• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

High-Resolution Studies of Silicide-films for Nano IC-Components

Jarmar, Tobias January 2005 (has links)
The function of titanium- and nickel-silicides is to lower the series resistance and contact resistivity in gate, source and drain contacts of an integrated circuit transistor. With decreasing dimensions, the low resistivity C54 TiSi2 is not formed and stays in its high resistivity phase C49. It was found that a layer of niobium interposed between titanium and silicon, which is supposed to promote the C54 phase, led to the formation of the high resistivity C40 (Ti,Nb)Si2 in both small and large contacts. Increased interest in Si1-xGex layers led to the inclusion of the Ni-Si-Ge system in this project. The interaction between nickel and poly-Si0.42Ge0.58 was found to be different from nickel and poly-silicon in the meaning of the phases formed during high temperature annealing. High-resistivity NiSi2 was formed at 750°C, but nickel and Si0.42Ge0.58 formed no disilicide. A massive out-diffusion of germanium from the NiSi1-uGeu resulted in agglomeration at lower temperatures than for NiSi. This was ascribed to the larger enthalpy of formation for nickel reacting with silicon than with germanium. Ternary phase diagrams, with and without the disilicide phase, were calculated. According to the tie lines, NiSi1-uGeu will be in thermodynamic equilibrium with Si1-xGex when u is smaller than x. This was confirmed experimentally, where a balanced germanium concentration in NiSi1-uGeu and Si1-xGex, stabilized the germanosilicide. When nickel interacted with strained and relaxed silicon-germanium it was established that a strained substrate led to a morphologically unstable NiSi1-uGeu. The germanosilicide was highly textured on both (001) and (111) substrates. The texturing was explained by the absence of Ni(SiGe)2 which forced NiSiGe to reorient so as not to resemble a digermanosilicide at the film/substrate interface. NiSi0.82Ge0.18 formed on p+-Si0.82Ge0.18 in CBKs grew laterally under the SiO2, defining the contact hole. The contact resistivity extracted by 3D modelling was 5×10-8 Ωcm2.
12

Co-crystal screening of poorly water-soluble active pharmaceutical ingredients. Application of hot stage microscopy on curcumin-nicotinamide system and construction of ternary phase diagram of fenbufen-nicotinamide-water co-crystal system.

Chan, Hin Chung Stephen January 2009 (has links)
Curcumin is the major phenolic diarylheptane derivative in Curcuma longa and has been reported to possess pharmacological activities. Unfortunately this compound suffers from poor bioavailability and rapid neutral-alkaline degradation. Co-crystal of curcumin is one option under exploration, motivated by the fact that a number of active pharmaceutical ingredient (API) co-crystals with improved dissolution have recently been synthesized. Hence, co-crystallization technique highlights an alternative means to improve the performance of curcumin. Within our work evidences for a co-crystal was ascertained from DSC, Kofler hot stage screening and PXRD, and all confirmed a new crystal phase could have been formed between curcumin and a co-crystallizing agent, nicotinamide. We report that re-crystallization step essentially aids the purification of commercial curcumin, a herbal based actives. Otherwise the prevalence of a new crystal phase in solvent-mediated co-crystallization will be significantly reduced. Besides, phase diagram is an effective tool for the study of solubility behaviours in co-crystal system. In order to acquire related techniques, fenbufen, a poorly water soluble drug, was selected. The result showed the huge difference in solubility between fenbufen and nicotinamide lead to difficulty in the construction of phase diagram.
13

Verhalten funktionalisierter Nanopartikel an Grenzschichten mit Polymerbürsten

Bunk, Juliane K. G. 22 October 2012 (has links) (PDF)
Die vorliegende Arbeit liefert einen Beitrag zum Verständnis der komplexen Wechselwirkungen zwischen Nanopartikeln und Polymeren in dünnen Schichtsystemen. Dazu wurden in einem geeignetem Modellsystem drei verschiedene Einflussparameter auf die Nanopartikelverteilung im Polymer und zwischen einer hydrophilen und einer hydrophoben Grenzfläche analysiert. Für eine erste Abschätzung der Verträglichkeit der einzelnen Komponenten wurden Wechselwirkungsparameter, binäre und ternäre Phasendiagramme ermittelt. Die experimentelle Charakterisierung der Nanopartikelverteilung erfolgte mittels Rasterkraftmikroskopie, Rasterelektronenmikroskopie und Transmissionselektronenmikroskopie. Die erhaltenen Ergebnisse wurden mit denen der theoretischen Vorbetrachtungen verglichen um herauszufinden, ob Vorhersagen zur Nanopartikelverteilung in einem Polymer möglich sind. In dieser Arbeit konnte gezeigt werden, dass die Nanopartikelverteilung im Polymer mit den untersuchten Parametern gezielt beeinflusst werden kann.
14

Na-Sb-Sn-based negative electrode materials for room temperature sodium cells for stationary applications

Martine, Milena 27 June 2017 (has links) (PDF)
The implementation of energy storage systems in the current electrical grid will increase the grid's reliability and e ciency. Room temperature sodium batteries are seen as potential technology, especially to assist renewable energy generation sources. Currently, suggested negative electrode materials, however, are still not satisfactory for practical use in terms of fabrication costs, gravimetric /volumetric energy densities, cyclability, and irreversible capacity losses occur at the rst cycle. The literature describes various strategies that enhance the specific capacity and/or the cyclability of negative electrode materials but all involve increasing the fabrication costs due to the chosen synthesis or the complexity of the electrode's design. Furthermore, strategies, that reduce the irreversible capacity loss at first cycle, are not discussed. In this present experimental research work, presodiating bulk metallic negative electrode materials prior to cycling, prepared via a simple, cheap and easy-to-scaleup synthesis route, is introduced as a new strategy to improve the cyclability and to effectively reduce the first cycle irreversible capacity loss. Electrochemical and structural experiments were carried out to investigate sodiumtin-antimony powders. Presodiating mechanically bulk Sn-Sb negative electrode materials e ectively reduces the irreversible capacity loss at first cycle and enhances the specific capacity when compared to the non-presodiated powder, while the proper choice of electrode composite and electrolyte formulation improves the cycle life of the electrodes. The enhancement of the electrochemical properties of the presodiated NaSnSb powder, composed of the ternary phase Na5Sb3Sn and an unknown ternary phase crystallising in a hexagonal setting P6, is associated with the stabilisation of the SnSb as desodiation product. Presodiating bulk SnSb negative electrode material is a viable strategy to reduce the first cycle irreversible capacity loss, alleviating the volume changes. With an optimised system, this approach may be extended to other negative electrode materials, reducing the fabrication costs of high capacity negative electrode materials for room temperature sodium batteries. Presodiated NaSnSb negative electrode material may be combined with non-sodiated positive electrode material, such as sulphur to develop competitive room temperature sodium-sulphur batteries. / Die Implementierung von Energiespeichersystemen im bereits bestehenden Stromnetz ist eine der Lösungen, um die Zuverlässigkeit und die Effizienz des Netzes zu nutzen. Raumtemperatur Natrium-Batterien gelten als erfolgsversprechende Technologie insbesondere zur Unterstützung erneuerbarer Energieerzeugungsquellen. Jedoch sind die naheliegenden negativen Elektrodenmaterialien für eine praktische Anwendung hinsichtlich Herstellungskosten, gravimetrischer oder volumetrischer Energiedichte, Zyklenfestigkeit und irreversiblen Kapazitätsverlusten im ersten Zyklus noch nicht zufriedenstellend. Die Literatur beschreibt verschiedene Strategien, die die spezifische Kapazität und / oder die Zyklenfestigkeit von negativen Elektrodenmaterialien verbessern. Diese führen jedoch alle zu einer Erhöhung der Herstellungskosten aufgrund der gewählten Synthese oder des Designs der komplexierten Elektrode. Darüber hinaus werden Strategien zur Reduzierung des irreversiblen Kapazitätsverlusts im ersten Zyklus nicht erörtert. Diese experimentelle Forschungsarbeit präsentiert mit Natrium angereicherte metallische negative Elektrodenmaterialien vor der Wechselbeanspruchung/dem periodischen Durchlaufen, die durch einen schlichten, billigen und einfach zu skalierenden Syntheseweg hergestellt wurden, als eine neue Strategie zur Verbesserung der Zyklenfestigkeit und zur wirksamen Verringerung des irreversiblen Kapazitätsverlusts im ersten Zyklus. Elektrochemische und strukturelle Experimente wurden durchgeführt, um mit Natrium angereichertes Zinn-Antimon-Pulver zu untersuchen. Die mechanischen mit Natrium angereichertes Sn-Sb-negativen Elektrodenmaterialien verringert effektiv den irreversiblen Kapazitätsverlust im ersten Zyklus und erhöht die spezische Kapazität im Vergleich zu dem ohne Natrium angereicherte Pulver, während die richtige Wahl der Elektrodenzusammensetzung und der Elektrolytformulierung die Lebenszyklus der Elektroden verbessert. Die Verbesserung der elektrochemischen Eigenschaften des mit Natrium angereicherten NaSnSb-Pulvers, bestehend aus der ternären Phase Na5Sb3Sn und einer unbekannten ternären Phase, die in einer hexagonalen Aufbau P6 kristallisiert, ist mit der Stabilisierung des Enddesodiationsproduktes beim periodischen Zyklus verbunden, wobei das intermetallische SnSb nach Rekristallisation vorliegt. Mit Natrium angereicherte SnSb negativen Elektrodenmaterialien sind eine tragfähige Strategie zur Verringerung des irreversiblen Kapazitätsverlustes im ersten Zyklus, die Volumenänderungen abschwächen. Mit einem optimierten System kann dieser Ansatz auf andere negative Elektrodenmaterialien erweitert werden um die Herstellungskosten von negativen Elektrodenmaterialien mit hoher Kapazität für Raumtemperatur-Natrium-Batterien zu verringern. Mit Natrium angereichertes NaSnSb-negatives Elektrodenmaterial kann mit nicht mit Natrium versetztem positivem Elektrodenmaterial wie Schwefel kombiniert werden, um realisierbare Raumtemperatur Natrium-Schwefel-Batterien zu entwickeln.
15

Strategic pre-clinical development of Riminophenazines as resistance circumventing anticancer agents

Koot, Dwayne Jonathan 26 April 2013 (has links)
Cancer is responsible for upward of 13% of human deaths. Contemporary chemotherapy of disseminated cancer is often thwarted by dose limiting systemic toxicity and by multi-drug resistance (MDR). Riminophenazines are a novel class of potential anticancer agents that possess a potent multi-mechanistic antineoplastic action. Apart from their broad action against intrinsic, non-classical resistance, Riminophenazines inhibit the action of Pgp and hypothetically all ABC transporters demonstrating their great utility against classical MDR. Considering that combination chemotherapy is the norm, the vision directing R&D efforts was that Riminophenazines could be used with benefit within many standard chemotherapeutic regimes. The strategic intent of this project was to attain improved therapeutic benefit for patients through gains in both pharmaco dynamic and pharmacokinetic specificity for cancer cells over what is currently available. Tactically, this was driven through the use of synergistic Fixed-Ratio Drug Combinations (FRDC) encapsulated within tumour-targeting Nanoparticulate Drug Delivery Systems (NDDS). Long-term aims of this R&D project were to: 1) Screen FRDC of clofazimine (B663) and the lead derivative (B4125) with etoposide, paclitaxel and vinblastine for synergistic drug interactions in vitro. 2) Design, assemble and characterize a novel nanoparticulate, synergistic, anticancer co-formulation. 3) Evaluate the in vivo safety and efficacy of the developed product/s in accordance with international regulatory guidelines. Using the median effect and combination index equations, impressive in vitro synergistic drug interactions (CI<1) were shown for various FRDC of the three standard chemotherapeutics tested (etoposide, paclitaxel and vinblastine) in combination with either B663 or B4125 against MDR neoplastic cell cultures. Considering in vitro results and with the view to advance quickly to clinical studies, the already approved clofazimine (B663) was elected as the combination partner for paclitaxel (PTX). Considering the potency and wide action of PTX, a novel coformulation (designed to circumvent drug resistance) has the potential to greatly impact upon virtually all cancer types, particularly if selectively delivered through innovative delivery systems and loco-regional administration. A passively tumour targeting, micellular NDDS system called Riminocelles™ that encapsulates a synergistic FRDC of B663 and PTX has been designed, assembled using thin film hydration methods and characterized in terms of drug loading, particle size, zeta potential, CMC and drug retention under sink conditions. An acute toxicity and a GLP repeat dose toxicity study confirmed Riminocelles to be well tolerated and safe at clinically relevant dosages whilst Taxol® (QDx7) produced statistically significant (P<0.05) weight loss within 14 days. The same study demonstrated statistically significant (P<0.05) tumour growth delays superior to that of Taxol at an equivalent PTX dosage of 10 mg/kg. Importantly, all components (amphiphiles and drugs) used in assembly of Riminocelles are already individually approved for medicinal use - this promotes accelerated development towards advanced clinical trials and successful registration. Although these results are very promising (outperforming Taxol), this system was however found in a pharmacokinetic study to suffer from in vivo thermodynamic instability due to the high concentration (abundance) of albumin present in plasma. For this reason, in vivo longevity within circulation, permitting passive tumour accumulation was not fully realized. A second NDDS called the RiminoPLUS™ imaging system was additionally developed. This lipopolymeric nanoemulsion system has successfully entrapped Lipiodol® Ultra fluid (an oil based contrast agent) within the hydrophobic core of a monodisperse particle population with a size of roughly 100 nm and a stability of one week. This formulation is therefore thought capable of CT imaging of tumour tissue and drug targeting after either intravenous or loco-regional injection. In vivo proof of the imaging concept is warranted. The results of this study serve to highlight the great potential of in vitro optimized synergistic FRDC against drug resistant cancers. Lipopolymeric micelles are an effective way to formulate multiple hydrophobic drugs for intravenous administration and present a means by which cancer can be readily targeted; provided that the delivery system possess the prerequisite in vivo stability and surface attributes. Further experiments exploring synergistic drug and biological combinations as well as “intelligent” NDDS actively guided through specific molecular recognition are called for. / Thesis (PhD)--University of Pretoria, 2012. / Pharmacology / unrestricted
16

Na-Sb-Sn-based negative electrode materials for room temperature sodium cells for stationary applications

Martine, Milena 14 June 2017 (has links)
The implementation of energy storage systems in the current electrical grid will increase the grid's reliability and e ciency. Room temperature sodium batteries are seen as potential technology, especially to assist renewable energy generation sources. Currently, suggested negative electrode materials, however, are still not satisfactory for practical use in terms of fabrication costs, gravimetric /volumetric energy densities, cyclability, and irreversible capacity losses occur at the rst cycle. The literature describes various strategies that enhance the specific capacity and/or the cyclability of negative electrode materials but all involve increasing the fabrication costs due to the chosen synthesis or the complexity of the electrode's design. Furthermore, strategies, that reduce the irreversible capacity loss at first cycle, are not discussed. In this present experimental research work, presodiating bulk metallic negative electrode materials prior to cycling, prepared via a simple, cheap and easy-to-scaleup synthesis route, is introduced as a new strategy to improve the cyclability and to effectively reduce the first cycle irreversible capacity loss. Electrochemical and structural experiments were carried out to investigate sodiumtin-antimony powders. Presodiating mechanically bulk Sn-Sb negative electrode materials e ectively reduces the irreversible capacity loss at first cycle and enhances the specific capacity when compared to the non-presodiated powder, while the proper choice of electrode composite and electrolyte formulation improves the cycle life of the electrodes. The enhancement of the electrochemical properties of the presodiated NaSnSb powder, composed of the ternary phase Na5Sb3Sn and an unknown ternary phase crystallising in a hexagonal setting P6, is associated with the stabilisation of the SnSb as desodiation product. Presodiating bulk SnSb negative electrode material is a viable strategy to reduce the first cycle irreversible capacity loss, alleviating the volume changes. With an optimised system, this approach may be extended to other negative electrode materials, reducing the fabrication costs of high capacity negative electrode materials for room temperature sodium batteries. Presodiated NaSnSb negative electrode material may be combined with non-sodiated positive electrode material, such as sulphur to develop competitive room temperature sodium-sulphur batteries. / Die Implementierung von Energiespeichersystemen im bereits bestehenden Stromnetz ist eine der Lösungen, um die Zuverlässigkeit und die Effizienz des Netzes zu nutzen. Raumtemperatur Natrium-Batterien gelten als erfolgsversprechende Technologie insbesondere zur Unterstützung erneuerbarer Energieerzeugungsquellen. Jedoch sind die naheliegenden negativen Elektrodenmaterialien für eine praktische Anwendung hinsichtlich Herstellungskosten, gravimetrischer oder volumetrischer Energiedichte, Zyklenfestigkeit und irreversiblen Kapazitätsverlusten im ersten Zyklus noch nicht zufriedenstellend. Die Literatur beschreibt verschiedene Strategien, die die spezifische Kapazität und / oder die Zyklenfestigkeit von negativen Elektrodenmaterialien verbessern. Diese führen jedoch alle zu einer Erhöhung der Herstellungskosten aufgrund der gewählten Synthese oder des Designs der komplexierten Elektrode. Darüber hinaus werden Strategien zur Reduzierung des irreversiblen Kapazitätsverlusts im ersten Zyklus nicht erörtert. Diese experimentelle Forschungsarbeit präsentiert mit Natrium angereicherte metallische negative Elektrodenmaterialien vor der Wechselbeanspruchung/dem periodischen Durchlaufen, die durch einen schlichten, billigen und einfach zu skalierenden Syntheseweg hergestellt wurden, als eine neue Strategie zur Verbesserung der Zyklenfestigkeit und zur wirksamen Verringerung des irreversiblen Kapazitätsverlusts im ersten Zyklus. Elektrochemische und strukturelle Experimente wurden durchgeführt, um mit Natrium angereichertes Zinn-Antimon-Pulver zu untersuchen. Die mechanischen mit Natrium angereichertes Sn-Sb-negativen Elektrodenmaterialien verringert effektiv den irreversiblen Kapazitätsverlust im ersten Zyklus und erhöht die spezische Kapazität im Vergleich zu dem ohne Natrium angereicherte Pulver, während die richtige Wahl der Elektrodenzusammensetzung und der Elektrolytformulierung die Lebenszyklus der Elektroden verbessert. Die Verbesserung der elektrochemischen Eigenschaften des mit Natrium angereicherten NaSnSb-Pulvers, bestehend aus der ternären Phase Na5Sb3Sn und einer unbekannten ternären Phase, die in einer hexagonalen Aufbau P6 kristallisiert, ist mit der Stabilisierung des Enddesodiationsproduktes beim periodischen Zyklus verbunden, wobei das intermetallische SnSb nach Rekristallisation vorliegt. Mit Natrium angereicherte SnSb negativen Elektrodenmaterialien sind eine tragfähige Strategie zur Verringerung des irreversiblen Kapazitätsverlustes im ersten Zyklus, die Volumenänderungen abschwächen. Mit einem optimierten System kann dieser Ansatz auf andere negative Elektrodenmaterialien erweitert werden um die Herstellungskosten von negativen Elektrodenmaterialien mit hoher Kapazität für Raumtemperatur-Natrium-Batterien zu verringern. Mit Natrium angereichertes NaSnSb-negatives Elektrodenmaterial kann mit nicht mit Natrium versetztem positivem Elektrodenmaterial wie Schwefel kombiniert werden, um realisierbare Raumtemperatur Natrium-Schwefel-Batterien zu entwickeln.
17

Verhalten funktionalisierter Nanopartikel an Grenzschichten mit Polymerbürsten

Bunk, Juliane K. G. 16 October 2012 (has links)
Die vorliegende Arbeit liefert einen Beitrag zum Verständnis der komplexen Wechselwirkungen zwischen Nanopartikeln und Polymeren in dünnen Schichtsystemen. Dazu wurden in einem geeignetem Modellsystem drei verschiedene Einflussparameter auf die Nanopartikelverteilung im Polymer und zwischen einer hydrophilen und einer hydrophoben Grenzfläche analysiert. Für eine erste Abschätzung der Verträglichkeit der einzelnen Komponenten wurden Wechselwirkungsparameter, binäre und ternäre Phasendiagramme ermittelt. Die experimentelle Charakterisierung der Nanopartikelverteilung erfolgte mittels Rasterkraftmikroskopie, Rasterelektronenmikroskopie und Transmissionselektronenmikroskopie. Die erhaltenen Ergebnisse wurden mit denen der theoretischen Vorbetrachtungen verglichen um herauszufinden, ob Vorhersagen zur Nanopartikelverteilung in einem Polymer möglich sind. In dieser Arbeit konnte gezeigt werden, dass die Nanopartikelverteilung im Polymer mit den untersuchten Parametern gezielt beeinflusst werden kann.
18

Investigations intothe crystallization of butyl paraben

Yang, Huaiyu January 2011 (has links)
In thisproject, solubility of butyl paraben in 7 puresolvents and 5 ethanol aqueous solvents has been determined at from 1 ℃to 50 ℃. Thermodynamic properties of butyl paraben have been measured by DifferentialScanning Calorimetey. Relationship between molar solubility of butyl paraben in6 pure solvents and thermodynamic properties has been analyzed. Thisrelationship suggests a method of estimating activity of solute at equilibrium fromcombining solubility data with DSC measurements. Then, activity coefficient accordingto the solubility at different temperatures can be estimated. Duringthe solubility measurements in ethanol aqueous solvents, it is found that whenbutyl paraben is added into aqueous solutions with certain proportion ethanol,solutions separates into two immiscible liquid layers in equilibrium. Water andethanol are primary in top layer, while the butyl paraben is primary in bottomlayer, but the solution turns to cloudy when two layers of solution are mixed. Theaim of this work was to present the phase behaviour of liquid-liquid-phaseseparation for (butyl paraben + water + ethanol) ternary system from 1 ℃ to 50 ℃at atmospheric pressure. Thearea of liquid-liquid-phase separation region in the ternary phase diagram increaseswith the increasing temperature from 10 ℃to 50 ℃. In thisstudy, more than several hundreds of nucleation experiments of butyl paraben havebeen investigated in ethyl acetate, propanol, acetone and 90% ethanol aqueoussolution. Induction time of butyl paraben has been determined at 3 differentsupersaturation levels in these solvents, respectively. Free energy ofnucleation, solid-liquid interfacial energy, and nuclei critical radius havebeen determined according to the classical nucleation theory. Statistical analysis ofinduction time reveals that the nucleation is a stochastic process with widevariation even at the same experiment condition. Butyl paraben nucleates most difficultlyin 90 % ethanol than in other 3 solvents, and most easily in acetone. The interfacialenergy of butyl paraben in these solvents tends to increasing with decreasemole fraction solubility in these solvents. Coolingcrystallizations with different proportions of butyl paraben, water and ethanolhave been observed by Focused Beam Reflectance Method, Parallel VirtualMachine, and On-line Infrared. The FBRM, IR curves and the PVM photos show someof the solutions appeared liquid-liquid phase separation during coolingcrystallization process. The results suggest that if solutions went throughliquid-liquid phase separation region during the cooling crystallizationprocess the distribution of crystals crystal was poor. Droplets from solutions withsame proportion butyl paraben but different proportions of water and ethanolhave been observed under microscope. Induction time of the droplets has been determinedunder the room temperature. Droplets from top layer or bottom layer of solutionwith liquid-liquid phase separation on small glass or plastic plates were alsoobserved under microscope. The microscope photos show that the opposite flows ofcloudy solution on the glass and the plastic plate before nucleation. The resultsof the cooling and evaporation crystallization experiments both revealed thatnucleation would be prevented by the liquid-liquid phase separation. / QC 20110630
19

Crystallization of Parabens : Thermodynamics, Nucleation and Processing

Huaiyu, Yang January 2013 (has links)
In this work, the solubility of butyl paraben in 7 pure solvents and in 5 different ethanol-water mixtures has been determined from 1 ˚C to 50 ˚C. The solubility of ethyl paraben and propyl paraben in various solvents has been determined at 10 ˚C. The molar solubility of butyl paraben in pure solvents and its thermodynamic properties, measured by Differential Scanning Calorimetry, have been used to estimate the activity of the pure solid phase, and solution activity coefficients. More than 5000 nucleation experiments of ethyl paraben, propyl paraben and butyl paraben in ethyl acetate, acetone, methanol, ethanol, propanol and 70%, 90% ethanol aqueous solution have been performed. The induction time of each paraben has been determined at three different supersaturation levels in various solvents. The wide variation in induction time reveals the stochastic nature of nucleation. The solid-liquid interfacial energy, free energy of nucleation, nuclei critical radius and pre-exponential factor of parabens in these solvents have been determined according to the classical nucleation theory, and different methods of evaluation are compared. The interfacial energy of parabens in these solvents tends to increase with decreasing mole fraction solubility but the correlation is not very strong. The influence of solvent on nucleation of each paraben and nucleation behavior of parabens in each solvent is discussed. There is a trend in the data that the higher the boiling point of the solvent and the higher the melting point of the solute, the more difficult is the nucleation. This observation is paralleled by the fact that a metastable polymorph has a lower interfacial energy than the stable form, and that a solid compound with a higher melting point appears to have a higher solid-melt and solid-aqueous solution interfacial energy. It has been found that when a paraben is added to aqueous solutions with a certain proportion of ethanol, the solution separates into two immiscible liquid phases in equilibrium. The top layer is water-rich and the bottom layer is paraben-rich. The area in the ternary phase diagram of the liquid-liquid-phase separation region increases with increasing temperature. The area of the liquid-liquid-phase separation region decreases from butyl paraben, propyl paraben to ethyl paraben at the constant temperature. Cooling crystallization of solutions of different proportions of butyl paraben, water and ethanol have been carried out and recorded using the Focused Beam Reflectance Method, Particle Vision and Measurement, and in-situ Infrared Spectroscopy. The FBRM and IR curves and the PVM photos track the appearance of liquid-liquid phase separation and crystallization. The results suggest that the liquid-liquid phase separation has a negative influence on the crystal size distribution. The work illustrates how Process Analytical Technology (PAT) can be used to increase the understanding of complex crystallizations. By cooling crystallization of butyl paraben under conditions of liquid-liquid-phase separation, crystals consisting of a porous layer in between two solid layers have been produced. The outer layers are transparent and compact while the middle layer is full of pores. The thickness of the porous layer can reach more than half of the whole crystal. These sandwich crystals contain only one polymorph as determined by Confocal Raman Microscopy and single crystal X-Ray Diffraction. However, the middle layer material melts at lower temperature than outer layer material. / <p>QC 20130515</p> / investigate nucleation and crystallization of drug-like organic molecules

Page generated in 0.1585 seconds