• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dispersões de nanopartículas magnéticas do tipo Core-Shell MFe2O4@ γ -Fe2O3 em solventes polares : reatividade eletroquímica e o papel da interface óxido/solução nas propriedades coloidais / Dispersions de nanoparticules magnétiques de type coeur-coquille MFe2O4@γ-Fe2O3 dans des solvants polaires : réactivité électrochimique et rôle de l’interface oxyde/solution sur lês propriétés colloïdales

Filomeno, Cleber Lopes 14 December 2015 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, Universidade Pierre et Marie Curie, 2015. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-01-21T16:18:29Z No. of bitstreams: 1 2015_CleberLopesFilomeno.pdf: 4228184 bytes, checksum: 1d7cfadb3941caa1e97e8482ec1a7f59 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-01-27T20:20:22Z (GMT) No. of bitstreams: 1 2015_CleberLopesFilomeno.pdf: 4228184 bytes, checksum: 1d7cfadb3941caa1e97e8482ec1a7f59 (MD5) / Made available in DSpace on 2016-01-27T20:20:22Z (GMT). No. of bitstreams: 1 2015_CleberLopesFilomeno.pdf: 4228184 bytes, checksum: 1d7cfadb3941caa1e97e8482ec1a7f59 (MD5) / Dispersões de nanopartículas (NPs) magnéticas em solventes polares são materiais nanoestruturados cujas propriedades têm inspirado inúmeras aplicações, dentre elas, biomédicas, industriais e termoelétricas, pois possibilitam a obtenção de materiais biocompatíveis e estáveis em longo prazo na presença de espécies iônicas. Também conhecidos como ferrofluidos (FFs), esses sistemas são geralmente dispersões coloidais magnéticas de NPs de ferritas do tipo espinélio, as quais podem ser estabilizadas devido à repulsão eletrostática. Nesses sistemas, a compreensão da interface entre as NPs e o solvente carreador é um ponto chave, o qual governa as interações entre partículas, a nanoestrutura e muitas outras propriedades importantes para suas aplicações. No presente estudo, investigamos a reatividade eletroquímica na interface de NPs de ferritas do tipo core-shell MFe2O4@y-Fe2O3 (M = Fe, Co, Mn, Cu ou Zn) em meio aquoso pela eletrólise na superfície de um eletrodo de trabalho. As técnicas de voltametria de onda-quadrada e de eletrólise por coulometria a potencial controlado foram utilizadas nesses sistemas eletroativos não convencionais para evidenciar a efetividade da composição da camada superficial de maguemita (y-Fe2O3), cuja função primordial é garantir a estabilidade termodinâmica das NPs em meio ácido. Apresentamos também um novo processo de elaboração de FFs baseados em maguemita em solventes polares, testado em água e então aplicado ao dimetilsulfóxido (DMSO). A partir do ponto de carga nula (PZC), as NPs foram carregadas eletrostaticamente por um processo controlado de adição de ácido ou base. Esse procedimento sistemático permitiu um melhor controle do estado de superfície das NPs, ou seja, a natureza das cargas e dos contra-íons, bem como a quantidade de eletrólito livre em dispersão. Muitas dispersões estáveis foram obtidas devido à repulsão eletrostática, também em DMSO, e com concentrações de eletrólitos entre 20-40 mM. Técnicas de espalhamento de raios X a baixos ângulos (SAXS) e difusão dinâmica da luz (DLS) são aplicadas para entender as nanoestruturas e quantificar as interações entre partículas. Efeitos de íons específicos são evidenciados bem como a forte influência da interface sólido/líquido na migração das NPs em um gradiente térmico, quantificado pelo coeficiente Soret. / Dispersions of magnetic nanoparticles (NPs) in polar solvents are nanostructured materials, the properties of which have been inspiring many applications, to cite a few, biomedical, industrial and thermoelectrical ones, since they enable biocompatible and long-term ionically stable materials. Also called ferrofluids (FFs), these systems are usually colloidal dispersions of magnetic spinel ferrite NPs, which can be stabilized thanks to electrostatic repulsion. Therefore, a good understanding of the interface between NPs and the carrier solvent is a key point, which governs the interparticle interactions, the nanostructure and many other applicative properties. In the present study, we studied the interfacial electrochemical reactivity of core-shell ferrite MFe2O4@y-Fe2O3 (M = Fe, Co, Mn, Cu or Zn) NPs in aqueous medium by the NPs electrolysis at a working electrode surface. Square-wave voltammetry and potential controlled coulometry techniques are used on these non-conventional electroactive systems in order to evidence the effective composition of their superficial maghemite (y-Fe2O3) layer, which one the main function is to ensure the thermodynamical stability of NPs in acidic medium. We also present a new process for the elaboration of maghemite based FF in polar solvents, tested in water and then applied here to dimethyl sulfoxide (DMSO). Departing from the point of zero charge (PZC), the NPs are charged in a controlled way by adding acid or base. This pathway enables to better control the surface state of the NPs, i.e. the charge and the counter-ions nature, as well as the amount of free electrolyte in the dispersion. Stable dispersions are obtained thanks to electrostatic repulsion, also in DMSO and with electrolyte concentrations up to 20-40 mM. Small Angle X-ray (SAXS) and Dynamic Light (DLS) Scattering technics are applied to understand the nanostructure and quantify the interparticle interactions. Specific ionic effects are evidenced as well as the strong influence of the solid/liquid interface on the migration of the NPs in a thermal gradient, quantified by the Soret coefficient.
2

Investigação da relação entre coeficientes termodifusivos em colóides magnéticos a base de água / Investigation of the relation between thermodiffusive coefficients in water-based magnetic colloids

Sehnem, André Luiz 29 June 2018 (has links)
O presente trabalho investiga o fenômeno termodifusivo em dispersões coloidais de nanopartículas magnéticas de óxidos de ferro em água (ferrofluidos), com a formação de dupla camada elétrica em torno das partículas. A estabilidade da partícula em solução é controlada pela concentração de íons. Ao estabelecer uma diferença de temperatura através da amostra líquida, ocorre o efeito de termodifusão (efeito Soret) das partículas e de íons em solução. Este efeito é o movimento das partículas para o lado frio ou quente do gradiente de temperatura. O acúmulo para um dos lados do gradiente de temperatura depende das características da solução. O efeito Soret de ferrofluidos em soluções ácidas e básicas é descrito a partir da determinação experimental das grandezas físicas envolvidas na difusão das partículas. O coeficiente Soret ST e o coeficiente de difusão são determinados em experimentos ópticos de lente de matéria, utilizando o aparato experimental de Varredura-Z, e de espalhamento Rayleigh forçado para termodifusão. Para investigar a resposta dos íons ao gradiente de temperatura, são realizadas medidas do potencial termoelétrico em uma célula termoelétrica, gerado a partir da difusão das cargas dispersas no líquido. O potencial superficial das partículas também é investigado experimentalmente, para descrever a interação das partículas com o campo termoelétrico. Os experimentos são realizados em função da temperatura da amostra e usados para descrever os resultados ST(T) das partículas, a partir de equações dos principais modelos teóricos. Os resultados mostram as diferenças e semelhanças do efeito Soret das nanopartículas em soluções ácidas e básicas, e que em ambos os casos a termodifusão de nanopartículas reflete o comportamento termodifusivo dos íons dispersos em solução. / This work investigates the thermal diffusion phenomena in colloidal dispersions of iron oxide magnetic nanoparticles dispersed in water (ferrofluid). The particles are stable in water due to electrical double layer around the particles, controlled by the ionic concentration. A temperature gradient throughout the ferrofluid sample causes the thermodiffusion (Soret effect) of dispersed particles and ions. This effect is the movement of particles to the cold or hot side of the temperature gradient. The particles migration for a given side depends on the characteristics of the sample. The Soret effect of ferrofluids in acidic and basic solutions is described by the experimental measurements of the physical parameters associated to particles diffusion. The Soret coefficient ST and the mass diffusion coefficient are measured in the matter lens experiment in the Z-scan experimental setup, and by the use of Thermal Diffusion Forced Rayleigh Scattering experiments. Concerning the ionic response to the temperature gradient the thermoelectric field generated by charges diffusion is measured in a thermoelectric cell. The surface potential of the particles is also measured to describe its interactions with the thermoelectric field. These experiments are made as function of the temperature of the sample and the results are applied to describe the ST(T) of particles by the use of equations from the main theoretical models. The results show differences and resemblances of the Soret effect in acidic and basic nanoparticles solutions. In both kind of solutions the thermodiffusion of nanoparticles is mainly ruled by the thermodiffusion of ions dispersed in solution.
3

Investigação da influência do tamanho de partícula na termodifusão de colóides magnéticos positivamente carregados / Investigation of the particle size influence in the thermodiffusion of positively charged magnetic colloids

Sehnem, André Luiz 09 May 2014 (has links)
Esta dissertação apresenta um estudo experimental sobre o transporte de massa de nanopartículas magnéticas induzido por um gradiente de temperatura, denominado termodifusão. A técnica de Varredura-Z é utilizada para gerar o aumento de temperatura na região irradiada pelo laser Gaussiano e formar o gradiente de temperatura. A sequente migração de nanopartículas é caracterizada pelo gradiente de concentração gerado no estado estacionário do fluxo de partículas, definindo o coeficiente Soret ST. O objetivo deste trabalho é verificar a variação de ST com o tamanho médio d0 das nanopartículas de ferrofluidos eletrostaticamente carregados em solução ácida. A dependência de ST com d0 surge do coeficiente de difusão de massa, explicando a dependência linear encontrada experimentalmente. Nestes materiais, a migração de nanopartículas ocorre para a região quente da amostra. Mostramos que este comportamento ocorre pela diminuição da carga superficial da nanopartícula na parte mais quente da amostra, diminuindo a repulsão eletrostática. A influência dos íons presentes na solução é obtida através da mudança na amplitude de ST com a diminuição do pH na amostra. Uma previsão teórica, baseada na eletrostática da dupla camada elétrica, concorda com estes dados considerando alta blindagem eletrostática das nanopartículas e a diminuição da carga superficial com o aumento da temperatura. / This dissertation presents an experimental study about the mass transport of magnetic nanoparticles induced by a temperature gradient, called thermodiffusion. The Z-scan technique is used to generate the temperature increasing in the region irradiated by the Gaussian laser beam and create the temperature gradient. The following nanoparticles migration is characterized by the concentration gradient of the stationary particles flux, defining the Soret coefficient ST. The aim of this work is to obtain the variation of ST with the average size d0 of electrostatically charged ferrofluid nanoparticles in acidic solution. The ST dependence with d0 comes from the mass diffusion coefficient, in agreement with the linear dependence found experimentally. In these materials the nanoparticles migration occurs to the hot region of the sample. We show that this behavior is owing to the reduction of the nanoparticle´s surface charge in the hottest region of the sample, decreasing electrostatic repulsion. The influence of the ions from solution is obtained through the change in ST amplitude with reduction of the samples pH. A theoretical prediction, based in the electrostatic of the double layer, agrees with this data considering a high screening of the nanoparticles and decreasing of the surface charge with temperature increasing.
4

Investigação da relação entre coeficientes termodifusivos em colóides magnéticos a base de água / Investigation of the relation between thermodiffusive coefficients in water-based magnetic colloids

André Luiz Sehnem 29 June 2018 (has links)
O presente trabalho investiga o fenômeno termodifusivo em dispersões coloidais de nanopartículas magnéticas de óxidos de ferro em água (ferrofluidos), com a formação de dupla camada elétrica em torno das partículas. A estabilidade da partícula em solução é controlada pela concentração de íons. Ao estabelecer uma diferença de temperatura através da amostra líquida, ocorre o efeito de termodifusão (efeito Soret) das partículas e de íons em solução. Este efeito é o movimento das partículas para o lado frio ou quente do gradiente de temperatura. O acúmulo para um dos lados do gradiente de temperatura depende das características da solução. O efeito Soret de ferrofluidos em soluções ácidas e básicas é descrito a partir da determinação experimental das grandezas físicas envolvidas na difusão das partículas. O coeficiente Soret ST e o coeficiente de difusão são determinados em experimentos ópticos de lente de matéria, utilizando o aparato experimental de Varredura-Z, e de espalhamento Rayleigh forçado para termodifusão. Para investigar a resposta dos íons ao gradiente de temperatura, são realizadas medidas do potencial termoelétrico em uma célula termoelétrica, gerado a partir da difusão das cargas dispersas no líquido. O potencial superficial das partículas também é investigado experimentalmente, para descrever a interação das partículas com o campo termoelétrico. Os experimentos são realizados em função da temperatura da amostra e usados para descrever os resultados ST(T) das partículas, a partir de equações dos principais modelos teóricos. Os resultados mostram as diferenças e semelhanças do efeito Soret das nanopartículas em soluções ácidas e básicas, e que em ambos os casos a termodifusão de nanopartículas reflete o comportamento termodifusivo dos íons dispersos em solução. / This work investigates the thermal diffusion phenomena in colloidal dispersions of iron oxide magnetic nanoparticles dispersed in water (ferrofluid). The particles are stable in water due to electrical double layer around the particles, controlled by the ionic concentration. A temperature gradient throughout the ferrofluid sample causes the thermodiffusion (Soret effect) of dispersed particles and ions. This effect is the movement of particles to the cold or hot side of the temperature gradient. The particles migration for a given side depends on the characteristics of the sample. The Soret effect of ferrofluids in acidic and basic solutions is described by the experimental measurements of the physical parameters associated to particles diffusion. The Soret coefficient ST and the mass diffusion coefficient are measured in the matter lens experiment in the Z-scan experimental setup, and by the use of Thermal Diffusion Forced Rayleigh Scattering experiments. Concerning the ionic response to the temperature gradient the thermoelectric field generated by charges diffusion is measured in a thermoelectric cell. The surface potential of the particles is also measured to describe its interactions with the thermoelectric field. These experiments are made as function of the temperature of the sample and the results are applied to describe the ST(T) of particles by the use of equations from the main theoretical models. The results show differences and resemblances of the Soret effect in acidic and basic nanoparticles solutions. In both kind of solutions the thermodiffusion of nanoparticles is mainly ruled by the thermodiffusion of ions dispersed in solution.
5

Investigação da influência do tamanho de partícula na termodifusão de colóides magnéticos positivamente carregados / Investigation of the particle size influence in the thermodiffusion of positively charged magnetic colloids

André Luiz Sehnem 09 May 2014 (has links)
Esta dissertação apresenta um estudo experimental sobre o transporte de massa de nanopartículas magnéticas induzido por um gradiente de temperatura, denominado termodifusão. A técnica de Varredura-Z é utilizada para gerar o aumento de temperatura na região irradiada pelo laser Gaussiano e formar o gradiente de temperatura. A sequente migração de nanopartículas é caracterizada pelo gradiente de concentração gerado no estado estacionário do fluxo de partículas, definindo o coeficiente Soret ST. O objetivo deste trabalho é verificar a variação de ST com o tamanho médio d0 das nanopartículas de ferrofluidos eletrostaticamente carregados em solução ácida. A dependência de ST com d0 surge do coeficiente de difusão de massa, explicando a dependência linear encontrada experimentalmente. Nestes materiais, a migração de nanopartículas ocorre para a região quente da amostra. Mostramos que este comportamento ocorre pela diminuição da carga superficial da nanopartícula na parte mais quente da amostra, diminuindo a repulsão eletrostática. A influência dos íons presentes na solução é obtida através da mudança na amplitude de ST com a diminuição do pH na amostra. Uma previsão teórica, baseada na eletrostática da dupla camada elétrica, concorda com estes dados considerando alta blindagem eletrostática das nanopartículas e a diminuição da carga superficial com o aumento da temperatura. / This dissertation presents an experimental study about the mass transport of magnetic nanoparticles induced by a temperature gradient, called thermodiffusion. The Z-scan technique is used to generate the temperature increasing in the region irradiated by the Gaussian laser beam and create the temperature gradient. The following nanoparticles migration is characterized by the concentration gradient of the stationary particles flux, defining the Soret coefficient ST. The aim of this work is to obtain the variation of ST with the average size d0 of electrostatically charged ferrofluid nanoparticles in acidic solution. The ST dependence with d0 comes from the mass diffusion coefficient, in agreement with the linear dependence found experimentally. In these materials the nanoparticles migration occurs to the hot region of the sample. We show that this behavior is owing to the reduction of the nanoparticle´s surface charge in the hottest region of the sample, decreasing electrostatic repulsion. The influence of the ions from solution is obtained through the change in ST amplitude with reduction of the samples pH. A theoretical prediction, based in the electrostatic of the double layer, agrees with this data considering a high screening of the nanoparticles and decreasing of the surface charge with temperature increasing.
6

Vetorização termoinduzida de nanopartículas magnéticas biocompatíveis: uma aplicação no recobrimento de Stents nus por via líquida / Thermally induced vectorization of Biocompatible Magnetic Nanoparticles: an application to cover Bare Metal Stents by Dip Coating

RODRIGUES, Harley Fernandes 23 August 2011 (has links)
Made available in DSpace on 2014-07-29T15:07:09Z (GMT). No. of bitstreams: 1 Dissertacao Harley Fernandes Rodrigues.pdf: 5566711 bytes, checksum: 484423a034c8d6a3a3f34650b5036af1 (MD5) Previous issue date: 2011-08-23 / In this work we developed a Dip Coating method that could control the temperature gradient between a substrate and the material that one wants to adsorb at its surface. In particular, the adsorption of biocompatible magnetic nanoparticles at the surface of bare metal Stents, under different experimental conditions, was investigated. The magnetic nanoparticles consisted of magnetite coated with tripoliphosphate (mean diameter 7.68 nm and standard deviation 1.88 nm) dispersed in water at physiological conditions, while the Stent was a CoCr based-one (Cronus stent from Scitech with 16 mm length). Nine series of experiments were performed where it was controlled parameters as: time of adsorption, stent temperature and magnetic fluid temperature. The stents coated with nanoparticles were magnetically characterized using a vibrating sample magnetometer (VSM), which allowed us to determine the number of nanoparticles at the stent surface. The increase of the magnetic moment of the stent with the increase of the adsorption time was theoretically modeled, with an excellent experimental agreement, as a transient diffusion process of nanoparticles at the interface stent-magnetic fluid, which clearly indicates an important diffusive contribution. Strong evidences of thermal diffusion (Soret effect), i.e. nanoparticle diffusion due to temperature gradient between the stent and the magnetic fluid, were shown, suggesting the possibility of nanostructures vectorization through thermal induced mechanisms. The spatial distribution of nanoparticles at the surface of the stent was investigated by Scanning Electron Microscopy (SEM) and X-ray Spectroscopy by Dispersive Energy (EDS). Measurements of the compositional mapping and images of SEM revealed that the nanoparticles are not homogeneously distributed, being concentrated at the edges of the stents for the experimental conditions investigated in this work. As the VSM data, the EDS of the stents revealed an increase of the quantity of adsorbed magnetic nanoparticles at the surface with the increase of the adsorption time. The same theoretical model, know considering the amount of 26Fe in the chemical composition of the coated stent, was able to explain the experimental data. Finally, a comparison was made, using the compositional mapping study of the coated stents, between the Dip Coating and the Spray technique. The later showed a more homogeneous distribution of nanoparticles at the surface of the stent, suggesting that this technique is more adequate on the development of a biomedical nanoproduct for clinical tests. / Neste trabalho foi desenvolvida uma técnica de Dip Coating (deposição por via líquida) que permite controlar o gradiente de temperatura entre o substrato e o material que se quer depositar em sua superfície. Em particular, foi investigado o efeito de adsorção de nanopartículas magnéticas biocompatíveis na superfície de Stents nus em diversas condições experimentais. As nanopartículas magnéticas consistiam de magnetita recobertas com tripolifosfato (diâmetro médio ) dispersas em água em pH fisiológico, enquanto as endopróteses eram Stents de CoCr (Stent Cronus da empresa Scitech com 16mm). Ao todo foram realizadas 9 séries de experimentos onde controlou-se parâmetros como: tempo de adsorção, temperatura do Stent e temperatura do fluido magnético. Os Stents recobertos com nanopartículas foram então caracterizados magneticamente pela técnica de magnetometria de amostra vibrante (VSM Vibrating Sample Magnetometer ), que permitiu determinar o número de nanopartículas magnéticas adsorvidas na superfície da endoprótese. O aumento do momento magnético do Stent com o aumento do tempo de adsorção foi modelado teoricamente, com grande concordância experimental, como um processo de difusão transiente de nanopartículas na interface Stent-fluido magnético, evidenciando a forte contribuição difusiva. Fortes evidências de efeitos termodifusivos (efeito de Soret), ou seja mecanismos de difusão mássica de nanopartículas devido ao gradiente de temperatura entre Stent e FM, foram apresentados, sugerindo a possibilidade de vetorização de nanoestruturas por meio de fenômenos termoinduzidos. A distribuição das nanopartículas na superfície dos Stents foi investigada por medidas de Microscopia Eletrônica de Varredura (MEV) e espectroscopia de raios-X por energia dispersiva (EDS). As medidas de mapeamento composicional e imagens de MEV revelaram que as nanopartículas estão distribuídas de maneira não homogênea, estando concentradas nas bordas dos Stents para as condições experimentais utilizadas neste trabalho. Assim como os dados de MAV, o EDS dos Stents recobertos revelou um aumento da quantidade de nanopartículas magnéticas adsorvidas em sua superfície com o aumento do tempo de adsorção. O mesmo modelo teórico, agora considerando o percentual de 26Fe na composição química do revestimento, foi capaz de explicar os dados experimentais. Finalmente, foi feita uma comparação, por meio do mapeamento composicional de Stents recobertos, entre as técnicas de Dip Coating e Spray. Esta última apresentou uma distribuição de nanopartículas mais homogênea na superfície da endoprótese, sugerindo que possa ser mais adequada para a confecção de um nanoproduto médico voltado a testes clínicos.

Page generated in 0.0515 seconds