• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 40
  • 17
  • 15
  • 12
  • 11
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 259
  • 30
  • 28
  • 23
  • 22
  • 20
  • 19
  • 18
  • 16
  • 15
  • 14
  • 14
  • 14
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Innovative unidirectional recycled carbon fiber tape structure for high performance thermoplastic composites: technological developments, technology-structure-property relationship and modeling of composite tensile properties

Khurshid, Muhammad Furqan 28 February 2023 (has links)
The rapidly growing demand for carbon fiber reinforced plastics in high-tech industries, such as aerospace, defense, automotive, wind turbine engineering, building and sports, resulted in a high amount of waste in the form of dry waste (e.g., production off-cuts), wet waste (e.g., out-of-date prepreg) and end-of-life components waste (e.g., aircraft components). Furthermore, the production of carbon fibers is cost and energy-intensive. Therefore, technological developments for the gentle processing of recycled carbon fiber and its integration into high-performance composites with promising tensile properties have gained considerable attention. Consequently, injection molding, nonwovens and hybrid yarn technologies were developed in recent years to integrate recycled carbon fiber into the high-performance thermoplastic composite. It is unfortunate that these technologies develop composites with a lack of unidirectional fiber orientation; therefore, the potential of recycled carbon fiber in high-performance composites is not thoroughly exhausted. This thesis primarily addresses the development of an innovative structure with a unidirectional fiber orientation termed “unidirectional recycled carbon fiber tape structure” for high-performance thermoplastics composites. The technological concept of the unidirectional structure comprises fiber opening, carding, drawing and a novel tape-forming process. In this concept, fiber opening, carding, and drawing processes were utilized to develop homogeneous, uniform, and highly oriented hybrid slivers. In the next step, these hybrid slivers were converted into a unidirectional recycled carbon fiber tape structure through a novel tape-forming process. To implement this concept, technological developments (investigations, modifications, optimization and further developments), were carried out in fiber opening, carding and drawing processes to develop a hybrid sliver with improved uniformity, homogeneity and unidirectional orientation. In the second phase, conception, design, technological developments, construction and prototype development were implemented to develop a novel tape-forming process. The result confirms that tape development technology comprising fiber opening, carding, drawing and prototype tape forming processes is an innovative, eco-friendly and sustainable technology compared to existing technologies. Furthermore, the consolidation process transformed the unidirectional tape structure into high-performance thermoplastic composites. Subsequently, technology-structure-property relationships were established to develop composites with tailor-made properties. The analysis reveals that selecting optimum technological, consolidation and structural parameters develop tape and composite structures with unidirectional fiber orientation. As a result, experimental results of a high-performance composite developed from a unidirectional recycled carbon fiber tape structure show a very high tensile strength of 1350 ± 28 MPa and an E-module of 84.7 ± 2.3 GPa. This analysis confirms that unidirectional fibers configuration in composites brings a revolution toward developing cost-efficient, high-performance composites for load-bearing structural applications. Finally, theoretical and finite element modeling of tensile properties of high-performance composites reveals that modified models show good agreement with composite tensile properties.
132

Processing of Cubic Stabilized Zirconia Electrolyte Membranes For Electrolyte-Supported Single Cell Solid Oxide Fuel Cells Using Tape Casting

Coronado Rodriguez, Arturo 01 January 2018 (has links)
Electrochemical conversion devices are a developing technology that prove to be a viable and more efficient alternative to current environmentally friendly generation devices. As such, constant research has been done in the last few decades to increase their applications and reliability. One of these systems, and the focus of this research, is the single cell Solid Oxide Fuel Cell (SOFC). These systems are a developing technology which main caveat is the need of high operating temperatures and costs. As such, most multidisciplinary research has been focused on researching materials and/or processes that help mitigate the costs or lower the operating temperature. The research presented in this paper focused on the manufacturing of a cubic stabilized zirconia (CSZ) electrolyte thin membrane for a single cell SOFC through tape casting. Thus, the process was divided into slurry preparation, tape casting, further processing, and analysis of samples. First the tape was produced reaching optimal viscosity (between 500 to 6000 cP) and minimizing impurities. Then, the slurry was poured into the doctor's blade with a 200 micrometers gap and allowed to dry. Samples were punched from the green tape with a diameter of 28 inches. Afterwards, these samples were pressed and sintered with a force of 218016 N and temperature of 1550 degrees celsius, respectively. These steps are done to maximize density and grain growth and minimize porosity. Lastly, the tape went further analysis and it was stated that further research should be done to determine this tape viability for stationary SOFC application.
133

Work for Five-String Electronic Violin and Tape (Torn Edges)

Borden, Stacy R. 29 July 2008 (has links)
No description available.
134

Fabrication of Planar and Tubular Solid Oxide Fuel Cells

Hedayat, Nader 21 May 2015 (has links)
No description available.
135

Kinesiology Tape and its Effects on Postural Control

Paulovich, Jason M. 01 October 2018 (has links)
No description available.
136

Computational Modeling of Laminar Swirl Flows and Heat Transfer in Circular Tubes with Twisted-Tape Inserts

You, Lishan 16 September 2002 (has links)
No description available.
137

An Exhibition on Cheerful Privacies

Walker, Tyler B. January 2010 (has links)
No description available.
138

Design and Evaluation of an Audio-Frequency Transresistance Amplifier for Magnetic Tape Playback

Salvatierra, Thomas R. 19 April 2011 (has links)
No description available.
139

Accumulation

O'Connor, Susan Li 15 September 2010 (has links)
No description available.
140

The feasibility of using videotape techniques in pre-service teacher education in agriculture /

Hedges, Lowell Eugene January 1970 (has links)
No description available.

Page generated in 0.0231 seconds