• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 434
  • 362
  • 67
  • 60
  • 21
  • 13
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • Tagged with
  • 1313
  • 447
  • 444
  • 430
  • 369
  • 359
  • 359
  • 261
  • 250
  • 249
  • 243
  • 243
  • 165
  • 157
  • 156
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
551

Tectônica e proveniência do grupo Santa Bárbara, região de Minas do Camaquã - RS

Bicca, Marcos Muller January 2013 (has links)
A região de estudo localiza-se na porção da Bacia do Camaquã, sendo classicamente conhecida com “Janela Bom Jardim”. Esta área já foi intensamente estudada, principalmente em decorrência dos depósitos minerais amplamente distribuídos. Apesar disso ainda não existe um consenso com relação à evolução tectônica da região, desde processos formadores da bacia até eventos pósdeposicionais, como também com relação ao seu posicionamento estratigráfico dentro da sequência deposicional da Bacia do Camaquã. Dessa forma, este trabalho vem contribuir e acrescentar aos modelos anteriores com dados geocronológicos e termocronológicos, aplicados diretamente às rochas sedimentares da região, bem como, novos dados de estrutural. Para tanto, submetemos seis amostras de rochas sedimentares da região de Minas do Camaquã à análise pelo método U-Pb com LA-ICP-MS e SHRIMP, aplicado a zircões detríticos, no intuito de mapear possíveis áreas fonte dos sedimentos como também, propor uma idade máxima de deposição para a sequência. Estas mesmas amostras foram utilizadas para separação de apatitas para análise termocronológicas (traços de fissão em apatitas), com o objetivo de caracterizar eventos de soerguimento e denudação relacionados à tectônica que afetou a área. O estudo de proveniência possibilitou identificar uma grande contribuição de zircões de idade Brasiliana, principalmente do final do Neoproterozóico e secundariamente populações de zircões de idade Paleoproterozóica, principalmente relacionadas ao Ciclo Transamazônico. A população principal foi correlacionada às intrusões graníticas do Terreno Taquarembó, e possivelmente contribuições do Batólito Pelotas, como também, das sequências vulcano-sedimentares mais antigas da própria Bacia do Camaquã. As idades Paleoproterozóicas foram atribuídas á rochas do Complexo Granulítico Santa Maria Chico e Complexo Encantadas, como também, zircões retrabalhados das rochas metassedimentares do Complexo Metamórfico Porongos. Ainda foi possível estimarmos a idade máxima de deposição da sequência em 554 Ma a partir do grão de zircão mais jovem datado posicionando estas rochas dentro do intervalo deposicional do Grupo Santa Bárbara. A análise por traços de fissão em apatitas permitiu identificar quatro populações de idades principais. Estas populações foram atribuídas à influência de dois eventos orogênicos na margem sul – ocidental do Gondwana: Famatiniana e Gondwanides. O primeiro evento é bem documentado pelas populações de 407-362 Ma e o segundo pelas populações de 302 Ma e 242-211 Ma. A quarta população (133 Ma) foi registrada em uma única amostra indicando um evento térmico ocasionado por intrusões vulcânicas associadas ao vulcanismo Paraná-Etendeka (Cretáceo inferior). Por fim, dados estruturais permitiram identificar uma evolução tectônica complexa, marcada por processos relacionados formação da bacia até reativações pósdeposicionais. Os eventos D1 e D2 foram associados a esforços gerados durante os estágios finais do Ciclo Brasiliano, com campos de tensão S10E-N10W e SE-NW, respectivamente. Um evento D3 com campo de tensão W-L registra reativações causadas pela Orogenia Famatiniana. O evento D4 marcado por uma compressão NNE-SSW e uma extensão NE-SW são relacionados aos processos tectônicos Triássicos (Orogenia Gondwanides). Um último evento D5 extensional (L-W) foi correlacionado aos processos de separação do Gondwana. / The study area is located in the southern portion of the Camaquã Basin, being classically known as "Bom Jardim Window". This area has been intensely studied, mainly due to the ore deposits widely distributed. Yet there is still no consensus regarding the tectonic evolution of the region, since basin inception processes until postdepositional events, but also regarding its stratigraphic position within the depositional sequence Basin Camaquã. Thus, this work contributes to previous models with geochronological and thermochronological data, applied directly to the sedimentary rocks of the region, as well as new structural data. Therefore, we submitted six samples of sedimentary rocks from the Camaquã Mines region to U-Pb method with LA-ICP-MS e SHRIMP applied to detrital zircons in order to map possible source areas of the sediments, as well as, proposing a maximum depositional age for the sequence. These same samples were used for apatite separation for thermochronological analysis (apatite fission tracks), with the aim of characterizing uplift and denudation events related to tectonics process that affected the area. Provenance study enabled us to identify a large contribution of Brasiliano zircon ages, especially from Late-Neoproterozoic and secondarily, zircons populations of Paleoproterozoic age, mainly related to Trans-Amazonian Cycle. The main population was correlated with granitic intrusions from Taquarembó Terrene and possibly contributions from Pelotas Batholith, as well as, from older volcano-sedimentary sequences of the Camaquã Basin. Paleoproterozoic ages were assigned to rocks of Santa Maria Chico Granulitic Complex and Encantadas Complex, as well as, reworked zircons from metasedimentary rocks of Porongos Metamorphic Complex. Still it was possible to estimate the maximum deposition age of the sequence on 554 Ma from the youngest zircon grain dated. Previous isotopic data allow positioning these rocks within the depositional range of Santa Bárbara Group. Apatite fission track analysis identified four main ages populations. These populations were attributed to the influence of two orogenic events on the Southwestern margin of Gondwana: Famatinian and Gondwanides. The first event is well documented by the 407-362 Ma age populations and the second by the 302 Ma and 242-211 Ma. The fourth population (133 Ma) was recorded in only one sample indicating a thermal event caused by volcanic intrusions associated with volcanism Paraná-Etendeka (Lower Cretaceous). Finally, structural data allowed identifying a complex tectonic evolution, characterized by basin inception processes until post-depositional reactivations. The events D1 and D2 were associated with stresses generated during the final stages of the Brazilian Cycle with stress fields of S10E-SE-NW and SE-NW, respectively. A third event (D3) with W-L stress field records the reactivation Famatinian Orogeny. The D4 event marked by a NNE-SSW compression and a NE-SW extension related to Triassic tectonic processes (Gondwanides Orogeny). One last extensional (W-L) event (D5) was correlated to the processes of separation of Gondwana.
552

3-D Seismic structural interpretation : insights to thrust faulting and paleo-stress field distribution in the deep offshore Orange Basin, South Africa

Cindi, Brian Msizi January 2016 (has links)
>Magister Scientiae - MSc / The Orange Basin provides exceptional 3-D structures of folds and faults generated during soft-sediment slumping and deformation which is progressive in nature. 3-D seismic and structural evaluation techniques have been used to understand the geometric architecture of the gravity collapse structures. The location of the seismic surveyed area is approximately 370 km northwest of the Port of Saldanha. The interpretation of gravitational tectonics indicate significant amount of deformation that is not accounted for in the imaged thrust belt structure. The Study area covers 8200 square kilometre (km²) of the total 130 000 km² area of the Orange Basin offshore South Africa. The south parts of the Study area are largely featureless towards the shelf area. The north has chaotic seismic facies as the result of an increase in thrust faults in seismic facies 2. Episodic gravitational collapse system of the Orange Basin margin characterizes the late Cretaceous post-rift evolution. This Study area shows that implications of stress field and thrust faulting to the thickness change by gravity collapse systems are not only the result of geological processes such as rapid sedimentation, margin uplift and subsidence, but also could have occurred as the result of the possible meteorite impact. These processes caused gravitational potential energy contrast and created gravity collapse features that are observed between 3000-4500ms TWT intervals in the seismic data. / Shell Exploration & Production Company
553

Tectônica rúptil meso-cenozóica na região do Domo de Lages, SC / Meso-cenozoic brittle tectonics of the Lages Dome, SC

Roldan, Luiz Fernando 22 June 2007 (has links)
Este trabalho tem como objetivo discutir a evolução tectônica meso-cenozóica do Domo de Lages, SC, envolvendo análise das estruturas rúpteis que afetam as rochas da região, análise morfométrica e da rede de drenagem e aspectos geomorfológicos relevantes. O Domo de Lages, localizado na borda leste da Bacia do Paraná, na porção sul do estado de Santa Catarina, é caracterizado pela ocorrência de uma grande variedade de rochas alcalinas de idade neo-cretácea. Estas rochas afloram na forma de sills e diques e são intrusivas no pacote sedimentar da Bacia do Paraná, causando-lhe um soerguimento da ordem de centenas a milhares de metros. As rochas alcalinas foram afetadas por estruturas rúpteis, particularmente falhas transcorrentes e normais, denotando a presença de uma tectônica ativa durante o cenozóico. Para o entendimento do quadro evolutivo do domo, além da análise estrutural, foram elaborados diversos mapas morfométricos (hipsométrico, declividades, orientação de vertentes, superfícies de base, rugosidade, gradiente hidráulico e densidade de lineamentos e drenagens) derivados diretamente do Modelo Digital de Elevação, que por sua vez foi obtido pelo tratamento de dados SRTM (Shuttle Radar Topographic Mission) da Agência Espacial Americana (NASA). O trabalho foi complementado com a análise da rede de drenagem e de lineamentos extraídos de imagens, juntamente com a elaboração de perfis topográficos. Os resultados mostram tratar-se de uma estrutura dômica alongada com eixo maior orientado na direção NW-SE, marcada pelo alinhamento de intrusões alcalinas e basculamento dos acamamentos das rochas sedimentares que apresentam mergulho radial para fora da estrutura. A análise do relevo revelou a existência de uma superfície de aplainamento, hoje preservada na cota de 1200 m, que teria sido afetada por falhas normais de direções NW-SE e NE-SW. O modelo tectônico evolutivo elaborado para a região contempla a seguinte seqüência de eventos: atuação de esforços compressivos NE-SW no final do cretáceo, gerando falhas normais NE-SW, que afetam as rochas básicas da Formação Serra Geral e condicionam a colocação de diques alcalinos e a estruturação do domo; geração de falhas transcorrentes destrais que afetam todas as rochas da região, incluindo as rochas alcalinas, com binário orientado na direção NNE-SSW; configuração de uma superfície de aplainamento preservada na cota de 1200m, que perdurou, provavelmente, até o mioceno; distensão NE-SW e geração de falhas normais NW-SE que abatem e basculam a superfície aplainada e reorganizam a rede de drenagens; instalação de um provável evento distensivo NW-SE, responsável pela formação de falhas normais NE-SW, marcadas principalmente nos mapas morfométricos. / This study was focused on the meso-cenozoic tectonic evolution of the Domo de Lages region (south Santa Catarina State, Southern Brazil), through the analysis of brittle structures affecting sedimentary and igneous rocks, morphometric parameters, drainage network and main geomorphological features. Located in the border of the Paraná sedimentary basin, the Domo de Lages is characterized by a great variety of Late Cretacic alkaline rocks, which crops out as sills and dikes cutting the Paleozoic sedimentary rocks, and are associated with an uplift of hundreds to thousands of meters. These alkaline rocks are affected by brittle structures, mainly transcurrent and normal faults, indicative of Cenozoic active tectonics. In addition to the structural analysis, several morphometric maps were developed, as an aid to enlighten the evolutionary history of the region. Maps of hypsometry, slope, aspect, isobase surfaces, surface roughness, hydraulic gradient, lineament density and drainage density were derived from SRTM (Shuttle Radar Topographic Mission) Digital Elevation Models provided by NASA, and were complemented by topographic profiles, analysis of drainage network and lineament orientation. Results show that the dome has a elongated shape with major axis oriented NW-SE, defined by alignment of intrusive bodies and tilting of sedimentary rocks bedding planes, dipping radially outwards the center of the structure. Topographic analysis revealed the existence of a planation surface, preserved at 1200m a.s.l., wich would have been affected by NW-SE and NE-SW normal faults. A tectonic evolutionary model for the region was elaborated, according the following sequence of events: in the end of Cretaceous, a compressive NE stress generates NE-SW normal faults, which affect the basic rocks of Serra Geral Formation and controls the emplacement of alkaline dikes and the uplift of the domic structure; formation of transcurrent dextral faults affecting all rocks of the area, including the alkalines, with NNE-SSW oriented binary; development of a planation surface preserved at 1200m a.s.l. which remained probably until the Miocene; NE-SW extension, creating NW-SE normal faults that lowered and tilted the levelled surface and affected the drainage network; a last extensive NW-SE event probably happened, responsible for NE-SW normal faults seen mainly in the morphometric maps.
554

High-resolution sequence stratigraphy and detrital zircon provenance of the Ordovician Ancell Group in the Iowa and Illinois Basins: insight into the evolution of midcontinental intracratonic basins of North America

Ibrahim, Diar Mohammed 01 May 2016 (has links)
The Middle Ordovician Ancell Group, including the St. Peter Sandstone, Glenwood Shale and Starved Rock Formation, records intracontinental basin development during eustatic sea level changes in Iowa and Illinois. The St. Peter Sandstone overlies the Prairie du Chien Group across an erosional unconformity that marks a major sequence boundary, whereas upper contact of the St. Peter Sandstone with the Glenwood Shale also is a second sequence boundary. Data from 80 wells, selected well logs, and 20 cores were integrated to refine the high-resolution sequence stratigraphy of the Ancell Group. Two main sequences bounded by three sequence boundaries are interpreted to represent 3rd order sequences. Distinctive shallowing-upward parasequences bounded by flooding surfaces in many cores record higher frequency relative sea level fluctuations in the Ancell Group, but these cannot presently be correlated regionally. Facies variations define an aggradational transgressive systems tract TST), a prograding highstand systems tract (HST) and down stepping falling stage system tract (FSST) in both the St. Peter Sandstone and the Glenwood Shale-Starved Rock Formation units. The St. Peter Sandstone thickens towards the northeast and thins to the northwest and southwest in Iowa. In contrast, the St. Peter Sandstone in Illinois thickens to the south likely recording a prolonged FSST incised valley or channel fill. Detrital zircon geochronology of 13 samples from the St. Peter Sandstone and Starved Rock Formation define common peaks at 1100-1500 Ma and 2500-2700 Ma with minor components at 1670-1750 Ma and 3000-3600 Ma. The detrital zircon signature is dominated by Archean, and Grenville (1000-1300 Ma) ages. The detrital zircon geochronology indicates that the Ancell Group was sourced directly from the Archean Superior Province to the north and Grenville Province to the northeast, although recycling of Archean grains from the Paleoproterozoic Huron Basin cannot be ruled out. The near complete lack of 1800-1900 Ma ages argues against derivation of detritus from the Trans-Hudson or Penokean Orogens. The Transcontinental Arch northwest of the Iowa Basin acted as a barrier to sediment transport from the Trans-Hudson Orogen. Basement rocks of the Penokean Orogen are inferred to have been covered by water or younger sediments southeast of the Iowa Basin. CIA analyses of Ordovician shale samples from around the Transcontinental Arch indicate that the climate condition during Middle Ordovician time was warm and humid. This is consistent with a paleoclimate interpretation where mechanical erosion and chemical weathering yielded first cycle mature quartz arenites (Witzke, 1980).
555

Middle Miocene to Holocene History of the Delacroix Island Fault System

Levesh, Jarrett Leigh 23 May 2019 (has links)
An in-depth field study of the Delacroix Island producing field illustrates the evolution of the east-trending Delacroix Island Fault during the last 13 My. Well log correlations and 3-D seismic interpretation of 22 subsurface bio-stratigraphic horizons across the fault reveal variable stratigraphic thicknesses and displacement. Wells, with well log curve data as shallow as 31 m (100 ft) below the surface, were used to calculate interval thicknesses, expansion indices, sediment accumulation rates, burial history and magnitudes of displacement. Through these analyses, a correlation was found between the positioning of ancient Miocene depocenters over Delacroix Island and a period of increased fault activity. Historic satellite imagery (last 34 yrs) of the field depicts a lineation on the modern marsh surface coincident with the upward projected fault plane. Continuous wetland loss on the downthrown side of the fault trace suggests that recent and continued fault movement may be contributing to marsh submergence.
556

AGES OF PREHISTORIC EARTHQUAKES ON THE BANNING STRAND OF THE SAN ANDREAS FAULT, NEAR NORTH PALM SPRINGS, CALIFORNIA

Castillo, Bryan 01 June 2019 (has links)
We studied a paleoseismic trench that was excavated across the Banning strand of the San Andreas Fault by Petra Geosciences (33.9172°, -116.538°). The trench exposed a ~40 m wide fault zone in interbedded alluvial sand gravel, silt and clay deposits. We present the first paleoseismic record for the Banning strand of the southern San Andreas Fault. The most recent event occurred sometime between 730 and 950 cal BP, potentially coincident with rupture of the San Gorgonio Pass thrust. We interpret that five earthquakes have occurred since 3.3-2.5 ka and eight earthquakes have likely occurred since 7.1-5.7 ka. It is possible that additional events may have occurred without being recognized, especially in the deeper section the stratigraphy, which was not fully exposed across the fault zone. We calculate an average recurrence interval of 380 - 640 yrs based on four complete earthquake cycles between earthquakes 1 and 5. The average recurrence interval is thus equivalent to or less than the elapsed time since the most recent event on the Banning strand. The recurrence interval is similar to the San Gorgonio Pass (450-1850 years) but longer than that for the Mission Creek strand (~220 years).
557

The structural controls of the Vale Rhinehart Buttes complex, Vale KGRA, Malheur County, Oregon

Doerr, John Timothy 01 January 1986 (has links)
The Vale KGRA is characterized by high heat flow, two to five times higher than the worldwide average, and by numerous hot springs. The hot springs are aligned along faults. This phenomena is typical of a Basin and Range type geothermal system. The hot geothermal fluids migrate upward along the more permeable, fault planes. The rocks exposed in the Vale area are the Pliocene Chalk Butte formation and the Pleistocene beds of Captain Keeney Pass. Both units are composed of volcaniclastic siltstones, sandstones and conglomerates. The units are differentiated by color, texture and degree of lithification. About 200 meters of the Chalk Butte formation and 100 meters of the beds of Captain Keeney Pass are exposed in the area. Silicification is wide spread in the rocks of the Chalk Butte formation.
558

Geochronological Constraints On The Timing Of Deformation: An Examination Of The Prospect Rock Fault Footwall In North-Central Vermont

Tam, Evan 01 January 2018 (has links)
The Prospect Rock Fault (PRF) is key to our understanding of the regional tectonic evolution of Vermont during the Taconic, Salinic, and Acadian Orogenies, and may have played an important role in the exhumation of blueschist and eclogite-facies rocks in the Tillotson Peak Complex (TPC) during the Taconic Orogeny. The TPC is in the footwall of the PRF in the eastern limb of the Green Mountain Anticlinorium. In the TPC, the dominant foliation is S2 and E-W trending F2 folds parallel L2 stretching lineations, which trend orthogonal to regional N-S trending folds associated with the Taconic Orogeny. The PRF itself is folded by F2 folds. Presently, there is a lack of consensus about the role of the PRF in the exhumation of the TPC, and studies have not reconciled the formation of the E-W folds and lineations to a regional model. Oriented samples and structural data were collected from the footwall of the PRF over several transects. Samples were processed into orthogonal thin sections for microstructural analyses and for 40Ar/39Ar step heating of white mica. The dominant foliations in the PRF samples were identified through microstructural analysis and correlating the age of deformation as S2 and S3. These were defined in thin section by mica and quartz microlithons, and oriented mica grains. S1, and in some samples S2, are locally preserved in some mica domains and albite/garnet inclusion trails. S4 appears as crenulations of S3, with no significant new mineral crystallization. In the field, L2 and L3 lineations are defined by mineral and quartz rods, and L4 lineations are defined as intersection lineations on S2 surfaces. 40Ar/39Ar analyses yielded plateau ages ranging from 458.6 ± 2.0 Ma to 419.0 ± 2.4 Ma (1σ). The oldest plateau ages are just slightly younger, yet concordant, with published and new 40Ar/39Ar ages from the TPC and come from the structurally highest portions of the footwall in the northern part of the study area. Virtually all apparent age spectra show age gradients. Results from this study suggest the PRF played a role in exhumation of the TPC and ages obtained are closely aligned with deformation ages constrained from 40Ar/39Ar dating in southern Quebec for the Taconic D2 and Salinian D3 deformation. These dates may aid correlatation of ages and structures regionally and further refining of tectonostratigraphic models describing southern Quebec and New England.
559

Provenance response to flat-slab subduction as recorded in detrital zircon signatures from the southern Alaskan forearc basin system

Hedeen, Tyler 01 May 2016 (has links)
Strata in the Cook Inlet forearc basin in south-central Alaska record the effects of tectonic events related to normal subduction and two flat-slab subduction events. Through detrital zircon geochronology we track provenance changes of strata deposited in a forearc basin in conjunction with these different subduction processes. Our data from strata deposited concurrent with normal subduction help to confirm previous provenance models of forearc basins that suggest provenance is sourced primarily from a proximal, coeval arc. However, compared to these models, our data from strata deposited coincident to flat-slab events show markedly different provenance signatures dependent upon: (1) geographic position relative to the flat-slab event; (2) pre-established, or lack thereof, topography; and (3) type of flat-slab event. Detrital zircon signatures of strata deposited in the Cook Inlet after flat-slab subduction of a mid-ocean ridge diversify to include older detritus found in the distal inboard region. This distal signature is then incrementally cut-off in younger strata due to deformation of the upper-plate from progressive insertion of a shallowly subducted oceanic plateau. Detrital zircon signatures for strata associated with each flat-slab event are largely older than depositional age due to the lack of coeval arc activity. Our data may help to improve the ability to recognize other flat-slab events through detrital zircon geochronology. In particular, changes in detrital zircon signatures found in strata deposited during flat-slab subduction of an oceanic plateau correlate well with the exhumation of rocks associated with the propagation of deformation in the over-riding plate due to plate coupling.
560

Forearc basin detrital zircon provenance of Mesozoic terrane accretion and translation, Talkeetna Mountains-Matanuska Valley, south-central Alaska

Reid, Mattie Morgan 01 May 2017 (has links)
The Wrangellia composite terrane is one of the largest fragments of juvenile crust added to the North American continent since Mesozoic time, and refining its accretionary history has important implications for understanding how continents grow. New U-Pb geochronology and Hf isotopes of detrital zircons from Late Jurassic-Late Cretaceous strata from the forearc of the Wrangellia composite terrane allows more insight on the tectonic and paleogeographic history of the terrane. Our stratigraphically oldest samples from the Late Jurassic Naknek Formation have a detrital zircon U-Pb signature dominated by Early and Late Jurassic grains (195-190 Ma; 153-147 Ma). Hf isotopic compositions of these grains are juvenile to intermediate (εHf(t)=4.5-14.7). Disconformably above the Naknek Formation are two poorly understood units Ks and Kc. The Ks unit is dominated by Early to Late Jurassic grains (159-154 Ma) with a few Paleozoic grains (347-340 Ma). Hf isotopic compositions of Carboniferous-Jurassic grains are juvenile to intermediate (εHf(t)=6.0-18.8). The overlying Kc unit has Late to Early Jurassic zircons (198-161 Ma), and an increase in Paleozoic ages (374-323 Ma). Hf isotopic compositions of these grains are juvenile to intermediate (εHf(t)=4.5-14.7). Samples from the Matanuska Formation have major Late Cretaceous grains (90-71 Ma), and minor Early Cretaceous (137-106 Ma), Late to Early Jurassic (200-153 Ma), Paleozoic (367-277 Ma), and Precambrian grains (2597-1037 Ma). Hf compositions have a wider range from both the Late Cretaceous grains (εHf(t)=-1.5-14.9) and Paleozoic-Precambrian grains (εHf(t)=-23.7-16.3). Our results suggest an evolving provenance from Late Jurassic to Late Cretaceous time for the Wrangellia composite terrane forearc basin. The Late Jurassic Naknek Formation samples were dominantly derived from a juvenile to intermediate Jurassic igneous sediment source. During Early Cretaceous time, there is a slight increase in the number of Paleozoic grains in the Ks and Kc unit samples. The Early Cretaceous sediments have a mostly positive Hf isotopic compositions suggesting exhumation of Jurassic and Paleozoic juvenile igneous sediment sources. By Late Cretaceous time, our data illustrates another increase in Paleozoic grain abundances, in addition to the introduction of Precambrian grains, all with widely variable Hf isotopic compositions. We interpret this to reflect a larger sediment flux from the interior of Alaska where more evolved igneous rocks of that age are found.

Page generated in 0.0825 seconds