• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 1
  • Tagged with
  • 15
  • 15
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Classification of P-oligomorphic groups, conjectures of Cameron and Macpherson / Classification des groupes P-oligomorphes, conjectures de Cameron et Macpherson

Falque, Justine 29 November 2019 (has links)
Les travaux présentés dans cette thèse de doctorat relèvent de la combinatoire algébrique et de la théorie des groupes. Précisément, ils apportent une contribution au domaine de recherche qui étudie le comportement des profils des groupes oligomorphes.La première partie de ce manuscrit introduit la plupart des outils qui nous seront nécessaires, à commencer par des éléments de combinatoire et combinatoire algébrique.Nous présentons les fonctions de comptage à travers quelques exemples classiques, et nous motivons l'addition d'une structure d'algèbre graduée sur les objets énumérés dans le but d'étudier ces fonctions.Nous évoquons aussi les notions d'ordre et de treillis.Dans un second temps, nous donnons un aperçu des définitions et propriétés de base associées aux groupes de permutations, ainsi que quelques résultats de théorie des invariants. Nous terminons cette partie par une description de la méthode d'énumération de Pólya, qui permet de compter des objets sous une action de groupe.La deuxième partie est consacrée à l'introduction du domaine dans lequel s'inscrit cette thèse, celui de l'étude des profils de structures relationnelles, et en particulier des profils orbitaux. Si G est un groupe de permutations infini, son profil est la fonction de comptage qui envoie chaque entier n > 0 sur le nombre d'orbites de n-sous-ensembles, pour l'action induite de G sur les sous-ensembles finis d'éléments.Cameron a conjecturé que le profil de G est équivalent à un polynôme dès lors qu'il est borné par un polynôme. Une autre conjecture, plus forte, a été plus tard émise par Macpherson : elle implique une certaine structure d'algèbre graduée sur les orbites de sous-ensembles, créée par Cameron et baptisée algèbre des orbites, soutenant que si le profil est borné par un polynôme, alors l'algèbre des orbites est de type fini.Comme amorce de notre étude de ce problème, nous développons quelques exemples et faisons nos premiers pas vers une résolution en examinant les systèmes de blocs des groupes de profil borné par un polynôme --- que nous appelons P-oligomorphes ---,ainsi que la notion de sous-produit direct.La troisième partie démontre une classification des groupes P-oligomorphes, notre résultat le plus important et dont la conjecture de Macpherson se révèle un corollaire.Tout d'abord, nous étudions la combinatoire du treillis des systèmes de blocs,qui conduit à l'identification d'un système généralisé particulier, constituébde blocs ayant de bonnes propriétés. Nous abordons ensuite le cas particulier o`u il se limite à un seul bloc de blocs, pour lequel nous établissons une classification. La preuve emprunte à la notion de sous-produit direct pour gérer les synchronisations internes au groupe, et a requis une part d'exploration informatique afin d'être d'abord conjecturée.Dans le cas général, nous nous appuyons sur les résultats précédents et mettons en évidence la structure de G comme produit semi-direct impliquant son sous-groupe normal d'indice fini minimal et un groupe fini. Ceci permet de formaliser une classification complète des groupes P-oligomorphes,et d'en déduire la forme de l'algèbre des orbites : (à peu de choses près) une algèbre d'invariants explicite d'un groupe fini. Les conjectures de Macpherson et de Cameron en découlent, et plus généralement une compréhension exhaustive de ces groupes.L'annexe contient des extraits du code utilisé pour mener la preuve à bien,ainsi qu'un aperçu de celui qui a été produit en s'appuyant sur la nouvelle classification, qui permet de manipuler les groupes P-oligomorphes en usant d'une algorithmique adaptée. Enfin, nous joignons ici notre première preuve, plus faible, des deux conjectures. / This PhD thesis falls under the fields of algebraic combinatorics and group theory. Precisely,it brings a contribution to the domain that studies profiles of oligomorphic permutation groups and their behaviors.The first part of this manuscript introduces most of the tools that will be needed later on, starting with elements of combinatorics and algebraic combinatorics.We define counting functions through classical examples ; with a view of studying them, we argue the relevance of adding a graded algebra structure on the counted objects.We also bring up the notions of order and lattice.Then, we provide an overview of the basic definitions and properties related to permutation groups and to invariant theory. We end this part with a description of the Pólya enumeration method, which allows to count objects under a group action.The second part is dedicated to introducing the domain this thesis comes withinthe scope of. It dwells on profiles of relational structures,and more specifically orbital profiles.If G is an infinite permutation group, its profile is the counting function which maps any n > 0 to the number of orbits of n-subsets, for the inducedaction of G on the finite subsets of elements.Cameron conjectured that the profile of G is asymptotically equivalent to a polynomial whenever it is bounded by apolynomial.Another, stronger conjecture was later made by Macpherson : it involves a certain structure of graded algebra on the orbits of subsetscreated by Cameron, the orbit algebra, and states that if the profile of G is bounded by a polynomial, then its orbit algebra is finitely generated.As a start in our study of this problem, we develop some examples and get our first hints towards a resolution by examining the block systems ofgroups with profile bounded by a polynomial --- that we call P-oligomorphic ---, as well as the notion of subdirect product.The third part is the proof of a classification of P-oligomorphic groups,with Macpherson's conjecture as a corollary.First, we study the combinatorics of the lattice of block systems,which leads to identifying one special, generalized such system, that consists of blocks of blocks with good properties.We then tackle the elementary case when there is only one such block of blocks, for which we establish a classification. The proof borrows to the subdirect product concept to handle synchronizations within the group, and relied on an experimental approach on computer to first conjecture the classification.In the general case, we evidence the structure of a semi-direct product involving the minimal normal subgroup of finite index and some finite group.This allows to formalize a classification of all P-oligomorphic groups, the main result of this thesis, and to deduce the form of the orbit algebra: (little more than) an explicit algebra of invariants of a finite group. This implies the conjectures of Macpherson and Cameron, and a deep understanding of these groups.The appendix provides parts of the code that was used, and a glimpse at that resulting from the classification afterwards,that allows to manipulate P-oligomorphic groups by apropriate algorithmics. Last, we include our earlier (weaker) proof of the conjectures.
12

Structures de Poisson sur les Algèbres de Polynômes, Cohomologie et Déformations / Poisson Structures on Polynomial Algebras, Cohomology and Deformations

Butin, Frédéric 13 November 2009 (has links)
La quantification par déformation et la correspondance de McKay forment les grands thèmes de l'étude qui porte sur des variétés algébriques singulières, des quotients d'algèbres de polynômes et des algèbres de polynômes invariants sous l'action d'un groupe fini. Nos principaux outils sont les cohomologies de Poisson et de Hochschild et la théorie des représentations. Certains calculs formels sont effectués avec Maple et GAP. Nous calculons les espaces d'homologie et de cohomologie de Hochschild des surfaces de Klein, en développant une généralisation du Théorème de HKR au cas de variétés non lisses et utilisons la division multivariée et les bases de Gröbner. La clôture de l'orbite nilpotente minimale d'une algèbre de Lie simple est une variété algébrique singulière sur laquelle nous construisons des star-produits invariants, grâce à la décomposition BGS de l'homologie et de la cohomologie de Hochschild, et à des résultats sur les invariants des groupes classiques. Nous explicitons les générateurs de l'idéal de Joseph associé à cette orbite et calculons les caractères infinitésimaux. Pour les algèbres de Lie simples B, C, D, nous établissons des résultats généraux sur l'espace d'homologie de Poisson en degré 0 de l'algèbre des invariants, qui vont dans le sens de la conjecture d'Alev et traitons les rangs 2 et 3. Nous calculons des séries de Poincaré à 2 variables pour des sous-groupes finis du groupe spécial linéaire en dimension 3, montrons que ce sont des fractions rationnelles, et associons aux sous-groupes une matrice de Cartan généralisée pour obtenir une correspondance de McKay algébrique en dimension 3. Toute l'étude a donné lieu à 4 articles / Deformation quantization and McKay correspondence form the main themes of the study which deals with singular algebraic varieties, quotients of polynomial algebras, and polynomial algebras invariant under the action of a finite group. Our main tools are Poisson and Hochschild cohomologies and representation theory. Certain calculations are made with Maple and GAP. We calculate Hochschild homology and cohomology spaces of Klein surfaces by developing a generalization of HKR theorem in the case of non-smooth varieties and use the multivariate division and the Groebner bases. The closure of the minimal nilpotent orbit of a simple Lie algebra is a singular algebraic variety : on this one we construct invariant star-products, with the help of the BGS decomposition of Hochschild homology and cohomology, and of results on the invariants of the classical groups. We give the generators of the Joseph ideal associated to this orbit and calculate the infinitesimal characters. For simple Lie algebras of type B, C, D, we establish general results on the Poisson homology space in degree 0 of the invariant algebra, which support Alev's conjecture, then we are interested in the ranks 2 and 3. We compute Poincaré series of 2 variables for the finite subgroups of the special linear group in dimension 3, show that they are rational fractions, and associate to the subgroups a generalized Cartan matrix in order to obtain a McKay correspondence in dimension 3. All the study comes from 4 papers
13

Schémas de Hilbert invariants et théorie classique des invariants

Terpereau, Ronan 05 November 2012 (has links) (PDF)
Pour toute variété affine W munie d'une opération d'un groupe réductif G, le schéma de Hilbert invariant est un espace de modules qui classifie les sous-schémas fermés de W, stables par l'opération de G, et dont l'algèbre affine est somme directe de G-modules simples avec des multiplicités finies préalablement fixées. Dans cette thèse , on étudie d'abord le schéma de Hilbert invariant, noté H, qui paramètre les sous-schémas fermés GL(V)-stables Z de W=n1 V oplus n2 V^* tels que k[Z] est isomorphe à la représentation régulière de GL(V) comme GL(V)-module. Si dim(V)<3,on montre que H est une variété lisse, et donc que le morphisme de Hilbert-Chow gamma: H -> W//G est une résolution des singularités du quotient W//G. En revanche, si dim(V)=3, on montre que H est singulier. Lorsque dim(V)<3, on décrit H par des équations et aussi comme l'espace total d'un fibré vectoriel homogène au dessus d'un produit de deux grassmanniennes. On se place ensuite dans le cadre symplectique en prenant n1=n2 et en remplaçant W par la fibre en 0 de l'application moment mu: W -> End(V). On considère alors le schéma de Hilbert invariant H' qui paramètre les sous-schémas contenus dans mu^{-1}(0). On montre que H' est toujours réductible, mais que sa composante principale Hp' est lisse lorsque dim(V)<3. Dans ce cas, le morphisme de Hilbert-Chow est une résolution (parfois symplectique) des singularités du quotient mu^{-1}(0)//G. Lorsque dim(V)<3, on décrit Hp' comme l'espace total d'un fibré vectoriel homogène au dessus d'une variété de drapeaux. Enfin, on obtient des résultats similaires lorsque l'on remplace GL(V) par un autre groupe classique (SL(V), SO(V), O(V), Sp(V)) que l'on fait opérer d'abord dans W=nV, puis dans la fibre en 0 de l'application moment.
14

Calcul des invariants de groupes de permutations par transformée de Fourier / Calculate invariants of permutation groups by Fourier Transform

Borie, Nicolas 07 December 2011 (has links)
Cette thèse porte sur trois problèmes en combinatoire algébrique effective et algorithmique.Les premières parties proposent une approche alternative aux bases de Gröbner pour le calcul des invariants secondaires des groupes de permutations, par évaluation en des points choisis de manière appropriée. Cette méthode permet de tirer parti des symétries du problème pour confiner les calculs dans un quotient de petite dimension, et ainsi d'obtenir un meilleur contrôle de la complexité algorithmique, en particulier pour les groupes de grande taille. L'étude théorique est illustrée par de nombreux bancs d'essais utilisant une implantation fine des algorithmes. Un prérequis important est la génération efficace de vecteurs d'entiers modulo l'action d'un groupe de permutation, dont l'algorithmique fait l'objet d'une partie préliminaire.La quatrième partie cherche à déterminer, pour un certain quotient naturel d'une algèbre de Hecke affine, quelles spécialisations des paramètres aux racines de l'unité donne un comportement non générique.Finalement, la dernière partie présente une conjecture sur la structure d'une certaine $q$-déformation des polynômes harmoniques diagonaux en plusieurs paquets de variables pour la famille infinie de groupes de réflexions complexes.Tous ces chapitres s'appuient fortement sur l'exploration informatique, et font l'objet de multiples contributions au logiciel Sage. / This thesis concerns algorithmic approaches to three challenging problems in computational algebraic combinatorics.The firsts parts propose a Gröbner basis free approach for calculating the secondary invariants of a finite permutation group, proceeding by using evaluation at appropriately chosen points. This approach allows for exploiting the symmetries to confine the calculations into a smaller quotient space, which gives a tighter control on the algorithmic complexity, especially for large groups. The theoretical study is illustrated by extensive benchmarks using a fine implementation of algorithms. An important prerequisite is the generation of integer vectors modulo the action of a permutation group, whose algorithmic constitute a preliminary part of the thesis.The fourth part of this thesis is determining for a certain interesting quotient of an affine Hecke algebra exactly which root-of-unity specialization of its parameter lead to non-generic behavior.Finally, the last part presents a conjecture on the structure of certain q-deformed diagonal harmonics in many sets of variables for the infinite family of complex reflection groups.All chapters proceed widely by computer exploration, and most of established algorithms constitute contributions of the software Sage.
15

Nouvelles perspectives sur les algèbres de type Askey–Wilson

Gaboriaud, Julien 08 1900 (has links)
Cette thèse se divise en trois parties qui peuvent être toutes regroupées autour d'une même bannière : l'étude de structures algébriques reliées aux algèbres de type Askey–Wilson. Alors que dans la première partie on s'efforce d'obtenir des interprétations duales (au sens de Howe) de ces algèbres, dans les autres parties on étudie des généralisations de ces algèbres. Des dégénérations de l'algèbre de Sklyanin, générées par des blocs plus fondamentaux que ceux générant les algèbres de type Askey–Wilson, sont étudiées dans la deuxième partie et des généralisations de plus haut rang des algèbres de type Askey–Wilson sont étudiées dans la troisième partie. Dans la première partie, en invoquant la dualité de Howe, deux interprétations duales sont obtenues pour les algèbres de Racah, Bannai–Ito, Askey–Wilson, Higgs, Hahn, \(q\)-Hahn et dual \(-1\) Hahn. La façon dont la dualité de Howe opère est rendue explicite par l'examen de processus de réduction dimensionnelle. Un modèle superintégrable 2D de mécanique quantique superconforme dont l'algèbre de symétrie est celle de type dual \(-1\) Hahn est également introduit et solutionné. Dans la deuxième partie, des algèbres générées par des opérateurs de contiguïté et d'échelle encodant des propriétés de familles de polynômes sont étudiées. Ces opérateurs appartiennent à la classe des opérateurs de Sklyanin–Heun, qui peuvent être définis sur plusieurs grilles diverses. On découvre qu'ils génèrent des dégénérations de l'algèbre de Sklyanin. On démontre que les représentations irréductibles de dimension finie de ces algèbres ont pour base des familles de para-polynômes. Les grilles linéaires, quadratiques, exponentielles et d'Askey–Wilson sont étudiées et mènent respectivement aux polynômes orthogonaux des familles de para-Krawtchouk, para-Racah, \(q\)-para-Krawtchouk et \(q\)-para-Racah. Enfin, la façon dont les polynômes de para-Krawtchouk et d'autres familles de polynômes orthogonaux sont reliées aux représentations tridiagonales du plan de Jordan déformé est présentée. Dans la dernière partie, on explore des généralisations à plus haut rang pour les algèbres de Racah et Askey–Wilson. Pour ce faire, on étudie les réalisations de ces algèbres en termes de Casimirs intermédiaires. Le rôle de la matrice \(R\) tressée est élucidé : celle-ci permet de relier divers Casimirs intermédiaires entre eux par conjugaison. Un isomorphisme entre l'algèbre de skein du crochet de Kauffman de la sphère à 4 trous et l'algèbre engendrée par les Casimir intermédiaires dans \(U_q(\mathfrak{sl}_2)^{\otimes 3}\) est présenté et permet d'interpréter de façon diagrammatique la conjugaison par la matrice \(R\) tressée mentionnée ci-haut. Finalement, une présentation du centralisateur \(Z_n(\mathfrak{sl}_2)\) de \(U(\mathfrak{sl}_2)\) dans \(U(\mathfrak{sl}_2)^{\otimes n}\) par générateurs et relations est obtenue et on montre que ce centralisateur est isomorphe à un quotient (obtenu explicitement) de l'algèbre de Racah de plus haut rang \(R(n)\). / This thesis is divided in three parts which all orbit around the same theme: the study of algebraic structures related to the algebras of Askey–Wilson type. In the first part we obtain two interpretations that are dual in the sense of Howe for the algebras of Askey–Wilson type. Meanwhile, the other two parts are concerned with generalizations of these algebras. In the second part, we study degenerations of the Sklyanin algebra, which are built out of generators that are more fundamental than those of the Askey–Wilson algebra. In the last part, generalizations of the Askey–Wilson type algebras to higher rank are studied. In the first part, dual interpretations are obtained for the Racah, Bannai–Ito, Askey–Wilson, Higgs, Hahn, \(q\)-Higgs and dual \(-1\) Hahn algebras by invoking Howe duality. The way that this Howe duality operates is made explicit through the examination of a dimensional reduction procedure. A 2D superintegrable superconformal quantum mechanics model, whose symmetry algebra is the one of dual \(-1\) Hahn type, is also introduced and solved. In the second part, we study algebras that are generated by contiguity and ladder operators that encode properties of families of orthogonal polynomials. We show that these operators belong to the Sklyanin–Heun class of operators, which can be defined for various grids. We also show how their algebraic relations correspond to those of degenerations of the Sklyanin algebra. Then, we show how various families of para-polynomials support finite-dimensional irreducible representations of these degenerate algebras. From the linear, quadratic, exponential and Askey–Wilson grids, we are respectively led to the para-Krawtchouk, para-Racah, \(q\)-para-Krawtchouk and \(q\)-para-Racah polynomials. Later, we connect the para-Krawtchouk polynomials (and other families of orthogonal polynomials) to tridiagonal representations of the deformed Jordan plane. In the final part, we explore higher rank generalizations of the Racah and Askey–Wilson algebras. To that end, their realizations in terms of intermediate Casimir elements are studied. The role of the braided \(R\)-matrix is understood as follows: it connects various intermediate Casimir elements through conjugation. We obtain an isomorphism between the Kauffman bracket skein algebra of the four-punctured sphere and the algebra generated by the intermediate Casimir elements in \(U_q(\mathfrak{sl}_2)^{\otimes3}\). This leads to a diagrammatic interpretation of the conjugation by the braided \(R\)-matrix mentioned in the above. Lastly, a presentation of the centralizer \(Z_n(\mathfrak{sl}_2)\) of \(U(\mathfrak{sl}_2)\) in \(U(\mathfrak{sl}_2)^{\otimes n}\) by generators and relations is obtained and we show that this centralizer is isomorphic to a quotient (which we provide explicitly) of the higher rank Racah algebra \(R(n)\).

Page generated in 0.0621 seconds