Spelling suggestions: "subject:"test range"" "subject:"test tange""
1 |
BRINGING RANGES CLOSER TOGETHER – NEW OPPORTUNITIES IN RANGE INTERCONNECTIVITYEslinger, Brian, Young, Tom 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Test and training ranges have sought the holy grail of large-scale range interconnectivity for many years. The ability to test at any range and transmit the information to the engineers at the home base and control the mission without sending the entire test team to a remote location improves the test schedules, reduces the cost of testing and improves the testing capabilities. New opportunities of interconnecting ranges are changing the business of open air range testing and the resulting capabilities. Two predominant opportunities will be discussed in this paper. First, is taking advantage of the fiber glut that the US is currently experiencing along with opportunities for government-acquired assets to service the testing community. This approach provides the government the ability to fiber-optically create a virtual test range and provide full interconnectivity of all data. Second is to take advantage of the existing networks such as the Defense Research Engineering Network (DREN) to make efficient on-demand type connectivity where, otherwise, it would be cost prohibitive.
|
2 |
NEXT GENERATION ANTENNA CONTROLLERS FOR THE NASA DRYDEN FLIGHT RESEARCH CENTERRichard, Gaetan C., Kiss, Laszlo 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / Lower operating budgets and reduced personnel are causing the operators of test ranges to
consolidate their assets and seek ways to maximize their utilization. This paper presents
the versatile approach used by the NASA Dryden Flight Test Facility located at Edwards
Air Force Base to monitor, control and operate five of its diversely located telemetry
systems from a central control room. It describes a new generation of multi-purpose
antenna controllers which are currently being installed as part of this NASA upgrade
program.
|
3 |
A NEW MOBILE TELEMETRY STATION FOR TESTING AIR-TO-GROUND WEAPONSRichard, Gaetan C., Donlin, Brian 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / This paper describes a new mobile self contained telemetry station designed for field
testing of air-to-ground weapons. The telemetry station makes creative use of existing
equipment and incorporates a unique dual axis tracking system to provide complete
coverage of most missions.
|
4 |
THE MODULAR RANGE INTERFACE (MODRI) DATA ACQUISITION CAPABILITIES AND STRATEGIESMarler, Thomas M. 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / The Modular Range Interface (ModRI) is a reliable networked data acquisition system used to
acquire and disseminate dissimilar data. ModRI’s purpose is to connect TSPI systems to a central
computer network. The modular hardware design consists of an SBC, COTS network interfaces, and
other COTS interfaces in a VME form factor. The modular software design uses C++ and OO
patterns running under an RTOS. Current capabilities of ModRI include acquisition of Ethernet,
PCM data, RS-422/232 serial data, and IRIG-B time. Future strategies might include stand-alone
data acquisition, acquisition of digital video, and migration to other architectures and operating
systems.
|
5 |
Using Commercial Global Personal Communication System for a Global Test RangeRogers, Rodney, LeBlanc, James P., Ryerson, David E., Snell, James 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / This paper investigates the feasibility of using commercial satellite constellations to relay telemetry data from flight test vehicles as part of a Global Test Range. The use of a commercial satellite constellation would provide an augmented capability to the test range, providing near real-time data to the data reduction site and test range control at reasonable cost. This includes an analysis of current and proposed commercial communication satellite constellations to determine if any of them would fulfill the needs of a telemetry test range. Preliminary assessment of the communication link between a flight vehicle and the satellite constellations is performed.
|
6 |
Införande av SWEREF99 som nytt referenssystem på RFN / Introduction of SWEREF99 as a new geodetic reference system at the Vidsel Test RangeMarkgren, Patrik January 2008 (has links)
<p>På Robotförsöksplats Norrland, RFN, i Vidsel, har flygplan och robotar utprovats sedan 1958. Provplatsen har Västeuropas största provområde över land, med en area på över 1600 kvadratkilometer. Radar, Kinoteodoliter, Telemetri och Kameror används för att övervaka provobjektens rörelser. Att kunna följa robotbanan och lagra positionsdata är en väsentlig del av provningsverksamheten.</p><p>All positionsdata samlas in av ledningsprogramvaran, BAPS, och används för att i realtid presentera positionsdata på en karta till stöd för provledaren. Samma data kan sedan bearbetas för att generera mera exakta positionsuppgifter i efterhand.</p><p>2001 infördes ett nytt geodetiskt referenssystem i Sverige, SWEREF99. Till skillnad från det föregående systemet, RT90, är det nya ett verkligt tredimensionellt globalt system. Eftersom all positionering görs i relation till ett referenssystem, och positioner utgör kärnan i RFN:s aktiviteter, är det av stor vikt att undersöka hur RFN skulle påverkas av att införa det nya referenssystemet. Det är syftet med denna rapport att undersöka detta.</p><p>Att RFN skall införa SWEREF99 är klart. Det finns många skäl för detta. Sedan några år tillbaka införs detta system över hela landet, hos kommuner, myndigheter och företag. Samverkan med dessa underlättas om RFN har samma referenssystem som de har. Än viktigare är att RFN har många utländska kunder, vilka oftast använder det till SWEREF99 närbesläktade WGS84. Vidare underlättas användningen av GNSS-teknologi av att SWEREF99 och WGS84 ligger så nära varandra.</p><p>Idag använder RFN en kombination av de gamla nationella systmen, RT90 och RH70, och en föregångare till SWEREF99, det preliminära systemet SWEREF93, som skiljer sig från SWEREF99 med mindre än en decimeter. SWEREF93 används i tredimensionell kartesisk form i BAPS, vars algoritmer transformerar data till och från provsystemens format.</p><p>Sammantaget har SWEREF99 i och med denna rapports fastställande införts på RFN. Ett transformationssamband har etablerats mellan det gamla referenssystemet, en dialekt av RT90, och SWEREF99. Med hjälp av detta har befintliga stom- och brukspunkter transformerats till det nya systemet och en uppdaterad koordinatförteckning upprättats.</p><p>Prov- och ledningssystem har analyserats med avseende på användning av positionsdata och ett antal förändringar i den kod som utgör dessa systems programvara har utförts. En algoritm för transformation mellan å ena sidan SWEREF99 och å andra sidan SWEREF93 och RR92, har tagits fram och ett antal funktionsanrop i olika subrutiner har pekats om till att använda dessa nya algoritmer. Två nya koordinatlistor för sensorer har ersatts äldre i ledningssystemet, dels för BUS, dels för realtidskommunikationen med ett antal provsystem, såsom TM, KTS och RIR. Därmed är prov- och ledningssystem i allt väsentligt redo att börja använda det nya systemet.</p> / <p>Robotförsöksplats Norrland (RFN = Vidsel Test Range), has been the main site for missile testing in Sweden since 1958. It has Europe’s largest test range over land, with an area of more than 1600 square kilometres. Radars, kinotheodolites, telemetry and cameras are used to monitor the test object during flight. Following the missile trajectory and registering position data is central to the testing.</p><p>All position data is collected by the command and control software, BAPS, and used to present real time position information on a map to support the personnel responsible for the test. The data can also be processed after the test to generate more exact evaluation of the flight.</p><p>In 2001 a new geodetic reference system, SWEREF99, was introduced in Sweden. Unlike the old system it replaced, RT90, this new system is a truly global three dimensional system. Since all positioning is done in relation to a geodetic reference system, and since positioning is at the core of the activities at RFN, it is of great importance to investigate how the introduction of this new reference system would affect RFN. That is the aim of this report.</p><p>There is really no question about if SWEREF99 should be introduced at RFN. For several reasons it should be. In the last five years most authorities, companies and municipalities in Sweden have adopted this new system, replacing RT90 or local systems, and others will follow. Coordination with these entities would be much simplified if RFN used the same reference system. Further, SWEREF99 is a global system, closely following the GPS-system, WGS84. Using this new system allows RFN to fully utilise GPS technology. Finally, since many test range customers come from other countries, a global system simplifies coordination with them as well.</p><p>Today RFN uses a combination of the old national system, RT90, and a precursor to SWEREF99, the preliminary reference system SWEREF93. This later system differs from SWEREF99 by less then a decimetre, and is used in three dimensional Cartesian form in BAPS, whose algorithms transforms data to and from the test systems to that system.</p><p>The first step of the project was to establish transformation parameters between the new system and the old ones. This was done using methods developed by the Swedish Land Survey Office to help municipalities introduce the new system in a project called RIX-95. Using these parameters it was possible to transform all coordinates for reference points, sensors, runways and other equipment stored in the RFN geo database.</p><p>Next step was an analysis of the command and control software, BAPS, in order to understand what changes would be necessary when introducing SWEREF99. In most cases it turned out that changing the software sensor position list was enough to ensure that the system would retain its functionality, but using the new reference system instead.</p><p>In some cases, though, it became necessary to alter the source code to the software, adding subroutines to transform coordinates between SWEREF99 and the old systems SWEREF93 and RT90. These changes have been made, and the resulting code added to this report as appendixes together with various documents related to the transformation of coordinates. Most of the calculations and resulting tables, formulas and parameters are presented in the main body of the report only.</p><p>Implementing the changes recommended in this report will introduce SWEREF99 at RFN, maintaining all present functions in the test and command and control systems. There are also some recommendations for changes that would be beneficial to carry out in a longer perspective. Apart from further changes in the software recommendations include reconnaissance of existing reference points around the Vidsel airport, and the introduction of a geodetic survey manual for personnel involved in surveying at the test range.</p>
|
7 |
Införande av SWEREF99 som nytt referenssystem på RFN / Introduction of SWEREF99 as a new geodetic reference system at the Vidsel Test RangeMarkgren, Patrik January 2008 (has links)
På Robotförsöksplats Norrland, RFN, i Vidsel, har flygplan och robotar utprovats sedan 1958. Provplatsen har Västeuropas största provområde över land, med en area på över 1600 kvadratkilometer. Radar, Kinoteodoliter, Telemetri och Kameror används för att övervaka provobjektens rörelser. Att kunna följa robotbanan och lagra positionsdata är en väsentlig del av provningsverksamheten. All positionsdata samlas in av ledningsprogramvaran, BAPS, och används för att i realtid presentera positionsdata på en karta till stöd för provledaren. Samma data kan sedan bearbetas för att generera mera exakta positionsuppgifter i efterhand. 2001 infördes ett nytt geodetiskt referenssystem i Sverige, SWEREF99. Till skillnad från det föregående systemet, RT90, är det nya ett verkligt tredimensionellt globalt system. Eftersom all positionering görs i relation till ett referenssystem, och positioner utgör kärnan i RFN:s aktiviteter, är det av stor vikt att undersöka hur RFN skulle påverkas av att införa det nya referenssystemet. Det är syftet med denna rapport att undersöka detta. Att RFN skall införa SWEREF99 är klart. Det finns många skäl för detta. Sedan några år tillbaka införs detta system över hela landet, hos kommuner, myndigheter och företag. Samverkan med dessa underlättas om RFN har samma referenssystem som de har. Än viktigare är att RFN har många utländska kunder, vilka oftast använder det till SWEREF99 närbesläktade WGS84. Vidare underlättas användningen av GNSS-teknologi av att SWEREF99 och WGS84 ligger så nära varandra. Idag använder RFN en kombination av de gamla nationella systmen, RT90 och RH70, och en föregångare till SWEREF99, det preliminära systemet SWEREF93, som skiljer sig från SWEREF99 med mindre än en decimeter. SWEREF93 används i tredimensionell kartesisk form i BAPS, vars algoritmer transformerar data till och från provsystemens format. Sammantaget har SWEREF99 i och med denna rapports fastställande införts på RFN. Ett transformationssamband har etablerats mellan det gamla referenssystemet, en dialekt av RT90, och SWEREF99. Med hjälp av detta har befintliga stom- och brukspunkter transformerats till det nya systemet och en uppdaterad koordinatförteckning upprättats. Prov- och ledningssystem har analyserats med avseende på användning av positionsdata och ett antal förändringar i den kod som utgör dessa systems programvara har utförts. En algoritm för transformation mellan å ena sidan SWEREF99 och å andra sidan SWEREF93 och RR92, har tagits fram och ett antal funktionsanrop i olika subrutiner har pekats om till att använda dessa nya algoritmer. Två nya koordinatlistor för sensorer har ersatts äldre i ledningssystemet, dels för BUS, dels för realtidskommunikationen med ett antal provsystem, såsom TM, KTS och RIR. Därmed är prov- och ledningssystem i allt väsentligt redo att börja använda det nya systemet. / Robotförsöksplats Norrland (RFN = Vidsel Test Range), has been the main site for missile testing in Sweden since 1958. It has Europe’s largest test range over land, with an area of more than 1600 square kilometres. Radars, kinotheodolites, telemetry and cameras are used to monitor the test object during flight. Following the missile trajectory and registering position data is central to the testing. All position data is collected by the command and control software, BAPS, and used to present real time position information on a map to support the personnel responsible for the test. The data can also be processed after the test to generate more exact evaluation of the flight. In 2001 a new geodetic reference system, SWEREF99, was introduced in Sweden. Unlike the old system it replaced, RT90, this new system is a truly global three dimensional system. Since all positioning is done in relation to a geodetic reference system, and since positioning is at the core of the activities at RFN, it is of great importance to investigate how the introduction of this new reference system would affect RFN. That is the aim of this report. There is really no question about if SWEREF99 should be introduced at RFN. For several reasons it should be. In the last five years most authorities, companies and municipalities in Sweden have adopted this new system, replacing RT90 or local systems, and others will follow. Coordination with these entities would be much simplified if RFN used the same reference system. Further, SWEREF99 is a global system, closely following the GPS-system, WGS84. Using this new system allows RFN to fully utilise GPS technology. Finally, since many test range customers come from other countries, a global system simplifies coordination with them as well. Today RFN uses a combination of the old national system, RT90, and a precursor to SWEREF99, the preliminary reference system SWEREF93. This later system differs from SWEREF99 by less then a decimetre, and is used in three dimensional Cartesian form in BAPS, whose algorithms transforms data to and from the test systems to that system. The first step of the project was to establish transformation parameters between the new system and the old ones. This was done using methods developed by the Swedish Land Survey Office to help municipalities introduce the new system in a project called RIX-95. Using these parameters it was possible to transform all coordinates for reference points, sensors, runways and other equipment stored in the RFN geo database. Next step was an analysis of the command and control software, BAPS, in order to understand what changes would be necessary when introducing SWEREF99. In most cases it turned out that changing the software sensor position list was enough to ensure that the system would retain its functionality, but using the new reference system instead. In some cases, though, it became necessary to alter the source code to the software, adding subroutines to transform coordinates between SWEREF99 and the old systems SWEREF93 and RT90. These changes have been made, and the resulting code added to this report as appendixes together with various documents related to the transformation of coordinates. Most of the calculations and resulting tables, formulas and parameters are presented in the main body of the report only. Implementing the changes recommended in this report will introduce SWEREF99 at RFN, maintaining all present functions in the test and command and control systems. There are also some recommendations for changes that would be beneficial to carry out in a longer perspective. Apart from further changes in the software recommendations include reconnaissance of existing reference points around the Vidsel airport, and the introduction of a geodetic survey manual for personnel involved in surveying at the test range.
|
8 |
HYPER-X (X-43A) FLIGHT TEST RANGE OPERATIONS OVERVIEWLux-Baumann, Jessica, Burkes, Darryl A. 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The Hyper-X program flew X-43A research vehicles to hypersonic speeds over the Pacific Ocean
in March and November 2004 from the Western Aeronautical Test Range, NASA Dryden Flight
Research Center, Edwards, California. The program required multiple telemetry ground stations
to provide continuous coverage of the captive carry, launch, boost, experiment, and descent
phases of these missions. An overview is provided of vehicle telemetry and distributed assets that
supported telemetry acquisition, best-source selection, radar tracking, video tracking, flight
termination systems, and voice communications. Real-time data display and processing are
discussed, and postflight analysis and comparison of data acquired are presented.
|
9 |
ELECTROMAGNETIC COMPATIBILITY BETWEEN SPREAD SPECTRUM AND CONVENTIONAL TELEMETRY SYSTEMS: THE KEY TO A NEW ERA FOR DOD TEST RANGESMohd, Maqsood A., McLaughlin, James J. Jr 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1992 / Town and Country Hotel and Convention Center, San Diego, California / Telemetry operation is used extensively on a typical Department of Defense (DOD) test
range to transfer data from an airborne transmitter to a ground receiver. The conventional
telemetry systems employed are usually narrow-band systems. When a large number of
airborne transmitters need to transfer data simultaneously to a ground station, a spread
spectrum modulation scheme can be used. The drawback of such a scheme, however, is
the large emission bandwidth required. The present frequency channeling plans in the
telemetry band do not support frequency approval of large bandwidth data telemetry
systems. However, a key requirement for obtaining the frequency approval can be satisfied
if it can be shown that the spread spectrum modulated signal does not interfere with other
systems in the same band. That is, the spread spectrum telemetry systems (SSTS’s) are
feasible if these systems are electromagnetically compatible with the existing narrow-band
telemetry receivers (NBTR’s) in their immediate environment. The electromagnetic
compatibility (EMC between the SSTS transmitters and the conventional NBTR would
promise the beginning of a new era for the telemetry operations on a DOD test range.
This paper develops a methodology to establish the EMC between multiple airborne
transmitters of an SSTS employing the code division multiple access (CDMA) technique
and a ground-based conventional NBTR on a typical DOD test range operating
simultaneously in the same band. The paper calculates the electromagnetic interference
(EMI) levels between the SSTS and the NBTR to establish the EMC between the two
systems.
|
10 |
THE X-33 EXTENDED FLIGHT TEST RANGEMackall, Dale A., Sakahara, Robert, Kremer, Steven E. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / Development of an extended test range, with range instrumentation providing continuous vehicle communications, is required to flight-test the X-33, a scaled version of a reusable launch vehicle. The extended test range provides vehicle communications coverage from California to landing at Montana or Utah. This paper provides an overview of the approaches used to meet X-33 program requirements, including using multiple ground stations, and methods to reduce problems caused by reentry plasma radio frequency blackout. The advances used to develop the extended test range show other hypersonic and access-to-space programs can benefit from the development of the extended test range.
|
Page generated in 0.0614 seconds