• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 43
  • 9
  • Tagged with
  • 151
  • 151
  • 80
  • 76
  • 25
  • 23
  • 19
  • 17
  • 16
  • 15
  • 14
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Vers une thérapie génique ex vivo de la dystrophie musculaire de Duchenne : approches lentivirale et intégrase PhiC31

Quenneville, Simon 13 April 2018 (has links)
La dystrophie musculaire de Duchenne est une maladie génétique liée au chromosome X qui atteint un garçon sur 3 500. Cette maladie est caractérisée par l'absence de dystrophine à la surface des fibres musculaires. Sans cette protéine, les fibres se brisent plus fréquemment et une faiblesse musculaire progressive apparait. Les patients décèdent généralement au début de la vingtaine. Il n'y a présentement aucun traitement pour cette pathologie. La greffe de cellules myogéniques est une thérapie possible, mais se heurte à un rejet par le système immunitaire du patient. Pour contourner ce problème, il est possible de développer une thérapie génique ex vivo, basée sur la greffe de cellules autologues modifiées génétiquement. Malheureusement, aucune technique efficace de modification génétique des cellules n'était disponible il y a quatre ans. Nous avons testé deux nouvelles techniques de modification génétique. Une première est non virale et la seconde utilise les lentivirus. La première consiste à transfecter un plasmide d'expression de la dystrophine par Nucléofection. Pour intégrer les séquences, un second plasmide, codant pour l'intégrase PhiC31, est aussi introduit dans les cellules. Cette technique nous a permis de stabiliser des plasmides allant de 7 kb à 21 kb, ce qui en fait les plus grosses séquences jamais stabilisées dans des cellules de culture primaire humaine. Cette expression a pu être détectée dans les fibres musculaires après une greffe. Nous avons aussi utilisé des lentivirus pour effectuer une modification génétique des cellules. Ce vecteur viral est très efficace pour introduire des cassettes d'expression pour des versions tronquées de la dystrophine. L'expression de cette dystrophine est détectable in vitro, mais aussi in vivo après la transplantation. De plus, une cassette servant à faire le saut d'exon thérapeutique a aussi été introduite dans des cellules myogéniques et a permis de faire exprimer une dystrophine presque complète par des cellules issues de patients DMD. Cette expression a aussi été détectée dans des modèles murins. Ces travaux constituent une preuve de principe de la faisabilité d'une thérapie génique ex vivo pour la DMD. Plusieurs améliorations restent à apporter, mais il semble que ces travaux laissent croire qu'un essai clinique sera réalisable. / Duchenne muscular dystrophy (DMD) is a severe X-linked muscle genetic illness that afflicts one boy per 3 500. Cell therapy is a possible cure for this illness that usually kills patients around age 25. Transplantation of the heterologus myogenic cells is, however, restricted by the immune rejection by the patient. Ex vivo gene therapy offers an evasion to this problem. Introduction of the therapeutic gene into the patient’s own myogenic precursor cells, followed by transplantation is the base of this therapeutic. Four years ago, no efficient procedure to stably modify myogenic cells was available. New gene introduction techniques were thus tested in the present thesis. The first one is a non-viral method. We used a new transfection technology (Nucleofection) to introduce plasmid DNA coding for dystrophin with success. To stabilize the expression, human myogenic cells were co-nucleofected with a PhiC31 expressing plasmid. This integrase was capable of stabilising expression plasmids ranging from 7 kb to 21 kb. This very large sequence was the largest plasmid ever stabilised into human primary cultured cells. The presence of full-length dystrophin protein was detected in vitro and confirmed in vivo, after the transplantation of the myogenic precursor. Another technique was used: the lentiviral vectors. These viral vectors were designed to deliver an expression cassette for a truncated version of the dystrophin gene. The viral vector was efficient at modifying the cells. The expression was shown in vitro and in vivo after the transplantation of the modified cells. The lentiviral vectors were also essayed to deliver a U7 exon skipping cassette into DMD cells. It was then possible to demonstrate that this introduction led to the expression of a quasi normal dystrophin protein in vitro. The expression was also shown in vivo after the transplantation into SCID mice model. A non-viral approach combining nucleofection and the PhiC31 integrase may eventually permit safe auto-transplantation of genetically modified cells. The utilisation of lentiviral vectors also provided evidences that an ex vivo gene therapy is possible for DMD. We believe these results are paving the way to an eventual clinical trial for ex vivo gene therapy.
12

Anémie de Fanconi : thérapie génique par les cellules souches hématopoïétiques

Habi, Ouassila 13 April 2018 (has links)
L'anémie de Fanconi (AF) est une pathologie génétique rare (1/350 000 naissances), transmise selon le mode récessif. Son tableau clinique regroupe de nombreuses malformations congénitales, une aplasie médullaire, une pancytopénie et une prédisposition accrue aux cancers. Au plan cellulaire, une mutation sur l'un des treize gènes Fanconi suffit à induire une instabilité chromosomique et une hypersensibilité aux agents pontant l'ADN. La perte de fonction des protéines Fanconi est probablement responsable du défaut d'autorenouvellement des cellules souches hématopoïétiques (CSH) et de l'état pro-apoptotique des progéniteurs médullaires. Les principaux traitements ont une très faible efficacité et induisent de dangereuses complications (toxicité, leucémies). La thérapie génique qui consiste à introduire ex vivo dans les CSH, une copie fonctionnelle du gène Fanconi altéré, apparaît ici comme le traitement alternatif le plus prometteur. Les premiers travaux effectués dans le laboratoire et confirmés pas d'autres, ont montré que la correction génique ex vivo est néfaste pour les CSH Fanconi. Une nouvelle approche thérapeutique a été mise en place, consistant à introduire la copie fonctionnelle du gène altéré directement in vivo, par injection intra-fémorale (IIF). Cette technique novatrice permet de délivrer le gène dans le milieu natif des CSH, leur évitant le stress induit par la culture. Après l'IIF de virions porteurs du gène EGFP (enhanced green fluorescent protein), des analyses sanguines mensuelles montrent une augmentation régulière de la fluorescence, confirmant l'efficacité technique du transfert génique in vivo. L'étape suivante consistait en l'injection du gène correcteur FancC, en fusion avec le marqueur EGFP (FancC-EGFP), dans des souris FancC-/-, FancA-/- et sauvages. L'expression sanguine de la protéine FANCC-EGFP confirme la transduction de cellules médullaires. L'efficacité de correction est évaluée lors de tests de survie des souris aux injections intra-péritonéales d'un agent pontant l'ADN : la mitomycine-C (MMC), sur une période de quinze semaines. Ce traitement vise à évaluer l'effet correcteur de la transduction et la fonctionnalité de la protéine transgénique, seules les cellules corrigées seront en mesure de restaurer l'intégrité de leur ADN et de proliférer. La nature des cellules corrigées a été analysée au cours de transplantations successives. Les résultats démontrent que les CSH FancC-/- recouvrent, après correction in vivo, par le transgène FancC-EGFP, une fonctionnalité semblable à celle des sauvages. Les résultats préliminaires obtenus dans le modèle murin aplasique confirment l'efficacité de la correction génique et sont particulièrement encourageants puisqu'ils permettent d'envisager l'IIF comme une nouvelle approche thérapeutique pour le traitement de l'AF.
13

Correction du gène de la dystrophine avec les nucléases à doigts de zinc

Iyombe, Jean-Paul 19 April 2018 (has links)
La thérapie génique sans transfert de gène utilisant les endonucléases de restriction spécifiques est une des approches thérapeutiques qui visent à la mise au point d’un traitement curatif de la dystrophie musculaire de Duchenne (DMD). Afin de corriger le gène de la dystrophine avec les nucléases à doigt de zinc (ZFNs) en ciblant l’exon 50, nous avons produit les protéines ZFNs dans les bactéries et les avons purifiées. Les résultats obtenus après les essais in vitro montrent que les ZFNs produites reconnaissent d’une manière spécifique la séquence cible située au niveau de l’exon 50 du gène DYS et peuvent y générer d’une manière précise les coupures double-brin. Ils montrent également que les protéines ZFNs produites peuvent être transfectées, avec ou sans agent de transfection, dans les myoblastes des patients dystrophiques Duchenne en culture. / Gene therapy without gene transfer using specific restriction endonucleases is a therapeutic approaches aimed at the development of a cure for Duchenne muscular dystrophy (DMD). To correct the dystrophin gene with zinc finger nucleases (ZFNs) targeting exon 50of DYS gene, we produced ZFNs proteins in bacteria and purified them. The results obtained after in vitro assays show that ZFNs produced specifically recognize a target sequence located in exon 50 of the gene DYS and can be generated in a precise manner the double strand breaks. They also show that ZFNs produced proteins can be transduced with or without agent transduction, in cultured myoblasts of patients’ Duchenne dystrophy.
14

Développement d'oligonucléotides antisens pour le traitement de la dystrophie myotonique de Steinert

Jauvin, Dominic 23 April 2018 (has links)
Le développement d’une thérapie génique pour la dystrophie myotonique de type 1 (DM1) implique l’utilisation d’un système de livraison musculaire efficace. L’évaluation d’oligonucléotides antisens (ASO) en conformation gapmer nous a permis d’identifier deux ASO, un de chimie 2’-O-méthoxyéthyle et l’autre avec des acides nucléiques bicycliques avec éthyle contraint, dont l’efficacité dans les modèles cellulaires et de souris de la DM1 était suffisante pour réduire significativement l’ARNm étendu de la DMPK. Il fut possible d’observer une réduction des foci nucléaires menant à une redistribution d’un régulateur d’épissage séquestré au noyau, ainsi corrigeant des erreurs d’épissage caractéristiques de la DM1. Plus particulièrement chez la souris DMSXL, l’injection systémique bihebdomadaire a mené à une maturation des fibres musculaires ainsi qu’au rétablissement de la force musculaire des sujets. Ce projet est la preuve de principe in vitro et in vivo qu’une thérapie génique par les ASO est concevable pour le traitement de la DM1. / A gene therapy for myotonic dystrophy type 1 (DM1) implies an effective muscular delivery method. The evaluation of antisenses oligonucleotides (ASO) enabled us to identify two gapmer ASOs, one with a 2’-O-methoxyethyl chemisty and the other with a constrained ethyl bicyclic nucleic acid, whose efficacy in DM1 cell and mouse models was sufficient to significantly reduced expanded hDMPK mRNA levels. Furthermore, reduction in DMPK induced nuclear foci resulted in redistribution of a sequestered alternative splicing regulator, leading to correction of mis-splicing events characteristic of DM1. In DMSXL mouse, biweekly systemic injection of ASOs induced muscle fiber maturation and a gain in forelimb strength. This project is the in vitro and in vivo proof of the principle that an ASO gene therapy is conceivable for treatment of DM1.
15

Correction du gène de la dystrophine avec la méthode CRISPR induced deletion (CinDel)

Iyombe, Jean-Paul 29 May 2019 (has links)
La dystrophie musculaire est une maladie génétique monogénique récessive liée au chromosome X. Elle atteint 1 garçon sur 3500 naissances mâles. Le garçon atteint de la maladie présente des troubles de la locomotion à l’âge de 3-4 ans et la perd vers l’âge de 11 ans. La mort survient entre 18-30 ans suite à des complications cardio-pulmonaires. Il n’existe pas à ce jour un traitement curatif efficace contre cette grave maladie. Nous avons développé une approche de thérapie génique appelée CRISPR-induced deletion (CinDel) pour corriger le gène DMD muté. Elle utilise deux ARNg qui ciblent les exons précédant et suivant la délétion responsable du décalage du cadre de lecture. La reconnaissance des sites ciblés par les deux ARNg permet le recrutement de la nucléase Cas9 qui génère des coupures double-brin. Les séquences exoniques et introniques situées entre les deux coupures sont ensuite délétées. Les restes des exons sont joints par la recombinaison non homologue (NHEJ) pour produire un exon hybride, rétablir le cadre de lecture et permettre la synthèse d’un edystrophine tronquée ayant une structure correcte des répétitions de type spectrine (Spectrin-Like Repeat: SLR) et des heptades. Cette approche CinDel a été utilisée dans le cadre de ce projet d’abord pour corriger le gène DMD muté dans les myoblastes d’un patient avec une délétion des exons 51-53. Les exons 50 et 54 ont été ciblés avec deux ARNg et la Spcas9 pour produire des coupures double-brin et déléter les séquences situées entre ces deux sites et produire par NHEJ un exon hybride 50-54. L’approche a également permis de corriger in vivo le gène DMD muté dans le modèle animal, la souris transgénique avec un gène DMD humain ayant une délétion de l’exon 52 (del52hDMD) en utilisant un vecteur viralAAV9 contenant le gène SpCas9 et deux ARNgs. Pour vérifier la localisation par rapport au sarcolemme de la dystrophine tronquée avec ou sans une structure correcte des SLR et des heptades, nous avons électroporé les muscles Tibialis anteriorde souris mdx/mdx avec des plasmides codant pour les gènes normal et tronqué de la dystrophine fusionnée avec le gène de l’EGFP. Les résultats de cette expérience montrent que les dystrophines tronquées et normale se localisent correctement sous le sarcolemme. En vue de réprimer efficacement le gène de la SpCas9 et éviter son expression prolongée qui peut être à la base de coupures aléatoires et inattendues (off-target effects) dans le génome, nous avons mis au point une méthode de répression appelée Hara-Kiri moléculaire. Elle utilise la méthode CinDel et consiste à cibler deux régions du gène de SpCas9 avec deux ARNg. Le recrutement de la nucléase permet à celle-ci de couper son propre gène (Hara-Kiri). La séquence située entre les deux sites de coupures est délétée. Par NHEJ, les restes du gène de SpCas9 sont joints en générant un codon stop TAA au point de jonction. Cette approche a permis de réprimer efficacement le gène de SpCas9 in vitro et in vivo / Duchenne Muscular Dystrophy (DMD) is an X-linked genetically recessive genetic disorder. It affects 1 boy out of 3500 male births. The boy with the disorder presents walking disorders at the age of 3-4 years and loses it around the age of 11. Death occurs around 18-30 years of age from cardiopulmonary complications. To date, there is no effective cure for this serious disease. We have developed a gene therapy approach called CRISPR-induced deletion (CinDel) to correct the mutated DMD gene. It uses two gRNAs that target the exons preceding and following the deletion responsible for the frame shift. The recognition of the target sites by the two gRNAs allows the recruitment of the Cas9 nuclease, which generates double-strand breaks. The exonic and intronic sequences located between the two cuts are then deleted and the remains of the exons are fused by Non-Homologous End Joining (NHEJ) to produce a hybrid exon and restore the reading frame and to allow the synthesis of the truncated dystrophin with correct SLR structure and heptads. The CinDel approach was used in this project to correct the mutated DMD gene in the myoblasts of a patient with a 51-53 deletion. Exons 50 and 54 were targeted by SpCas9 and two gRNAs and to produce double strand breaks, delete the sequences between the two cleavage sites and produce a hybrid exon 50-54 by NHEJ. This restored the normal reading frame and allowed the expression of truncated dystrophin in the patient's myotubes. The approach also made it possible to correct in vivo the mutated DMD gene in the animal model, the transgenic mouse with a human DMD gene having a deletion of exon 52 (del52hDMD) using an AAV9 viral vector containing the SpCas9 gene and two ARNgs. To verify the location with respect to the sarcolemma of truncated dystrophin with or without a correct SLR structure and heptads, we electroporated the Tibialis anterior muscles of mdx/mdx mice with the plasmids encoding the normal or the truncated dystrophin gene fused with the eGFP gene. The results of this experiment show that truncated and normal dystrophins were well localized under sarcolemma. In order to effectively repress the SpCas9 gene and avoid its prolonged expression that may be the basis of random and unexpected (off-target effects) cuts in the genome, we have developed a method of repression called molecular Hara-Kiri. It uses the CinDel method and consists of targeting two regions of the SpCas9 gene with two gRNAs. Recruiting nuclease allows it to cut its own gene (Hara-Kiri). The sequence between the two cleavage sites is deleted. The residues of the SpCas9 gene are then joined by NHEJ generating a TAA stop codon at the junction point. This approach effectively repressed the SpCas9 gene in vitro and in vivo.
16

Délivrance d'érythropoïétine canine par une glande synthétique endocrine composée de cellules stromales de la moelle osseuse autologues chez des chiens immunocompétents

Fontaine, François January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
17

Développement préclinique d'une thérapie génique pro-angiogénique combinée de l'ischémie cardiaque et du membre inférieur / Preclinical development of a combined pro-angiogenic gene therapy of myocardial and hind limb ischemia

Renaud-Gabardos, Edith 14 December 2016 (has links)
En dépit des avancées considérables dans les traitements pharmacologiques et chirurgicaux de l'ischémie critique des membres inférieurs et de l'insuffisance cardiaque ischémique, ces pathologies demeurent un problème majeur de santé publique. La thérapie génique angiogénique est apparue comme une approche attractive pour restaurer la perfusion du tissu ischémique alors que le transfert de gènes non angiogéniques permet de rétablir la fonction contractile cardiaque. Cependant la thérapie génique utilisant un seul gène thérapeutique a produit jusque là des résultats modestes en clinique; la thérapie combinée apparaît alors comme une stratégie plus prometteuse. L'efficacité de la thérapie génique nécessite des vecteurs de transfert de gènes optimisés, notamment pour fonctionner dans des conditions de stress où la traduction de la majorité des ARNm cellulaires est bloquée. En réponse au stress, un petit nombre d'ARNm est traduit par un mécanisme alternatif impliquant des IRES (Internal Ribosome Entry Site), éléments structurels des ARNm pouvant être considérés comme des activateurs traductionnels. Les IRES constituent de plus des outils biotechnologiques permettant de construire des cassettes d'expression dites "multicistroniques" exprimant des combinaisons de molécules thérapeutiques. La première étape de ma thèse a porté sur l'étude de la régulation de l'IRES du FGF1 (Fibroblast Growth Factor 1), identifié au laboratoire pour sa forte activité dans les cellules musculaires qui en fait un outil de choix pour le transfert de gènes dans le muscle squelettique ou cardiaque. Cette partie plus fondamentale nous a amenés à identifier deux protéines liées à l'IRES et au promoteur : hnRNPM et p54nrb. L'inhibition et la surexpression de ces protéines ont permis de démontrer qu'elles activent la traduction IRES-dépendante au cours de la différenciation myoblastique, et ce, de façon promoteur-dépendante. La seconde étape a été de développer, grâce à l'IRES du FGF1, un AAV (adeno-associated vector) exprimant deux facteurs angiogéniques ayant une activité synergique: FGF2 et Cyr61. Ce vecteur viral a été testé dans un modèle murin d'ischémie de la patte. Les résultats ont montré que l'AAV FGF2-Cyr61 présente un bénéfice thérapeutique important lorsqu'il est injecté à un animal ischémique, mais produit un effet délétère s'il est injecté plusieurs semaines avant la mise en place de l'ischémie. La troisième étape qui est le cœur de cette thèse a été de développer une série de lentivecteurs mono-, bi- et tricistroniques exprimant différentes molécules pro-angiogéniques et cardio-protectrices : FGF2, Cyr61, apeline et SERCA2a. Ces vecteurs ont été injectés en phase aiguë de l'infarctus du myocarde chez la souris afin d'étudier leur potentiel thérapeutique sur l'insuffisance cardiaque chronique qui se développe après plusieurs semaines. Les résultats indiquent que le lentivecteur apeline-FGF2-SERCA2a engendre un bénéfice thérapeutique significativement supérieur à celui des autres lentivecteurs testés. En particulier, les analyses échocardiographiques et d'immuno-histochimie ont permis de mettre en évidence une amélioration de la fonction contractile, une augmentation de l'angiogenèse et une diminution du remodelage cardiaque. Cette combinaison présente donc un potentiel prometteur en vue d'un essai clinique. D'autre part, une autre combinaison produisant trois facteurs sécrétés, apeline, FGF2 et Cyr61, démontre une activité très significative sur la tubulogenèse de cellules endothéliales in vitro à partir de milieux conditionnés de cardiomyocytes transduits. Ce résultat a ouvert la perspective d'augmenter l'effet thérapeutique de cellules souches mésenchymateuses (CSM) lors de l'ischémie cardiaque, en modifiant génétiquement ces CSM à l'aide du lentivecteur angiogénique apeline-FGF2-Cyr61. / Despite of considerable advances in the pharmacological and surgical treatments of critical limb ischemia and ischemic heart failure, these pathologies remain an important problem of public health. Angiogenic gene therapy appears as an attractive approach to restore ischemic tissue perfusion whereas non-angiogenic gene transfer allows improvement of cardiac contractile function. However, gene therapy using only one therapeutic gene has delivered poor results in clinical studies; combined gene therapy appears then as a more promising strategy. Gene therapy efficacy needs optimized gene transfer vectors, particularly in stress conditions where translation of the majority of cellular mRNAs is blocked. In response to stress, a small number of mRNAs is translated by an alternative mechanism involving IRESs (Internal Ribosome Entry Sites), structural elements of mRNAs that can be considered as translational enhancers. Moreover IRESs constitute biotechnological tools to design "multicistronic" cassettes, expressing combinations of therapeutic molecules. The first step of my thesis has been to study the regulation of the FGF1 (Fibroblast Growth Factor 1) IRES identified in the lab for its strong activity in muscular cells. This feature makes it a choice tool for gene transfer in skeletal or cardiac muscle. This more fundamental part led us to identify two proteins associated to the FGF1 IRES and promoter: hnRNPM and p54nrb. Knock-down or overexpression of these proteins showed that they activate IRES-dependent translation during myoblast differentiation, and in a promoter-dependent manner. The second step has been to develop, using the FGF1 IRES, an AAV (adeno-associated vector) expressing two angiogenic factors showing a synergistic activity: FGF2 and Cyr61. This viral vector has been assessed in a murin model of hind limb ischemia. Results show that the AAV expressing FGF2 and Cyr61 generates an important therapeutic benefit when injected to an ischemic animal, but produces a deleterious effect when injected several weeks before the development of ischemia. The third step, which is the heart of this thesis, was to develop a series of mono-, bi- and tricistronic lentivectors expressing different pro-angiogenic and cardio-protective molecules: FGF2, Cyr61, Apelin and Serca2a. Those vectors have been injected in acute phase of myocardium infarction in mice, in order to study their therapeutic potential on chronic heart failure developping after a few weeks. Results indicate that the Apelin-FGF2-Serca2a lentivector generates a therapeutic benefit significantly higher than the other tested lentivectors. In particular, echocardiography and immunohistochemistry analyses enabled us to highlight an improvement of contractile function, angiogenesis and a decrease of heart failure. This therapeutic combination presents a promising potential for clinical trial. Furthermore, another combination producing three secreted factors, Apelin, FGF2 and Cyr61, shows a significant stimulation of endothelial cell tubulogenesis in vitro from transduced cardiomyocytes conditioned medium. This result opens the perspective of enhancing the therapeutic effect of mesenchymal stem cells in heart ischemia, by genetically modifying those MSCs with the Apelin-FGF2-Cyr61 angiogenic lentivector.
18

Découverte et validation de nouveaux biomarqueurs de l'insuffisance cardiaque / Discovery and validation of new heart failure biomarkers

Barutaut, Manon Anne 29 September 2016 (has links)
Les maladies cardiovasculaires représentent un enjeu majeur pour la santé humaine. D'après l'OMS, ce sont même la première cause de mortalité dans le monde. Ces maladies peuvent évoluer en insuffisance cardiaque (IC), c'est-à-dire en incapacité du cœur à fournir aux organes une quantité d'oxygène suffisante. Il n'existe pas de traitement curatif pour l'insuffisance cardiaque. Des traitements de plus en plus performants ont été développés pour prendre en charge les symptômes, améliorer la qualité de vie du patient et ralentir la progression de la pathologie. La Recherche s'oriente également vers des thérapies innovantes, comme stimuler la régénération des cardiomyocytes adultes ou encore la thérapie génique. Un biomarqueur est défini comme " une caractéristique mesurée de manière objective et évaluée comme un marqueur de processus biologiques, physiologiques, pathologiques ou de réponse pharmacologique à une intervention thérapeutique ". Des biomarqueurs de l'insuffisance cardiaque sont déjà communément utilisés, en majorité sous leur forme circulante. De nombreuses études ont établi leur efficacité (diagnostic, pronostic, suivi thérapeutique) mais également leurs limitations (manque de spécificité, variabilité...). La recherche de nouveaux biomarqueurs a pour objectif de trouver des molécules performantes sans les limitations des biomarqueurs connus. Notre équipe possède plusieurs cohortes de patients, que nous avons-nous-même constitué en partenariat avec le service de cardiologie de l'hôpital universitaire Toulouse Rangueil ou grâce à des partenariats avec des équipes de recherche étrangères. Nous avons utilisé une approche de criblage sans à priori (protéome urinaire avec EC-SM) pour identifier de nouveaux biomarqueurs de l'insuffisance cardiaque. Nous avons identifié une molécule d'intérêt, l'Insulin-like growth factor binding protein 2 (IGFBP2). J'ai étudié les capacités de diagnostic et de pronostic de cette molécule pour l'insuffisance cardiaque. J'ai également contribué à des essais cliniques avec des biomarqueurs déjà connus (Galectine-3 et sST2) avec l'objectif de répondre à des problématiques nouvelles. En parallèle, j'ai participé à une étude sur un modèle murin transgénique avec une surexpression cardiospécifique d'IGFBP2 afin de comprendre le(s) mécanisme(s) d'action de cette molécule et son rôle dans la physiopathologie de l'insuffisance cardiaque. J'ai par ailleurs participé à l'étude d'une molécule découverte par l'équipe, l'apolipoprotéine O (APOO) qui est régulée et participe aux mécanismes physiopathologiques mis en place dans le cœur en cas de stress tel que le diabète ou l'obésité. Les résultats ont montré une corrélation entre l'action de l'APOO et la régulation du métabolisme lipidique, de l'apoptose et de l'autophagie. Ces trois processus jouent un rôle dans le développement de l'insuffisance cardiaque, d'où l'hypothèse de considérer l'APOO comme un biomarqueur potentiel de l'IC. Nous souhaitons utiliser les cohortes de patients IC à notre disposition pour tester/valider la capacité de diagnostic ou pronostic de cette molécule. Nous souhaitons approfondir les études cliniques autour d'IGFBP2, en étudiant des sous-groupes de patients selon l'étiologie de l'insuffisance cardiaque par exemple. En mettant en place une étude prospective, nous pourrions déterminer l'intérêt d'un dosage en série d'IGFBP2 pour le suivi thérapeutique du patient IC. De nouveaux modèles d'étude pour la Recherche fondamentale (modèles murins, lignée de cardiomyocytes H9c2) nous permettront de comprendre le rôle physiopathologique d'IGFBP2. / Cardiovascular diseases are a major concern for human health. According to the health word organization (HWO), they are the first cause of mortality. They can progress into heart failure, which is the inability of the heart to supply enough oxygen quantity for all the organs. There is no cure for heart failure, treatments more and more performing are developed to take care of symptoms, improve quality of life and stop the progression of the disease. Research is heading toward innovative therapies, like stimulating cardiomyocytes regeneration or gene therapy. A biomarker is defined as "a characteristic measured objectively and evaluated as a marker of biological, physiological, pathological processes or therapeutic response". Heart failure biomarkers are commonly used, mainly under circulating form. Several studies established their efficiency (diagnostic, prognostic, therapeutic adjustment) and their limitations (limited specificity, variability...). Discovery of new biomarkers aims to find performing molecules without those limitations. Our team has access to several cohorts of heart failure patients, our cohort (IBLOMAVED) recruited with our partnership with the cardiology unit of Toulouse University hospital and other cohorts furnished by partner teams. We use a screening approach (urinary proteome with CE-MS) to discover new biomarkers for heart failure. We identified a potential target, Insulin-like growth factor binding protein 2 (IGFBP2). I studied diagnostic and prognostic capacity of IGFBP2 in our cohorts. I participated to clinical trials with known heart failure biomarkers (Galectin-3 and sST2) in order to respond to new problematics. I also worked with transgenic mice over expressing IGFBP2 in the heart to obtain data on the possible role of IGFBP2 in the physiopathology of heart failure. The study of the apolipoprotein O (APOO) is a major research topic of the team. APOO is up-regulated in the heart during obesity or diabetes and participates to physio pathological mechanisms taking place in the heart in response to stress. The results showed a correlation between APOO function and the regulation of lipid metabolism, apoptosis and autophagy. These processes are involved in the development of heart failure, which suggests that APOO is as a potential biomarker. We intend to test/validate the diagnostic or prognostic capacity of APOO in our cohorts. We will continue our clinical trials with IGFBP2, by example investigating the prognostic capacity according to the etiology of heart failure or to the treatments received by the patients. With a prospective study, we could validate the usefulness of serial measurements of IGFBP2 for therapeutic adjustment. Novel models for fundamental research (mice, cell lines) will be used to get more information about the physio pathological role of IGFBP2.
19

Évaluation de l'angiogenèse thérapeutique par vecteurs plasmidiques dans un modèle murin d'ischémie périphérique chronique

Coutu, Marianne January 2002 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
20

Development of lentiviral vectors to study the influence of angiogenic molecules on glioma growth

Rueda, Naika 16 April 2018 (has links)
Les glioblastomes sont des tumeurs du système nerveux central hautement létaux. Ils se caractérisent par leur grande infiltration dans les tissus avoisinants. Ils modifient les vaisseaux sanguins préexistants et ils migrent d’une façon perivasculaire. Cette cooption vasculaire est un processus entraînant l’expression d’Angiopoietine-2 (Angpt2) par des cellules endothéliales et sa liaison au récepteur Tie2. Le premier objectif de cette étude était d’examiner le potentiel thérapeutique de deux protéines qui pourraient interférer avec Angpt2, à savoir Angpt3 et la partie soluble extracellulaire du récepteur Tie2 (sTie2). Le deuxième objectif était de développer des vecteurs lentiviraux capables d’exprimer ces protéines, tout en offrant la possibilité d’identifier et détruire les cellules génétiquement modifiées. À cette fin, nous avons construit un vecteur contenant une cassette bicistronique qui exprime le marqueur amélioré de la protéine fluorescente verte (EGFP) fusionnée au gène suicide provenant du virus herpès simplex de type I-thymidine kinase (HSVtk). Les cellules du gliome GL261 transduites avec ce vecteur pourraient être suivies et tuées sur demande par l’administration de la prodrogue ganciclovir, soit in vitro, soit après l'implantation dans le cerveau des souris. Malgré l’expression des hauts niveaux d’Angpt3 et de sTie2 obtenus avec ce vecteur, nous avons observé qu’Angpt3 augmente la déstabilisation capillaire et la croissance de gliomes, alors que sTie2 n’exerce aucun effet. Globalement, cette étude a permis de comprendre l’importance de la voie de signalisation de Tie2 dans le développement des gliomes et le rôle d’Angpt3, mais suggère que ni cette molécule ni sTie2 soient des agents efficaces contre les gliomes malins. Cette étude fournit également le prototype d’un vecteur lentiviral pour la thérapie génique plus sécuritaire. / Glioblastomas are highly lethal tumors of the central nervous system characterized by large spread into the surrounding tissues. They modify and migrate along pre-existing blood vessels. This vascular cooption is a process involving the release of angiopoietin-2 (Angpt2) from endothelial cells and binding to the Tie2 receptor. The first goal of this study was to examine the therapeutic potential of two proteins that could interfere with Angpt2, namely Angpt3 and the soluble extracellular domain of Tie2 (sTie2). The second goal was to develop a lentiviral vector capable of delivering such proteins while offering the possibility to identify and destroy the genetically modified cells. To this end, we designed a bicistronic construct expressing the marker enhanced green fluorescent protein (EGFP) fused to the suicide gene herpes simplex virus 1-thymidine kinase (HSVtk). GL261 glioma cells transduced with this vector could be tracked and killed on command by the administration of the prodrug ganciclovir, either in vitro or after implantation into mouse brains. High levels of Angpt3 or sTie2 could be achieved with this vector; however, Angpt3 increased capillary destabilization and glioma growth, whereas sTie2 exerted no effect. Overall, this study helps to understand the importance of the Tie2 signaling pathway in glioma development and the role of Angpt3, but suggests that neither this molecule nor sTie2 are effective agents against malignant gliomas. This study also provides a lentiviral vector design for safer gene therapy.

Page generated in 0.0596 seconds