• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Terahertz magnonics

Mikhaylovskiy, Rostislav January 2012 (has links)
The potential of terahertz time domain spectroscopy has until recently been neglected in the field of the ultrafast magnetism. At the same time this technique can serve as a useful complementary tool with respect with conventional methods to investigate ultrafast magnetization dynamics. This thesis aims to implement time domain terahertz spectroscopy to observe high frequency spin waves excited optically in different magnetic systems. This work covers several distinct phenomena related to the study of spin waves (magnonics) at terahertz frequencies. The generation of transient broadband nonlinear magnetization via inverse Faraday effect in terbium gallium garnet is described in chapter 4. We demonstrate a remarkable discrepancy of at least two orders of magnitude between the strengths of the direct and inverse Faraday effects, thereby challenging the commonly accepted understanding of their relationship. Additionally, a striking nonlocality of the optical response is found. In chapter 5 the results of THz absorption spectroscopy of the terbium gallium garnet are reported. The garnet exhibits an intricate paramagnetic state with several magnetic sub-lattices at cryogenic temperatures under the application of strong magnetic fields. Some precessional modes of these sub-lattices were measured. The components of the g-tensor of terbium ions were extracted from the data. In chapter 6 the ultrafast magnetization dynamics of thulium orthoferrite, studied my means of terahertz spectroscopy, is described. It is demonstrated that terahertz response of the orthoferrite provides crucial additional information with respect to the optical pump-probe signal. A novel exchange driven mechanism of optical manipulation of the magnetic state is demonstrated. Finally, chapter 7 is a theoretical discussion of so called planar magnonic metamaterials. It is shown that the arrays of ferromagnetic films may exhibit negative refraction index at sub-terahertz frequencies, provided the mechanism of spin wave quantization is introduced. The thesis ends with a brief conclusions chapter where a short summary of the results is given. Some possible future extensions of the conducted research are drawn as well.
2

Dual Frequency Comb Mid-IR – THz Spectroscopy

Konnov, Dmitrii 01 January 2024 (has links) (PDF)
The optical frequency comb is a coherent light source whose spectrum consists of hundreds of thousands perfectly equidistant narrow frequency components and precisely expressed in just two radio frequencies. Even though optical frequency combs were developed 25 years ago, that led to the Nobel Prize in Physics 2005, only recently there was a significant progress in generating broadband optical frequency combs in the mid-infrared. These achievements became possible due to the development of new types of robust fiber and solid-state lasers and the efficient downconverting of their frequencies through different techniques based on advanced nonlinear crystals. In this dissertation, I study the techniques of producing ultra-broadband frequency combs in the challenging mid-infrared and terahertz regions of the electromagnetic spectrum. These combs find applications in high-precision molecular spectroscopy, atmosphere monitoring, reaction kinetics, and ultrasensitive trace gas detection to name a few. In addition, I investigate their application in the dual-comb spectroscopy, which is a tool involving two combs with slightly different comb line spacings that are interfered on a photodetector generating a radiofrequency comb. So, effectively high optical frequency is mapped to radiofrequency that can be easily recorded with available digital electronics. This method has a list of advantages over traditional spectrometers, namely broadband coverage combined with superior spectral resolution, high acquisition speed, high precision, and the absence of moving parts. Moreover, in the context of the experimental results, my spectroscopy investigations with low-pressure gases led to reliving a massive amount of spectroscopic data that had never been explored before, and some of which was already included into a global database. The results presented in this dissertation paves the way for creating highly accurate molecular spectroscopic databases and have the potential for real-time medical diagnostics through multi-species exhaled breath analysis.
3

Terahertz (THz) spectroscopy

Numan, Nagla Numan Ali 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Terahertz radiation is currently used in security, information and communication technology (ICT), and biomedical sciences among others. The usability of terahertz (THz) radiation, in many of its applications depends on characteristics of the materials being investigated in the THz range. At the heart of THz usage is a THz spectroscopy system necessary for the generation and detection of the THz radiation. In this thesis, we characterise such a THz spectroscopy system. In our typical THz spectrometric system, we make use of femtosecond (fs) laser technology and pump-probe principles for emission and detection of THz radiation. Background about the principles of generation THz radiation using fs triggered antennas and the principles of the spectroscopy technique and appropriate literature references are presented. Using an assembled commercially available kit, we reproduce known spectra in order to confirm correct functionality (for calibration) of the assembled spectroscopy system and to gain experience in interpreting these spectra. By introducing a suitable x - y scanning device we construct a crude THz imaging device to illustrate the principle. / AFRIKAANSE OPSOMMING: Terahertsstraling word deesdae wyd in die sekuriteits, inligting-en-kommunikasie en biomediese sektore aangewend. Die gepastheid van terahertsstraling (THz) vir ’n spesifieke toepassings hang af van die eienskappe van die materiale wat ondersoek word. Vir die uitvoer van sulke eksperimente word ’n THz-spektroskopie sisteem benodig vir die opwekking en meting van THz-straling. In hierdie tesis word so ’n THz-spektroskopie sisteem beskou en gekarakteriseer. In die sisteem word van ’n femtosekondelaser (fs) gebruik gemaak in ’nn pomp-en-proef opstelling vir die uitstraling en meting van THz-straling. Die beginsels rakende die opwekking van THz-straling, deur gebruik te maak van ’n antenna wat deur ’n fs-laser geskakel word, asook die beginsels van die spektroskopiese tegniek, met toepaslike verwysings, word in die tesis aangebied. Deur gebruik te maak van’n kommersiële THz opstelling is bekende spektra gemeet om die korrekte funksionering (vir kalibrasie doeleindes) na te gaan en om ondervinding op te doen in die interpretasie van hierdie spektra. ’n X-Y-translasie toestel is tot die opstelling bygevoeg om THz-afbeelding moontlik te maak en sodoende hierdie beginsel te illustreer.
4

Pattern recognition and tomographic reconstruction with Terahertz Signals for applications in biomedical engineering.

Yin, Xiaoxia (Sunny) January 2009 (has links)
Over the last ten years, terahertz (THz or T-ray) biomedical imaging has become a modality of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized, with increasing trials performed in a biomedical setting. Advanced digital image processing algorithms are greatly need to assist screening, diagnosis, and treatment. Pattern recognition algorithms play a critical role in the accurate and automatic process of detecting abnormalities when applied to biomedical imaging. This goal requires classification of meaningful physical contrast and identification of information in images, for example, distinguishing between different biological tissues or materials. T-ray tomographic imaging and detection technology contributes especially to our ability to discriminate opaque objects with clear boundaries and makes possible significant potential applications in both in vivo and ex vivo environments. The Thesis consists of a number of Chapters, which can be grouped in to three parts. The first part provides a review of the state-of-the-art regarding THz sources and detectors, THz imaging modes, and THz imaging analysis. Pattern recognition forms the second part of this Thesis, which is represented via combining several basic operations: wavelet transforms and wavelet based signal filtering, feature extraction and selection, along with classification schemes for THz applications. Signal filtering in this Thesis is achieved via wavelet based de-noising. The ultrafast pulses generated terahertz time-domain spectroscopy (THz-TDS), which is demonstrated to justify their decomposition in the wavelet domain as it can provide better de-noising performance. Feature extraction and selection of the terahertz measurements rely on observed changes in pulse amplitude and phase, as well as scattering characteristics of several different types of powder samples under study. Additionally, three signal processing algorithms are adopted for the evaluation of the complex insertion loss function of such samples as lactose, mandelic acid, and dl-mandelic acid: (i) standard evaluation by ratioing the sample with the background spectra, (ii) a subspace identification algorithm, and (iii) a novel wavelet packet identification procedure. These system identification algorithms enable THz measurements to be transformed to features for THz pattern recognition. Meanwhile, a novel feature extraction method involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA)models on the wavelet transforms of measured T-ray pulse responses of ex vivo osteosarcoma cells as well as other biomedical materials is presented. Classification schemes are carried out via simple and robust schemes, such as the linear Mahalanobis distance classifier, and the non-linear Support Vector Machine (SVM) classifier. In particular, SVMs are used as a learning scheme to achieve the identification of two classes of RNA samples and multiple classes of powered materials. Coherent terahertz detection hardware—THz time-domain spectroscopy (THz-TDS)—is used to obtain all the data for validation of these classification schemes. The past decade has witnessed the tremendous development of terahertz instruments for detecting, storing, analysing, and displaying images. Terahertz time-domain spectroscopy (THz-TDS) is a broadband technique that generates and detects THz radiation in a synchronous and coherent manner. By contrast, the newly developed THz quantum cascade laser is a narrow-band radiation source that provides potential for realising compact systems; they produce image data with higher average power levels. The third part of this Thesis discusses methods to improve the capability of both broad and narrow-band terahertz imaging, driven by computer-aided analytical techniques. A wavelet based reconstruction algorithm for terahertz computed tomography is represented to show how this algorithm can be used to rapidly reconstruct the region of interest (ROI) with a reduction in the measurements of terahertz responses, compared with a standard filtered back-projection technique. These reconstruction algorithms are applied to the analysis of acquired experimental data and to locally recover the two dimensional (2D) and three-dimensional (3D) structures of several optically opaque objects. Moreover, a segmentation technique based on two dimensional wavelet transforms is investigated for the identification of different materials from the reconstructed CT image. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1352839 / Thesis (Ph.D.) - University of Adelaide, School of Electrical and Electronic Engineering, 2009
5

Imagerie dans le domaine térahertz / Imaging in the terahertz domain

Ketchazo Nsenguet, Christian 28 June 2012 (has links)
Cette thèse s'intéresse à la phénoménologie relative à l'imagerie passive dans le domaine sub-térahertz allant de 0,1 à 1 THz. Dans cette fenêtre électromagnétique, les matériaux diélectriques comme les vêtements sont transparents ce qui ouvre la voie à la réalisation d'images des personnes débarrassées de leurs vêtements et la possibilité de détecter des objets extracorporels cachés sous ces derniers. Le processus de formation d'images repose sur la détection des puissances de rayonnement provenant de la scène et sur la discrimination des signatures spectrales des objets de la scène. Dans cette thèse, nous mesurons l'indice, la transmission et la diffusion de quelques vêtements et autres matériaux dissimulants dans le domaine térahertz. La technique de mesure utilisée est la spectroscopie térahertz dans le domaine temporel, la génération et la détection des signaux sont réalisées par les photocommutateurs ultra-rapides à base de GaAs-BT. Les résultats obtenus s'étendent jusqu'à 2 ou 2,5 THz. La technique de mesure est ensuite adaptée pour la détermination in-vivo des propriétés térahertz de la peau humaine. La base de données constituée par la campagne de mesures est enfin intégrée dans un modèle radiométrique pour l'étude des scénarios d'imagerie passive de détection à distance. Les performances obtenables sont discutées et les spécifications favorables à l'imagerie sont déduites. / The thesis focuses on the phenomenology related to passive imaging in Millimeter/Terahertz domain, 0.1 to 1 THz. In this domain, dielectric materials such as clothing are transparent, this paves the way for the creation of images of people guillemotleft stripped of guillemotright their clothing and the ability to detect extracorporeal objects hidden behind the clothes. In this thesis, we measure the optical index, the transmission and the diffusion of some hidden materials in the terahertz domain. The measurement technique used is the terahertz time-domain spectroscopy. The generation and detection of signals are carried out by LT-GaAS photoswitches. The results extend to 2 or 2.5 THz. The optical properties of human skin is measured using our experimental setup mounted in reflection geometry. The database made from the measurement campaign is finally integrated into a radiometric model for the study of passive imaging scenarios for remote sensing. Obtainable performances are discussed and favorable specification to imaging are derived.
6

Tunable superlattice amplifiers based on dynamics of miniband electrons in electric and magnetic fields

Hyart, T. (Timo) 24 November 2009 (has links)
Abstract The most important paradigms in quantum mechanics are probably a twolevel system, a harmonic oscillator and an ideal (infinite) periodic potential. The first two provide a starting point for understanding the phenomena in systems where the spectrum of energy levels is discrete, whereas the last one results in continuous energy bands. Here an attempt is made to study the dynamics of the electrons in a narrow miniband of a semiconductor superlattice under electric and magnetic fields. Semiconductor superlattices are artificial periodic structures, where certain properties like the period and the energy band structure, defined in standard crystals by the nature, can be controlled. Electron dynamics in a single superlattice miniband is interesting both from the viewpoint of fundamental and applied physics. From the fundamental perspective superlattices serve as a model system for a wealth of phenomena resulting from the wavenature of charge carriers. On the other hand, superlattices can potentially be utilized in oscillators and amplifiers operating at THz frequencies. They can, in principle, provide a reasonable THz Bloch gain under dc bias and parametric amplification in the presence of ac pump field. Because of numerous scientific and technological applications in different areas of science and technology, including astrophysics and atmospheric science, biological and medical sciences, and detection of concealed weapons and biosecurity, a construction of compact tunable THz amplifiers and generators that can operate at room temperature is an important – but so far unrealized – task. This thesis focuses on the influence of electric and magnetic fields on small-signal absorption and gain in semiconductor superlattices in the presence of dissipation (scattering). We present several new ideas how the effects arising due to the wave nature of the electrons can be utilized in an operation of THz oscillators and amplifiers. In Papers I–V, we discuss the properties of superlattice sub-THz and THz parametric amplifiers, whereas the Papers VI–IX are devoted to the problem of domain instability in the realization of cw THz Bloch oscillator. In Paper IX we also establish a feasibility of new type of superlattice THz amplifier based on nonlinear cyclotron-like oscillations of the miniband electrons. The ideas presented in the Papers I–IX are supplemented here with a detailed discussion of the physical origin of the effects and more rigorous mathematical derivations of the main equations.
7

Charge dynamics in coupled semiconductor superlattices

Matharu, Satpal January 2015 (has links)
In this thesis, we investigate the collective electron dynamics in single and coupled superlattice systems under the influence of a DC electric field. Firstly, we illustrate that Bloch oscillations suppress electron transport and the resulting charge domains form self-sustained current oscillations. Upon the application of a tilted magnetic field, stochastic web structures are shown to form in the phase space of the electron trajectory. This occurs only when the Bloch and cyclotron frequencies are commensurate allowing the electrons to demonstrate chaotic unbounded trajectories, leading to an increase in transport. The charge domain dynamics also present additional peaks during such resonances. The rapid changes in the dynamical states found is an example of non-KAM chaos. We show then the amplitude and frequency of current oscillations in a single superlattice can be controlled. Secondly, two models are designed to mutually couple two semiconductor superlattices by a common resistive load. We examine the effects of coupling strength and frequency detuning on the collective current dynamics. The devices are considered to be arranged together on a single substrate as well as on individual substrates. Large AC power is witnessed during anti-phase and in-phase synchronization between current oscillations. Finally, two superlattices are coupled through a resonance circuit incorporating single mode resonances from external influences in the circuit. In this system, chaotic current dynamics are induced with regions of chaos separating different regions of synchronization. High frequency oscillations with minimal phase difference cause the largest power generation. In all three coupling models high frequency components are found in the Fourier power spectra. The power generated in the coupled systems is found greater and at times more than double the power generated in the autonomous superlattice. Thus this thesis provides innovative methods of enhancing and controlling powerful high-frequency signals. This effectively gives manipulation over the intensity of the electromagnetic radiation produced by the superlattice.
8

Development Of Compact Terahertz Time-domain Terahertz Spectrometer Using Electro-optic Detection Method

Metbulut, Mukaddes Meliz 01 September 2009 (has links) (PDF)
The goal of this thesis is to describe development of compact terahertz time-domain spectrometer driven by a mode-locked Ti:Sapphire laser. The terahertz radiation was generated by photoconductive antenna method and detected by electro-optic detection method. In this thesis, several terahertz generation and detection method, working principle of terahertz time-domain spectroscopy and its applications are discussed. We mainly focused on working principle of terahertz time-domain spectroscopy and characterization of detected terahertz power using electro-optic detection method.
9

THz streaking at metal nanotips

Wimmer, Lara Simone 30 January 2018 (has links)
No description available.
10

Design and Fabrication of Fractal Photoconductive Terahertz Emitters and Antenna Coupled Tunnel Diode Terahertz Detectors

Maraghechi, Pouya Unknown Date
No description available.

Page generated in 0.1109 seconds