• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 80
  • 46
  • 45
  • 34
  • 10
  • 8
  • 8
  • 7
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 639
  • 639
  • 153
  • 110
  • 101
  • 98
  • 97
  • 78
  • 75
  • 61
  • 50
  • 46
  • 46
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Energy Carrier Transport In Surface-Modified Carbon Nanotubes

Ryu, Yeontack 14 March 2013 (has links)
Carbon nanotubes are made into films or bulks, their surface or junction morphology in the networks can be modified to obtain desired electrical transport properties by various surface modification methods. The methods include incorporation of organic molecules or inorganic nanoparticles, debundling of nanotubes by dispersing agents, and microwave irradiation. Because carbon nanotubes have unique carrier transport characteristics along a sheet of graphite in a cylindrical shape, the properties can be dramatically changed by the modification. This is ideal for developing high-performance materials for thermoelectric and photovoltaic energy conversion applications. In this research, decoration of various organic/inorganic nanomaterials on carbon nanotubes was employed to enhance their electrical conductivity, to improve thermoelectric power factor by modulating their electrical conductance and thermopower, or to obtain n-type converted carbon nanotube. The electrical conductivity of double-wall nanotubes (DWNTs) decorated with tetrafluoro-tetracyanoquinodimethane (F4TCNQ) was increased up to 5.9 × 10^5 S/m. The sheet resistances were measured to be 42 Ω/sq at 75% of transmittance for HNO3/SOCl2-treated DWNT films, making their electrical conductivities 200~300% better than those of the pristine DWNT films. A series of experiments at different ion concentrations and reaction time periods were systematically performed in order to find optimum nanomaterial formation conditions and corresponding electronic transport changes for better thermoelectric power factor. For example, the thermoelectric power factors were improved by ~180% with F4TCNQ on DWNTs, ~200% with Cu on SWNTs, and ~140% with Fe on single-walled nanotubes (SWNTs). Also SWNTs was converted from p-type to n-type with a large thermopower (58 μV/K) by using polyethyleneimine (PEI) without vacuum or controlled environment. This transport behavior is believed to be from charge interactions resulted from the difference between the work functions/reduction potentials of nanotubes and nanomaterials. In addition, different dispersing agents were utilized with DWNT and SWNTs to see a debundling effect in a film network. The highest electrical conductivity of ~1.72×10^6 S/m was obtained from DWNT film which was fabricated with a nanotube solution dispersed by chlorosulfonic acid. Debundling of nanotubes in the film network has been demonstrated to be a critical parameter in order to get such high electrical property. In the last experiment, Au nanoparticle decoration on carbon nanotube bundle was performed and a measurement of themophysical properties has done before and after modifying carbon nanotube surface. Carbon nanotube bundle, herein, was bridged on microdevice to enable the measurement work. This study demonstrates a first step toward a breakthrough in order to extract the potential of carbon nanotubes regarding electron transport properties.
172

A Multiscale Model of the Enhanced Heat Transfer in a CNT-Nanofluid System

January 2011 (has links)
Over the last decade, much research has been done to understand the role of nanoparticles in heat transfer fluids. While experimental results have shown "anomalous" thermal enhancements and non-linear behavior with respect to CNT loading percentage, little has been done to replicate this behavior from an analytical or computational standpoint. This study is aimed towards using molecular dynamics to augment our understanding of the physics at play in CNT-nanofluid systems. This research begins with a heat transfer study of individual CNTs in a vacuum environment. Temperature gradients are imposed or induced via various methods. Tersoff and AIREBO potentials are used for the carbon-carbon interactions in the CNTs. Various chirality CNTs are explored, along with several different lengths and temperatures. The simulations have shown clear dependencies upon CNT length, CNT chirality, and temperature. Subsequent studies simulate individual CNTs solvated in a simple fluidic box domain. A heat flux is applied to the domain, and various tools are employed to study the resulting heat transfer. The results from these simulations are contrasted against the earlier control simulations of the CNT-only domain. The degree by which the solvation dampens the effect of physical parameters is discussed. Effective thermal conductivity values are computed, however the piecewise nature of the temperature gradient makes Fourier's law insufficient in interpretting the heat transfer. Nevertheless, the computed effective thermal conductivities are applied to classical models and better agreement with experimental results is evident. Phonon spectra of solvated and unsolvated CNTs are compared. However, a unique method utilizing the Irving-Kirkwood relations reveals the spatially-localized heat flux mapping that fully illuminates the heat transfer pathways in the solid-fluid composite material. This method confirms why conventional models fail at predicting effective thermal conductivity. Specifically, it reveals the volume of influence that the CNT has on its surrounding fluid.
173

Probabilistic Determination of Thermal Conductivity and Cyclic Behavior of Nanocomposites via Multi-Phase Homogenization

Tamer, Atakan 16 September 2013 (has links)
A novel multiscale approach is introduced for determining the thermal conductivity of polymer nanocomposites (PNCs) reinforced with single-walled carbon nanotubes (SWCNTs), which accounts for their intrinsic uncertainties associated with dispersion, distribution, and morphology. Heterogeneities in PNCs on nanoscale are identified and quantified in a statistical sense, for the calculation of effective local properties. A finite element method computes the overall macroscale properties of PNCs in conjunction with the Monte Carlo simulations. This Monte Carlo Finite Element Approach (MCFEA) allows for acquiring the randomness in spatial distribution of the nanotubes throughout the composite. Furthermore, the proposed MCFEA utilizes the nanotube content, orientation, aspect ratio and diameter inferred from their statistical information. Local SWCNT volume or weight fractions are assigned to the finite elements (FEs), based on various spatial probability distributions. Multi-phase homogenization techniques are applied to each FE to calculate the local thermal conductivities. Then, the Monte Carlo simulations provide the statistics on the overall thermal conductivity of the PNCs. Subsequently, dispersion characteristics of the nanotubes are assessed by incorporating nanotube agglomerates. In this regard, a multi-phase homogenization method is developed for enhanced accuracy and effectiveness. The effect of the nanotube orientation in a polymer is studied for the cases where the SWCNTs are randomly oriented as well as longitudinally aligned. The influence of voids existing in the polymer is investigated on the thermal conductivity, to capture the uncertainties in PNCs more extensively. Further, a unique damage evaluation model is proposed to assess the degradation of PNCs when subjected to thermal cycling. The growth in void content is represented with a Weibull-based equation, to quantify the deterioration of the thermal and mechanical properties of PNCs under thermal fatigue. In addition, the MCFEA considers the interface resistance of the carbon nanotubes as one of the key factors in the thermal conductivity of nanocomposites. Parametric studies are performed comprehensively. The numerical results obtained are compared with available analytical techniques at hand and with the data from pertinent independent experimental studies. It is found that the proposed MCFEA is capable of estimating the thermal conductivity with good accuracy.
174

Thermal conductivity Measurement of PEDOT:PSS by 3-omega Technique

Faghani, Farshad January 2010 (has links)
Conducting polymers (CP) have received great attention in both academic and industrial areas in recent years. They exhibit unique characteristics (electrical conductivity, solution processability, light weight and flexibility) which make them promising candidates for being used in many electronic applications. Recently, there is a renewed interest to consider those materials for thermoelectric generators that is for energy harvesting purposes. Therefore, it is of great importance to have in depth understanding of their thermal and electrical characteristics. In this diploma work, the thermal conductivity of PEDOT:PSS is investigated by applying 3-omega technique which is accounted for a transient method of measuring thermal conductivity and specific heat. To validate the measurement setup, two benchmark substrates with known properties are explored and the results for thermal conductivity are nicely in agreement with their actual values with a reasonable error percentage. All measurements are carried out inside a Cryogenic probe station with vacuum condition. Then a bulk scale of PEDOT:PSS with sufficient thickness is made and investigated. Although, it is a great challenge to make a thick layer of this polymer since it needs to be both solid state and has as smooth surface as possible for further gold deposition. The results display a thermal conductivity range between 0.20 and 0.25 (W.m-1.K-1) at room temperature which is a nice approximation of what has been reported so far. The discrepancy is mainly due to some uncertainty about the exact value of temperature coefficient of resistance (TCR) of the heater and also heat losses especially in case of heaters with larger surface area. Moreover, thermal conductivity of PEDOT:PSS is studied over a wide temperature band ranging from 223 - 373 K.
175

Establishment of Relationships between Coating Microstructure and Thermal Conductivity in Thermal Barrier Coatings by Finite Element Modelling

Gupta, Mohit January 2010 (has links)
Plasma sprayed Thermal Barrier Coating systems (TBCs) are commonly used for thermal protection of components in modern gas turbine application such as power generation, marine and aero engines. The material that is most commonly used in these applications is Yttria Partially Stabilized Zirconia (YPSZ) because of this ceramic’s favourable properties, such as low thermal conductivity, phase stability to high temperature, and good erosion resistance. The coating microstructures in YPSZ coatings are highly heterogeneous, consisting of defects such as pores and cracks of different sizes which determine the coating’s final thermal and mechanical properties, and the service lives of the coatings. Determination of quantitative microstructure–property correlations is of great interest as experimental procedures are time consuming and expensive. Significant attention has been given to this field, especially in last fifteen years. The usual approach for modelling was to describe various microstructural features in some way, so as to determine their influence on the overall thermal conductivity of the coating. As the analytical models over-simplified the description of the defects, various numerical models were developed which incorporated real microstructure images.This thesis work describes two modelling approaches to further investigate the relationships between microstructure and thermal conductivity of TBCs. The first modelling approach uses a combination of a statistical model and a finite element model which could be used to evaluate and verify the relationship between microstructural defects and thermal conductivity. The second modelling approach uses the same finite element model along with a coating morphology generator, and can be used to design low thermal conductivity TBCs. A tentative verification of both the approaches has been done in this work.
176

Measurement and Characterization of Heat and Mass Diffusion in PEMFC Porous Media

Unsworth, Grant January 2012 (has links)
A single polymer electrolyte membrane fuel cell (PEMFC) is comprised of several sub-millimetre thick layers of varying porosity sandwiched together. The thickness of each layer, which typically ranges from 10 to 200μm, is kept small in order to minimize the transport resistance of heat, mass, electrons, and protons, that limit reaction rate. However, the thickness of these materials presents a significant challenge to engineers characterizing the transport properties through them, which is of considerable importance to the development and optimization of fuel cells. The objective of this research is to address the challenges associated with measuring the heat conduction and gas diffusion transport properties of thin porous media used in PEMFCs. An improvement in the accuracy of the guarded heat flow technique for measuring thermal conductivity and the modified Loschmidt Cell technique for measuring gas diffusivity are presented for porous media with a sub-millimetre thickness. The improvement in accuracy is achieved by analyzing parameters in each apparatus that are sensitive to measurement error and have the largest contribution to measurement uncertainty, and then developing ways to minimize the error. The experimental apparatuses are used to investigate the transport properties of the gas diffusion layer (GDL) and the microporous layer (MPL), while the methods would also be useful in the study of the catalyst layer (CL). Gas diffusion through porous media is critical for the high current density operation of a PEMFC, where the electrochemical reaction becomes rate-limited by the diffusive flux of reactants reaching reaction sites. However, geometric models that predict diffusivity of the GDL have been identified as inaccurate in current literature. Experimental results give a better estimate of diffusivity, but published works to date have been limited by high measurement uncertainty. In this thesis, the effective diffusivity of various GDLs are measured using a modified Loschmidt cell and the relative differences between GDLs are explained using scanning electron microscopy and the method of standard porosimetry. The experimental results from this study and others in current literature are used to develop a generalized correlation for predicting diffusivity as a function of porosity in the through-plane direction of a GDL. The thermal conductivity and contact resistance of porous media are important for accurate thermal analysis of a fuel cell, especially at high current densities where the heat flux becomes large. In this thesis, the effective through-plane thermal conductivity and contact resistance of the GDL and MPL are measured. GDL samples with and without a MPL and coated with 30%-wt. PTFE are measured using the guarded steady-state heat flow technique described in the ASTM standard E 1225-04. Thermal contact resistance of the MPL with the iron clamping surface was found to be negligible, owing to the high surface contact area. Thermal conductivity and thickness of the MPL remained constant for compression pressures up to 15bar at 0.30W/m°K and 55μm, respectively. The thermal conductivity of the GDL substrate containing 30%−wt. PTFE varied from 0.30 to 0.56W/m°K as compression was increased from 4 to 15bar. As a result, the GDL contain- ing MPL had a lower effective thermal conductivity at high compression than the GDL without MPL. At low compression, differences were negligible. The constant thickness of the MPL suggests that the porosity, as well as heat and mass transport properties, remain independent of the inhomogeneous compression by the bipolar plate. Despite the low effective thermal conductivity of the MPL, thermal performance of the GDL can be improved by exploiting the excellent surface contact resistance of the MPL while minimizing its thickness.
177

Long-term matric suction measurements in highway subgrades

Nguyen, Quan 17 May 2006 (has links)
The performance of Thin Membrane Surface (TMS) highways is largely controlled by the strength of the subgrade soil which in turn is a function of the soil suction (Fredlund and Morgenstern, 1977). Thermal conductivity suction sensors can be used to indirectly measure in situ matric suction. <p>Thirty two (32) thermal conductivity sensors were installed under Thin Membrane Surface (TMS) in two highway locations; namely, Bethune and Torquay, Saskatchewan, in September 2000. The sensors were installed beneath the pavement, shoulder and side-slope to monitor matric suction and temperature changes with time. The monitoring system at Bethune was damaged after two years of operation. The thermal conductivity sensors at Torquay all appear to have been working well and data are still being collected.<p>Other attempts had been made in the past to use thermal conductivity sensors for field suction measurement, but all were terminated within a short period of time due to limitations associated with the equipment. The long-term suction measurement at the Torquay site is unique and provides valuable field data. <p>This research project presents and interprets the long-term matric suction measurements made between the years 2000 to 2005 at the Torquay site and from 2000 to 2002 at the Bethune site. To help in the interpretation of the data, a site investigation was undertaken along with a laboratory testing program that included the measurement of Soil-Water Characteristic Curves (SWCC). As well, a limited laboratory study was undertaken on several new thermal conductivity matric suction sensors. <p>The matric suction readings in the field showed a direct relationship to rainfall and regional evaporation conditions at the test sites. At the Bethune and Torquay test sites, the changes in matric suctions appeared to be mainly due to the movement of moisture through the edge of the road. Relatively constant equilibrium suctions were encountered under the driving-lanes. Conversely, matric suctions under the side-slopes were found to vary considerably with time and depth. Matric suctions under the driving-lanes ranged from 20 to 60 kPa throughout the years. Matric suctions on the side-slopes changed from 100 to 1500 kPa over the years. <p>The greatest variation of soil suctions occurred in the month of April from location to location in the subgrade. The soil suctions became less variable in June while larger variations again occurred from July to October. <p>The matric suction measurements obtained from the thermal conductivity sensors showed a general agreement with the values estimated using the soil-water characteristic curves, SWCC, measured in the laboratory.
178

Thermal Modeling and Characterization of Nanoscale Metallic Interconnects

Gurrum, Siva P. 12 January 2006 (has links)
Temperature rise due to Joule heating of on-chip interconnects can severely affect performance and reliability of next generation microprocessors. Thermal predictions become difficult due to large number of features, and the impact of electron size effects on electrical and thermal transport. It is thus necessary to develop efficient numerical approaches, and accurate metal and dielectric thermal characterization techniques. In this research, analytical, numerical, and experimental techniques were developed to enable accurate and efficient predictions of interconnect temperature rise. A finite element based compact thermal model was developed to obtain temperature rise with fewer elements and acceptable accuracy. Temperature drop across the interconnect cross-section was ignored. The compact model performed better than standard finite element model in two and three-dimensional case studies, and the predictions for a real world structure agreed closely with experimentally measured temperature rise. A numerical solution was developed for electron transport based on the Boltzmann Transport Equation (BTE). This deterministic technique, based on the path integral solution of BTE within the relaxation time approximation, free electron model, and linear response, was applied to a constriction in a finite size thin metallic film. A correlation for effective conductance was obtained for different constriction sizes. The Atomic Force Microscope (AFM) based Scanning Joule Expansion Microscopy (SJEM) was used to develop a new technique to measure thermal conductivity of thin metallic films in the size effect regime. This technique does not require suspended metal structures, and thus preserves the original electron interface scattering characteristics. The thermal conductivities of 43 nm and 131 nm gold films were extracted to be 82 W/mK and 162 W/mK respectively. These measurements were close to Wiedemann-Franz Law predictions and are significantly smaller than the bulk value of 318 W/mK due to electron size effects. The technique can potentially be applied to interconnects in the sub-100 nm regime. A semi-analytical solution for the 3-omega method was derived to account for thermal conduction within the metallic heater. It is shown that significant errors can result when the previous solution is applied for anisotropic thermal conductivity measurements.
179

Thermal Transport in III-V Semiconductors and Devices

Christensen, Adam Paul 31 July 2006 (has links)
It is the objective of this work to focus on heat dissipation in gallium nitride based solid-state logic devices as well as optoelectronic devices, a major technical challenge. With a direct band gap that is tunable through alloying between 0.7-3.8 eV, this material provides an enabling technology for power generation, telecommunications, power electronics, and advanced lighting sources. Previously, advances in these areas were limited by the availability of high quality material and growth methods, resulting in high dislocation densities and impurities. Within the last 40 years improvements in epitaxial growth methods such as lateral epitaxial overgrowth (LEO), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), and metal organic chemical vapor deposition (MOCVD), has enabled electron mobilities greater than 1600 cm2V/s, with dislocation densities less than 109/cm2. Increases in device performance with improved materials have now been associated with an increase in power dissipation (>1kW/cm2) that is limiting further development. In the following work thermophysical material of III-V semiconducting thin films and associated substrates are presented. Numerical modeling coupled with optical (micro-IR imaging and micro-Raman Spectroscopy) methods was utilized in order to study the heat carrier motion and the temperature distribution in an operating device. Results from temperature mapping experiments led to an analysis for design of next generation advancements in electronics packaging.
180

An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of aqueous suspensions of multi-walled carbon nanotubes

Garg, Paritosh 15 May 2009 (has links)
Through past research, it is known that carbon nanotubes have the potential of enhancing the thermal performance of heat transfer fluids. The research is of importance in electronics cooling, defense, space, transportation applications and any other area where small and highly efficient heat transfer systems are needed. However, most of the past work discusses the experimental results by focusing on the effect of varying concentration of carbon nanotubes (CNTs) on the thermal performance of CNT nanofluids. Not much work has been done on studying the effect of processing variables. In the current experimental work, accurate measurements were carried out in an effort to understand the impact of several key variables on laminar flow convective heat transfer. The impact of ultrasonication energy on CNT nanofluids processing, and the corresponding effects on flow and thermal properties were studied in detail. The properties measured were viscosity, thermal conductivity and the convective heat transfer under laminar conditions. Four samples of 1 wt % multi walled carbon nanotubes (MWCNT) aqueous suspensions with different ultrasonication times were prepared for the study. Direct imaging was done using a newly developed wet-TEM technique to assess the dispersion characteristics of CNT nanofluid samples. The results obtained were discussed in the context of the CNT nanofluid preparation by ultrasonication and its indirect effect on each of the properties. It was found that the changes in viscosity and enhancements in thermal conductivity and convective heat transfer are affected by ultrasonication time. The maximum enhancements in thermal conductivity and convective heat transfer were found to be 20 % and 32 %, respectively, in the sample processed for 40 minutes. The thermal conductivity enhancement increased considerably at temperatures greater than 24 °C. The percentage enhancement in convective heat transfer was found to increase with the axial distance in the heat transfer section. Additionally, the suspensions were found to exhibit a shear thinning behavior, which followed the Power Law viscosity model.

Page generated in 0.0659 seconds