• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 11
  • 9
  • 5
  • 5
  • 2
  • Tagged with
  • 73
  • 73
  • 14
  • 14
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Uses of caustic soda recovered from the mercerization process in the textile industry

Becknell, Douglas Franklin January 1966 (has links)
No description available.
32

ReDress - ReFashion as a solution for clothing (un) sustainability

Fraser, Kim January 2009 (has links)
The primary aim of this practice based project is to promote debate and alter perceptions of second-hand materials and ReFashion concepts. The work is positioned between the developed world business model extremes of overproduction, and over-consumption, in clothing manufacture. Practical work which represents 80% of this thesis, pitches discarded clothing as an untapped commodity. The investigation poses questions and possibilities with respect to applying the ReFashion concept to a potential business model. By developing prototypes through deconstruction and reconstruction processes, reflection upon current practices of the secondary textile industry has been possible, highlighting ReFashion as a potential ‘Materials Recovery’ process. The second outcome for the research is to provide contextualised information for the fashion manufacturing industry and government agencies, in order to develop innovative applications for new markets.
33

ReDress - ReFashion as a solution for clothing (un) sustainability

Fraser, Kim January 2009 (has links)
The primary aim of this practice based project is to promote debate and alter perceptions of second-hand materials and ReFashion concepts. The work is positioned between the developed world business model extremes of overproduction, and over-consumption, in clothing manufacture. Practical work which represents 80% of this thesis, pitches discarded clothing as an untapped commodity. The investigation poses questions and possibilities with respect to applying the ReFashion concept to a potential business model. By developing prototypes through deconstruction and reconstruction processes, reflection upon current practices of the secondary textile industry has been possible, highlighting ReFashion as a potential ‘Materials Recovery’ process. The second outcome for the research is to provide contextualised information for the fashion manufacturing industry and government agencies, in order to develop innovative applications for new markets.
34

Hydrogenases from sulphate reducing bacteria and their role in the bioremediation of textile effluent /

Mutambanengwe, Cecil Clifford Zvandada. January 2006 (has links)
Thesis (M.Sc. (Biochemistry, Microbiology & Biotechnology)) - Rhodes University, 2007.
35

Permeable reaction barrier system for the treatment of textile wastewater using cobalt oxide

Visser, Gunnar Lieb January 2017 (has links)
Thesis (MEng (Chemical Engineering))--Cape Peninsula University of Technology, 2018. / Advanced oxidation processes (AOPs) have gained considerable interest in the wastewater treatment industry. Low selectivity to organic pollutants and the high oxidation potentials provided by the free radicals produced from these processes are the root of this interest. Hydroxyl radical based AOPs seemed to dominate the field but recently sulphate radical based AOPs started to become more popular due to their even higher oxidation potential. The textile industry is known to be a considerable contributor to wastewater production. Many pollutants in this wastewater are organic pollutants which are very persistent to the more traditional treatment processes such as biological treatment and membrane filtration. Numerous studies have shown the potential and success of catalytic AOPs for the degradation of organic pollutants in wastewater. One such process is the use of a cobalt oxide nano-catalyst in conjunction with a peroxymonosulfate (PMS) oxidizer (Co3O4/PMS). The shortcoming with nano-catalysts however are the difficulty of recovering the catalyst in a slurry system or the effective immobilization of the catalyst in a continuous system. To address the issue of nano-catalyst immobilization, two different methods were used in the study to effectively immobilize the catalyst in a substrate. The methods were compared by utilizing the permeable reaction barriers in a continuous flow reactor. A bench scale reactor of 2.4 L/hr was designed and used to study the effect of PMS, catalyst mass and flow rate on the degradation efficiency and to determine the residence time and catalyst per PRB cross-sectional area ratio. A scale up rationale was formulated based on a constant residence time and the catalyst mass per PRB cross-sectional area ratio. Two design correlations were developed to predict the size of the permeable barrier and the catalyst mass required for the scale up PRB system. These parameters were used to design a reactor 30 times that of the bench scale reactor. In both reactors the optimum degradation occurred within 2 minutes indicating the success for catalyst immobilization and the development of a continuous reactor utilizing the Co3O4/PMS advanced oxidation technology.
36

Forward osmosis : a desalination technology for the textile industry

Jingxi, Estella Zandile January 2017 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2017. / Similar to the energy crisis, the critical state of the water supply in South Africa (SA) is a combination of (i) resource exhaustion and pollution; (ii) increasing demand; and (iii) poor infrastructure. Despite its importance, water is the most poorly managed resource in the world. The disposal of industrial effluents contributes greatly to the poor quality of water. The textile industry consumes great quantities of water and produces enormous volumes of wastewater which requires appropriate treatment before being released into the environment. In an attempt to address the water issues, research globally has focused on advanced technologies such as desalination to increase limited pure water resources. The need for alternative desalination methods for the production of clean water from alternative water resources, such as seawater and brackish water, has gained worldwide attention. Reverse osmosis (RO) and Nanofiltration (NF) have been used as unswerving approaches to yield freshwater. Forward osmosis (FO) is a developing membrane technology that has increased substantial attention as a possible lower-energy desalination technology. However, challenges such as suitable FO membranes, membrane fouling, concentration polarisation, and the availability of effective draw solutions (DS), limit FO technology. FO is seeking more importance in novel areas where separation and recovery of the DS is not required. The aims of this study was to: i) identify alternative water resources and evaluate their potential as suitable feed solution (FS); ii) Identify dyes and evaluate their potential as suitable draw solutions (DS) at different concentrations; iii) assess the use of aquaporin biomimetic membrane and iv) assess a FO system for the production of dye solutions. Osmotic pressure (OP) is the pressure exerted by the flow of water through semi-permeable membrane, separating two solutions with different concentrations of solute. The DS should always have OP higher than the FS in order to achieve high water flux. Three basic dyes (i.e. Maxilon Turquoise, Red and Blue) and three reactive dyes (i.e. Carmine, Olive Green and Black) were selected, based on their common use in the SA textile industry. The respective dye samples were prepared at different concentrations and dye-to-salt mass ratios ranging from 1:10 to 1:60 and assessed for OP using a freezing point osmometer. A lab-scale FO unit was used for all the studies. Feed and draw channels were circulated in a counter-current flow at a volumetric flow rate of 600 mL/min. Feed solutions(FS) included deionised water (DI) as a control, brackish water (BW), synthetic seawater (SSW) and textile wastewater (TWW) collected from two textile factories. OP of the FS (DI, BW5, SSW and SW, Factory 1 and Factory 2) was 0, 414, 2761, 2579, 1505 and 3308 kPa, respectively. Basic Blue and Reactive Black generated a higher OP compared to other selected dyes in the study and were therefore selected to be used as DS at a 1:10 dye-to-salt ratio and 0.02 M concentration. An aquaporin biomimetic FO membrane (Aquaporin, Denmark) was used for all the experiments conducted in the FO mode.
37

Torn to be worn? : Cotton fibre length of shredded post-consumer garments

Aronsson, Julia January 2017 (has links)
In 2015 the global fibre consumption was 96.7 million tonnes, which is an increase of 3.1% from the year before. Our high textile consumption has led to an increasing demand of raw materials and generation of textile waste. Only in Europe, a total amount of 4.3 million tonnes of apparel waste each year is sent to either incineration or landfills. Approximately 50% of the clothes we discard and donate are composed of cotton. In the future, the cotton production is predicted to stagnate since the world population is increasing and arable land to greater extent will be needed for food production. Thereby, it is important that we utilize the cotton waste generated. One of the most commonly used processes for recycling textile waste is the shredding process. In this method, textile waste is shredded back into their constituent fibres. The drawback with the shredding process is that the fibre length is reduced. The fibre length is an important property since it has a high influence on textile processing such as yarn production and final product quality. The aim of this thesis was to investigate how post-consumer cotton garments with different degree of wear affects the fibre length obtained in the shredding process. This was performed by analysing the input fibre length as well as the output fibre length. Additionally, several parameters were investigated: fabric construction and yarn structure. Degree of wear was categorized into two levels: low and high degree of wear. The fabric constructions used in this study were single-jersey and denim. The yarn structure were analysed in terms of yarn count, yarn twist and manufacturing process.  The result showed that the fibre length before shredding was statistically significant longer for the materials with low degree of wear compared to high degree of wear. After shredding, it was shown that the fibre length reduction was lower for the materials with high degree of wear. This indicates that longer fibres give higher fibre length reduction. In addition, it was found that finer yarn gives higher fibre length reduction. The result also showed that the yarn manufacturing process has a great influence on the ease of shredding and the fibre length obtained in the end.  Based on the result in this thesis it can be concluded that the shredding process needs to be improved in order to preserve the fibre length. The area of post-consumer textile waste is complex and the result showed that there is many underlying parameters that need to be taken into account to further develop the shredding process.
38

Hydrogenases from sulphate reducing bacteria and their role in the bioremediation of textile effluent

Mutambanengwe, Cecil Clifford Zvandada January 2007 (has links)
The continuing industrial development has led to a corresponding increase in the amount of waste water generation leading to a consequential decline in levels and quality of the natural water in the ecosystem. Textile industries consume over 7 x 10[superscript 5] tons of dyes annually and use up to 1 litre of water per kg of dye processed and are third largest polluters in the world, the problem being aggravated by the inefficiencies of the dye houses. An abundance of physio-chemical methods are in use world wide, however, there is increasing concern as to their impact in effectively treating textile effluents as they introduce secondary pollutants during the ‘remediation’ process which are quite costly to run, maintain and clean up. Research on biological treatment has offered simple and cost effective ways of bioremediating textile effluents. While aerobic treatment of textile dyes and their effluents has been reported, its major draw back is commercial up-scaling and as such anaerobic systems have been investigated and shown to degrade azo dyes, which form the bulk of the dyes used world wide. However, the mechanisms involved in the bioremediation of these dyes are poorly understood. The aims of this study were to identify and investigate the role of enzymes produced by sulphate reducing bacteria (SRB) in bioremediating textile dye and their effluents. Sulphate reducing bacteria were used in this study because they are tolerant to harsh environmental conditions and inhibit the proliferance of pathogenic micro-organisms. The appearance of clear zones in agar plates containing azo dye concentrations ranging from 10 – 100 mgl[superscript -1] showed the ability of SRB to decolourize dyes under anaerobic conditions. Assays of enzymes previously reported to decolourise azo dyes were not successful, but led to the identification of hydrogenase enzyme being produced by SRB. The enzyme was found to be localised in the membrane and cytoplasm. A surface response method was used to optimize the extraction of the enzyme from the bacterial cells resulting in approximately 3 fold increase in hydrogenase activity. Maximum hydrogenase activity was found to occur after six days in the absence of dyes but was found to occur after one day in the presence of azo dyes. A decline in hydrogenase activity thereafter, suggested inhibition of enzymatic activity by the putative aromatic amines produced after azo cleavage. Purification of the hydrogenase by freeze drying, poly ethylene glycol, and Sephacryl – 200 size exclusion- ion exchange chromatography revealed the enzyme to have a molecular weight of 38.5 kDa when analyzed by a 12 % SDS-PAGE. Characterisation of the enzyme revealed optimal activity at a pH of 7.5 and temperature of 40 °C while it exhibited a poor thermal stability with a half-life of 32 minutes. The kinetic parameters V[subscript max] and K[subscript m] were 21.18 U ml[superscript -1} and 4.57 mM respectively. Application of the cell free extract on commercial dyes was not successful, and only whole SRB cells resulted in decolourisation of the dyes. Consequently trials on the industrial dyes and effluents were carried out with whole cells. Decolourisation rates of up to 96 % were achieved for the commercial dyes and up to 93 % for the industrial dyes over a period of 10 days.
39

Supply Chain Relationship Management for Textile-to-Textile Recycling : a qualitative investigation from an European perspective

Bjerstaf, Charlotte, Pehrsson, Anna January 2021 (has links)
Supply chain management is found to be highly related to collaborations among stakeholders to create successful strategies for the supply chain. To leverage circularity in the textile and clothing industry, successful circular strategies that support the businesses in an economic and environmental manner are key. Through this research, the interconnection and communication between the relationships within the supply chain are found to be the most significant factor. In this qualitative study, the purpose of the research was to investigate how relationships and partnerships in the textile supply chain can affect and enable commercial scale for recycling of textiles-to-textiles. In-depth semi-structured interviews with six key stakeholders in the European textile industry. This study found that relationship characteristics such as trust, communication and strategic values through long-term relationships and key suppliers play an important role in realizing textile-to-textile recycling. Furthermore, findings confirm that the financial aspects are the most prominent condition for textile recycling to improve win-win partnership models to promote key operational conditions. With Europe having a leading position in the textile industry, the research study has geographically limited the empirical scope to solid focus on textile supply chain and business relationships in Italy to provide the study with accurate cluster accusation.
40

Scalability solutions for automated textile sorting : a case study on how dynamic capabilities can overcome scalability challenges

Alpert, Cirrus, Turkowski, Michaela, Tasneem, Tahiya January 2021 (has links)
In light of the negative social and environmental impacts of the textile industry, a paradigm shift towards a more circular economy is inevitable. Automated textile sorting embodies a crucial but missing link to connect forward and reverse supply chains for circular economy, however scalability challenges exist. Therefore, the study explores how dynamic capabilities can overcome scalability challenges specific to automated textile sorting pilots in Northwestern Europe to create commercially viable solutions. A single case study using an abductive approach guided by the dynamic capabilities view explores automated textile sorting pilots’ approaches to dynamic capability microfoundations. Primary data include semi-structured interviews, which is complemented by secondary data documents, and both were analysed qualitatively via thematic analysis. The data reveal that known scalability challenges remain and new scalability challenges related to market disruptions exist, such as COVID-19. Scalability challenges are overcome through novel approaches to the microfoundations undergirding dynamic capabilities. These are found to take place in a continuous, overlapping process, and collaboration is found across all dynamic capabilities. As collaboration plays a prominent role, it should be integrated in approaches to dynamic capabilities. This study also adds to the literature on circular economy in the textile industry by confirming that known scalability challenges for automated textile sorting pilots remain, and new scalability challenges are developing in terms of market disruptions. Actors in the automated textile sorting supply chain may use these findings to support efforts to scale up automated textile sorting. For textile industry brands and recyclers, the findings can assess their readiness to participate in the automated textile sorting supply chain and support the achievement of their 2030 goals to use greater volumes of sorted textile waste fractions as feedstocks for their production processes and to be a collaborative member of the used textiles supply chain.

Page generated in 0.0466 seconds