsteadypressures on the blade surface. The significant influence ofoperating conditions, axial gap and stator size on the wavepropagation is discussed on chosen cases. The wake influence onthe rotorblade unsteady pressure is small in the presentevaluations, which is explicitly demonstrated on the turbopumpturbine by a parametric study of wake and potentialexcitations. A reduction in stator size (towards R≈1)reduces the potential excitation part so that wake andpotential excitation approach in their magnitude. Potentials to reduce the risk of HCF excitation in transonicflow are the decrease of stator exit Mach number and themodification of temporal relations between shock and potentialexcitation events. A similar temporal tuning of wake excitationto shock excitation appears not efficient because of the smallwake excitation contribution. The increase of axial gap doesnot necessarily decrease the shock excitation strength neitherdoes the decrease of vane size because the shock excitation mayremain strong even behind a smaller stator. The evaluation ofthe aerodynamic excitation towards a HCF risk reduction shouldonly be done with regard to the excited mode shape, asdemonstrated with parametric studies of the mode shapeinfluence on excitability. <b>Keywords:</b>Aeroelasticity, Aerodynamics, Stator-RotorInteraction, Excitation Mechanism, Unsteady Flow Computation,Forced Response, High Cycle Fatigue, Turbomachinery,Gas-Turbine, High-Pressure Turbine, Turbopump, CFD, Design

Page generated in 0.0343 seconds