Spelling suggestions: "subject:"ehe holocene"" "subject:"ehe olocene""
301 |
Climatic Change Causes Abrupt Shifts in Forests, Inferred from a High-resolution Lacustrine Record, Southwestern Quebec, CanadaPaquette, Nathalie January 2012 (has links)
A pollen profile from varved lake sediments sampled at 10-year intervals and spanning the past 1000 years is analyzed to understand the effects of climate change and anthropogenic activity on forests in southwestern Quebec. The forests responded rapidly to changes in temperature and precipitation during the Medieval Warm Period and Little Ice Age as well as to land-use changes associated with the European Settlement of the area. The transition into the Little Ice Age was abrupt and had significant impact on the pollen production within a couple of decades. A synthesis of this record with other high-resolution and well-dated pollen data from the conifer-hardwood forest of eastern North America shows consistent results across the whole area, indicating that very-high resolution pollen data can provide insight into multi-decadal climate variability and its impact on forest vegetation. Tree-ring records from the region show inter-annual fluctuations not always consistent between sites, while high-resolution pollen data record multi-decadal to century changes which enable us to interpret climatic effects on plant communities.
|
302 |
Changing Climate and Geographical Patterns of Taxonomic RichnessVázquez Rivera, Héctor January 2014 (has links)
The geographic variation of taxonomic richness may be directly determined by climate through contemporaneous/ecological processes, versus other (e.g., historical/evolutionary processes) that happen to be collinear with contemporaneous climate. In Chapter 1 I evaluated hypotheses from both groups of explanations in North America. If contemporaneous climate controls patterns of richness, then richness should vary with climate through time in the same way that richness varies with current climate through space. Over the last ca. 11,000 yr, richness-temperature relationships remained reasonably constant. Between 12,000 and 14,000 yr BP, when climate fluctuated rapidly, richness gradients as a function of temperature were significantly shallower. If historical climate over the last 21,000 years determines patterns of richness, then historical climate should be a better predictor of richness than contemporaneous climate. I rejected historical-climate as a better predictor of richness. Contemporaneous climate stands as the most plausible explanation for contemporaneous patterns of richness, at least over the last 11,000 yr. In Chapter two, I tested the prediction that richness of most taxa should increase with temperature in all but the warmest and driest areas. Climate warming during Pleistocene-Holocene transition led richness increases in wet areas, but richness declines in dry regions, as expected from current richness-climate relationships. A decline in small mammal species richness in Northern California since the late Pleistocene was expected from the current richness-climate relationship for this group in North America. These results contest the view that future global warming may lead to species extinction rates that would qualify as the sixth mass extinction in the history of the earth. In chapter three, I first tested the hypothesis that richness gradients mainly reflect the sum of individual species climatic tolerances. I tested this hypothesis for birds, mammals and trees native to eastern North America (ENA, where there are no major barriers to dispersal). The number of species present in any given area in ENA is usually much smaller than the number of species in the continental pool that tolerate the climatic conditions in that area. Second, I tested several explanations for patterns of unfilled potential richness. Unfilled potential richness is inconsistent with postglacial dispersal lags, climatic variability since the Last Glacial Maximum, or with biotic interactions. In contrast, unfilled richness is highly consistent with a probabilistic model of species climate occupancy. Individual species climatic tolerances is not the process generating the main current patterns of richness, nor are post-glacial dispersal lags, climatic variability since the LGM or biotic interactions. This thesis is consistent with the hypothesis that contemporaneous climate directly controls spatial patterns of richness. Generally, there seems to be little need to invoke historical processes as determinants of current gradients of richness.
|
303 |
Pleistocene and Holocene Climate Reconstruction at Two Moose Lake, Central Yukon, Using Stable Isotopes and 14C-DOC Radiocarbon from Ice wedges, Pore Ice and Buried SedimentsGrinter, Michael January 2017 (has links)
The objective of this thesis was to reconstruct the Sedimentary, Cryostratigraphic and Paleoclimatic history of Two Moose Lake, central Yukon using a new analytical technique for dating ice wedges using Dissolved Organic Carbon (DOC). During two field seasons in August 2013 and April 2014, 442 samples were collected from a newly exposed headwall of a thaw slump with 7 ice wedges and over 4m of sediment. Using cryostratigraphy, granulometry, stable isotopes and 18 14C-DOC ages, 4 stratigraphic units were delineated: 1) a sediment-rich ice layer inferred to be of glacial origin (>32ka BP); 2) a silt-rich layer deposited during the Holocene Thermal Maximum (~10 to 8.2ka BP); 3) a silt with organics layer deposited from ~8ka to 6.4ka BP, and 4) a paleo-active layer and modern active layer. 14C-DOC dating indicated two periods of ice wedge activity at Two Moose Lake, the first during the late Pleistocene (31,608 to 12,990 yr cal BP) and from the mid-Holocene to present (6,328 to 892 yr cal BP). The presence of late-Pleistocene aged ice wedges at Two Moose Lake supports the common belief of an unglaciated central Yukon during the most recent McConnell glaciation from 29.6 to 13ka BP. Values for δ18O from the Holocene- and Pleistocene-aged ice wedges were 2-3‰ and 5-9‰ depleted compared those of modern precipitation from Mayo (-22.32‰). Medium-resolution (2-4cm) sampling along with multiple 14C-DOC samples along a transect allowed for the creation of a continuous δ18O and temperature age profile to be developed from multiple ice wedges, showing a strong consistency between overlapping ages. The reconstruction of the paleoclimate of Two Moose lake is consistent with known events from southern Yukon including the Boutellier Inderstadial, a cold unglaciated central Yukon during the McConnell Glaciation, warming during the Holocene Thermal Maximum (HTM) followed by an extreme cooling event at 8.2ka BP, a cooling event at 4.2ka BP, and the subsequent warming to present temperatures.
|
304 |
Human-Ecosystem Interactions in Relation to Holocene Climate Change in Port Joli Harbour, Southwestern Nova Scotia, CanadaNeil, Karen January 2013 (has links)
A high-resolution pollen record from Path Lake (43°87’00”N, 64°92’42”W, 10m asl) in Port Joli Harbour, Nova Scotia, Canada, was used to provide a paleo-ecological perspective on Holocene climate and vegetation variability within the context of local archaeological research. Pollen assemblages in the early Holocene reflect a post-glacial forest dominated by Pinus, Tsuga, Betula and Quercus. Shallow water aquatic and wetland taxa increased after 3400 cal. yr. BP in response to wetter climatic conditions. Increased settlement intensity of native inhabitants coincides with late-Holocene climate change at a regional scale, suggesting that environmental conditions may have influenced prehistoric human activities. European settlement, after 350 cal. yr. BP, was marked by a rise in Ambrosia, and peak charcoal accumulation rates after this time showed evidence of human disturbance on the landscape. This study suggests that environmental changes affected human exploitation of the landscape, and human activity altered forest composition in the late Holocene.
|
305 |
Lake condition changes of a boreal lake over the past ca. 6500 years based on varve geochemistryLigtenberg, Jora January 2017 (has links)
The purpose of this study was to assess changes in the in-lake conditions of lake Kassjön, northern Sweden, in response to environmental and climate changes over the past ca. 6500 years. Sediment concentrations of different elements and biogenic silica (bSi) were measured with wavelength dispersive X-ray fluorescence spectrometry (XRF) and Fourier transform infrared spectroscopy (FTIR), respectively. The lake-water total organic carbon (LWTOC) content was inferred based on near-infrared spectroscopy (NIRS). The marine sediment was distinguished from the lacustrine sediment by higher dry bulk density, lithogenic element concentrations and Br content, and lower bSi concentrations. After lake formation, the dry bulk density, lithogenic element concentrations and metal contents decreased, while organic matter (OM), bSi and LWTOC increased. The main reasons for these changes are soil development and vegetation establishment. Spruce immigration around 3000 BP induced considerable changes to the sediment concentrations indicative of increased erosion versus weathering, and LWTOC declined. These changes are mainly related the different characteristics of spruce compared to birch. Human influences in the catchment were also clearly visible, but the rest of the sediment sequence demonstrated that natural changes can be of a similar magnitude. Overall, relatively small-scale, catchment specific processes seem to be more important for changes in the lake conditions than general climate change.
|
306 |
Coherent Holocene Expansion of a Tropical Andean and African GlacierVickers, Anthony Cole January 2018 (has links)
Thesis advisor: Jeremy D. Shakun / Glaciers in the tropics have undergone significant retreat in the past several decades, but the magnitude of this retreat in the long-term context of the Holocene has mostly been qualitatively assessed. This study produces a quantitative reconstruction of Holocene glacier extent relative to today from the Quelccaya Ice Cap, Peru, and the Rwenzori Mountains of east Africa. I use measurements of in situ 14C and 10Be from bedrock that was recently exposed by glacier retreat to constrain possible bedrock exposure and erosion histories at each site. The results are strikingly similar in both areas, and suggest that ice was generally smaller than today during the first half of the Holocene and larger than today for most, if not all, of the last several millennia. These findings give evidence toward a coherent Holocene expansion of glaciers across the tropics, and suggest that recent retreat is unusual in a multi-millennial context. / Thesis (MS) — Boston College, 2018. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
|
307 |
Late Holocene Climate Variability From Northern Gulf of Mexico Sediments: Merging Inorganic and Molecular Organic Geochemical ProxiesRichey, Julie N 12 July 2010 (has links)
Accurate reconstruction of natural climate variability over the past millennium is critical for predicting responses to future climate change. In order to improve on current understanding of climate variability in the sub-tropical North Atlantic region over the past millennium, a rigorous study of Gulf of Mexico (GOM) sea surface temperature (SST) variability was conducted using both inorganic (foraminiferal Mg/Ca) and molecular organic (TEX86) geochemical proxies. In addition to generating multiple high-resolution climate records, the uncertainties of the SST proxies are rigorously assessed.
There are 3 major research questions addressed: (1) What was the magnitude of GOM SST variability during the past 1,000 years, particularly during large-scale climate events such as the Little Ice Age (LIA) and the Medieval Warm Period (MWP). (2) Is the SST signal reproducible within the same sediment core, among different northern GOM basins, and using different geochemical SST proxies? (3) What are the ecological controls on the paleothermometers used to reconstruct SST variability in the GOM? Can differences in the ecology (i.e. seasonal distribution, depth habitat, etc.) of distinct paleothermometers be exploited to gain insight into changes in upper water column structure or seasonality in the GOM during the LIA and MWP?
The major findings include: (1) The magnitude of temperature variability in the GOM over the past millennium is much larger than that estimated from Northern Hemisphere temperature reconstructions. The MWP (1400-900 yrs BP) was characterized by SSTs in the GOM that were similar to the modern SST, while the LIA (400-150 yrs BP) was marked by a series of multidecadal intervals that were 2-2.5°C cooler than modern. (2) This LIA cooling was replicated in the Mg/Ca-SST records from three different well-dated northern GOM basins (Pigmy, Garrison and Fisk Basins), as well as in two different geochemical proxies. (3) It is determined that foraminiferal test size has a significant effect on shell geochemistry. Using core-top calibration, discrepancies in the seasonal/depth habitats between different planktonic Foraminifera, and between Foraminifera and Crenarchaeota are inferred. Downcore differences are used to make inferences about changes in GOM mixed layer depth and seasonality over the past millennium.
|
308 |
Holocene vegetation dynamics and disturbance regimes in north Patagonia Argentina (40°S)Alvarez Barra, Valentina 29 April 2020 (has links)
No description available.
|
309 |
Environmental and Climate Change During Holocene in Hjaltadalur, Skagafjördur, North Iceland - Peat core analysis and pollen identificationN. Johansson, Jenny January 2013 (has links)
Northern Iceland is a place of great interest for climatic studies. The land was fairly untouched by human activity until the Landnám period (870-930 AD), when humans first started to colonize the island. The study site is situated in the valley of Hjaltadalur close to the village Hólar, which after the settlement of humans became the religious and culture center of northern Iceland. Peat sediment cores were drilled to gain knowledge of the climatic fluctuations and environmental development in the area. Peat is a perfect archive of climatic and environmental changes due to its ability to preserve material like pollen, tephra and insect fossils which can be identified and analyzed to gain a better understanding of the past climate. Out of four possible drilling sites in the valley of Hjaltadalur, northern Iceland, Viðvik peat land was chosen for climatic analyses. Pollen, loss on ignition, tephra and radiocarbon dating analyses were performed on the peat material and samples for future macrofossil analyses were collected. The analyses provided useful information and insights into temperature fluctuations during the late Holocene, which could be correlated with other palaeoclimate research made in the past decades in the northern regions of Iceland. The pollen diagrams presented in this thesis show a transition from a warm and dry forestlike landscape to a cooler, more humid, open landscape during the last 5000 years. This visible transition, which contributed to a reduction of the birch population, started before the european settlement and thus implies that humans were not solely responsible for the birch decline in Iceland after the Landnám period (870-930 AD).
|
310 |
Reconstruction of Holocene atmospheric mineral dust deposition from raised peat bogs in south–central SwedenSjöström, Jenny January 2018 (has links)
Atmospheric mineral dust plays a dynamic role in the climate system acting both as a forcing and a feedback mechanism. To date, the majority of paleodust studies have been conducted on marine sediments or polar ice cores, while terrestrial deposition has been less studied. As such, it is important to produce new terrestrial Holocene paleo–dust records and fill existing regional gaps. Ombrotrophic (atmospherically–fed) peat bogs can be used to reconstruct dust deposition through elemental chemistry analysis. Multi–elemental data sets are commonly used infer net dust deposition rates, source changes, grain size, and mineral composition. Mineralogical identification of dust particles is particularly important because it allows both provenance tracing and increased understanding in climate and ecosystem feedbacks. Establishing mineralogy from elemental data of mixed mineral matrixes can however be challenging. X–ray diffraction analysis (XRD) is a standard technique for mineral identification which ideally requires removal of organic matter (OM). Therefore, a test procedure was undertaken where common OM removal methods were evaluated on bulk peat samples was therefore undertaken. The results showed that combustion at 500°C was most efficient in removing OM, while leaving the majority of minerals intact, but not all. In this Licenciate thesis, early result of a paleodust study from Draftinge Mosse, southern Sweden, are also outlined. Here, the method development mentioned above was applied, enabling a combination of elemental data with mineralogy. Future work includes minor and trace element analysis by ICP–AES and ICP–MS, evaluation of the reproducibility of single core reconstructions, tests of some of the methodological assumptions used in previous paleodust studies, source tracing and paleodust reconstruction from a second site (Gällsered Mosse). / Atmosfäriskt mineraldamm, mineralpartiklar som lyfts upp i atmosfären och avsätts via eoliska processer, spelar en komplex roll i klimatsystemet då partiklarna påverkar klimatet, samtidigt som rådande klimat också påverkar partikelmängden. De flesta hittills genomförda mineraldamms- studier har utförts på marina sediment eller iskärnor trots att mineraldammspartiklar i störst utsträckning deponeras på kontinenterna. Ombrotrofa mossar (högmossar) kan användas för att rekonstruera avsättning av mineraldamm över tid genom geokemiska analyser på olika djup i torvkärnor. Den kemiska sammansättningen ger information som kan användas för att härleda variationer i partikelmängd, källområden, kornstorlek, samt mineralogisk sammansättning. Bestämning av mineralen är av särskild vikt då det möjliggör identifikation av partiklarnas källområden samt ger kunskap om partiklarnas del i klimat- och ekosystem processer. Att via geokemiska data identifiera mineral prover av blandad sammansättning är dock utmanande, särskilt då många mineral har en liknande kemisk sammansättning. Röntgen diffraktions analys (XRD) är en standardmetod inom berggrundsgeologi för att identifiera mineral, som här används på torvprover. Metoden är icke-destruktiv, men kräver att provet är relativt rent från amorfa faser, så som organiskt material. Då torv innehåller stora mängder organiskt material (>98 %), som dessutom karaktäriseras av att vara svårnedbrutet, utformades ett testprotokoll för att studera vilken metod som är bäst lämpad för att ta bort organiskt material från denna specifika jordtyp. Resultaten från genomförda tester visade att förbränning (500°C) är mest effektivt och även lämnade en majoritet av mineralen intakta, dock inte alla. I denna licenciatavhandling beskrivs även de övergripande målen med min forskning samt tidiga resultat från en mineraldammstudie från Draftinge mosse (Småland), där resultaten från metodstudien ovan applicerats och kombinerats med andra geokemiska data. Vidare arbete inom detta doktorandprojekt kommer innefatta ytterligare geokemiska analyser (spårämnesanalys med ICP-MS och ICP-AES) samt identifiering av källområden. Dessutom kommer ytterligare en mosse (Gällsered mossse) att studeras för förändringar i avsättning av mineraldamm under de senaste 7000 åren.
|
Page generated in 0.0481 seconds