• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 17
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 239
  • 239
  • 82
  • 77
  • 55
  • 50
  • 39
  • 34
  • 32
  • 32
  • 30
  • 28
  • 27
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Optimalizace desky plošného spoje pro výkonovou LED / Optimization of the printed circuit board for power LED

Schenk, David January 2013 (has links)
This diploma thesis deals with the problems of heat transfer on printed circuit boards. The first part consists of a theoretical analysis of the principles of conduction of heat in different environments, comparing the properties of common type’s base materials for PCBs in terms of thermal properties and focuses on heat transfer from the chip. In the following part they are general information about the program ANSYS ® Workbench ™. Next part consists of the basic designs of PCBs and their improving. PCBs thermal properties for different configurations are verified with calculations, simulations and practical measurements. In the last part there are created design recommendations for PCBs design based on the comparison of the results of initial proposals and proposals to improvements.
212

Novel materials for heat dissipation in semiconductor technologies

Streb, Fabian 14 August 2018 (has links)
Thermal management is a major bottleneck for the next-but-one generation of semiconductor devices, especially the performance of SiC and GaN devices is limited by heat dissipation. This thesis evaluates four new packaging concepts with regards to thermal management: Diamond based substrates, phase change materials, Cu-Graphene composite films and anisotropic heat dissipation. Anisotropic heat dissipation is shown to be the most auspicious concept. A metal-matrix composite baseplate for a high performance power module using annealed pyrolytic graphite is created and evaluated. The baseplate shows a locally increased heat dissipation compared to a plain metal baseplate by 30 %. Furthermore, the thermal contact between device (baseplate) and cooler is of high importance. A study of different characterization methods for thermal interface materials is performed and a new method for the quantification of the thermal contact conductance is presented. The study shows that a combination of several methods is necessary so that the complete picture of heat dissipation performance of thermal interface materials becomes apparent. The new developed method allows to select the perfect thermal grease for a given combination of device and cooler. / Wärmemanagement ist eine große Herausforderung sowohl für aktuelle als auch für zukünftige Halbleiterprodukte. Speziell die nächste Produktgeneration mit SiC oder GaN Chips benötigen neue Entwärmungskonzepte, um ihr volles Potential bezüglich höherer Stromstärken zu entfalten. In dieser Arbeit wurden vier neuartige Konzepte erforscht: Diamant basierte Substrate, Phasen-Wechsel-Materialien, Cu-Graphene Kompositschichten und anisotrope Entwärmung. Es zeigte sich, dass anisotrope Entwärmung das vielversprechendste Konzept ist. Als Demonstrator wurde eine Bodenplatte mit thermisch pyrolytischen Graphiteinleger für ein Leistungsmodul gefertigt. Sie zeigt eine lokale Erhöhung der Entwärmung von 30 %. Weiter ist der thermische Kontakt zwischen Bauteil und Kühler sehr wichtig. Verschiedene Charakterisierungsmethoden für thermische Schnittstellen-Materialien wurden verglichen. Dieser Vergleich zeigt, dass eine Kombination verschiedener Methoden notwendig ist, um ein vollständiges Bild über die Leistungsfähigkeit solcher Materialien zu gewinnen. Eine neue Messmethode wurde entwickelt, um die thermische Kontakt-Leitfähigkeit zu messen. Diese neue Methode ermöglicht es, die beste Wärmeleitpaste für eine vorgegebene Kombination aus Produkt und Kühleroberfläche zu identifizieren.
213

THERMAL MANAGEMENT TECHNOLOGIES OF LITHIUM-ION BATTERIES APPLIED FOR STATIONARY ENERGY STORAGE SYSTEMS : Investigation on the thermal behavior of Lithium-ion batteries

Ali, Haider Adel Ali, Abdeljawad, Ziad Namir January 2020 (has links)
Batteries are promising sources of green and sustainable energy that have been widely used in various applications. Lithium-ion batteries (LIBs) have an important role in the energy storage sector due to its high specific energy and energy density relative to other rechargeable batteries. The main challenges for keeping the LIBs to work under safe conditions, and at high performance are strongly related to the battery thermal management. In this study, a critical literature review is first carried out to present the technology development status of the battery thermal management system (BTMS) based on air and liquid cooling for the application of battery energy storage systems (BESS). It was found that more attention has paid to the BTMS for electrical vehicle (EV) applications than for stationary BESS. Even though the active forced air cooling is the most commonly used method for stationary BESS, limited technical information is available. Liquid cooling has widely been used in EV applications with different system configurations and cooling patterns; nevertheless, the application for BESS is hard to find in literature.To ensure and analyze the performance of air and liquid cooling system, a battery and thermal model developed to be used for modeling of BTMS. The models are based on the car company BMW EV battery pack, which using Nickel Manganese Cobalt Oxide (NMC) prismatic lithium-ion cell. Both air and liquid cooling have been studied to evaluate the thermal performance of LIBs under the two cooling systems.According to the result, the air and liquid cooling are capable of maintaining BESS under safe operation conditions, but with considering some limits. The air-cooling is more suitable for low surrounding temperature or at low charging/discharge rate (C-rate), while liquid cooling enables BESS to operate at higher C-rates and higher surrounding temperatures. However, the requirement on the maximum temperature difference within a cell will limits the application of liquid cooling in some discharge cases at high C-rate. Finally, this work suggests that specific attention should be paid to the pack design. The design of the BMW pack is compact, which makes the air-cooling performance less efficient because of the air circulation inside the pack is low and liquid cooling is more suitable for this type of compact battery pack.
214

TERMISKT SMARTA HANTERINGSSYSTEM FÖR LITIUMJONBATTERIER : Analys av litium-jonbatteriets termiska beteende

Kohont, Alexander, Isik, Roger Can January 2021 (has links)
Batteries play an important role in a sustainable future. As the development for better andsmarter batteries continues, new areas of use emerge boosting its demand. Controlling thetemperature of a battery cell is a vital objective to ensure its longevity and performance. Bothcooling and heating methods can be applied to keep the temperature within a certain rangedepending on its need. This study will review the technical aspects of lithium-ion batteries,observe the different thermal management systems and cooling methods, and lastly examinethe required cooling flow needed for a battery cell to prevent its temperature from rising tocritical levels during its discharge. Using CFD ANSYS Fluent as a simulation tool, the resultsshow that different charging rates, in terms of C-rate, require different rates of mass flow tocontrol the temperature. Simulating the cell with natural convection, the cell peaks at hightemperatures even at lower C-rates, reaching up to 36,4°C and 48,8°C for 1C and 2C,respectively. Applying the cooling method with a flow rate of 0,0077kg/s reduces thetemperature significantly, resulting in temperatures of 26,95°C and 31,27°C for 1C and 2C,respectively.
215

Thermofluidic Impacts of Geometrical Confinement on Pool Boiling: Enabling Extremely Compact Two-phase Thermal Management Technologies through Mechanistic-based Understandings and Predictions

Albraa A Alsaati (12432003) 19 April 2022 (has links)
<p> With new technologies taking advantages of the rapid miniaturization of devices to microscale across emerging industries, there is an unprecedented increase in the heat fluxes generated. The relatively low phase-change thermal resistance associated with boiling is beneficial for dissipating high heat flux densities in compact spaces. However, for boiling heat transfer, a high degree of geometrical confinement significantly alters two-phase interface dynamics which affects the flow pattern, wetting dynamics, and moreover, the heat transfer rate of the boiling processes. Hence, it is crucial to have a deeper understanding of the mechanistic effects of confinement on two-phase heat dissipation and carefully examine the applicability of boiling correlations developed for unconfined pool boiling to predict and optimize design of extremely compact two-phase thermal management solutions. This dissertation develops and demonstrate a fundamental understanding of the impact of confinement on pool boiling. To elucidate the mechanisms that impact confined boiling, this study experimentally evaluates boiling characteristics through the quantification of boiling curves and high-speed visualization across a range of gap spacing smaller than the capillary length of the working fluid. </p> <p><br></p> <p> This work reveals the existence of two distinct boiling regime uniquely observed in boiling in confined configurations (namely, intermittent boiling and partial dryout). In contrast to pool boiling where the maximum heat transfer coefficient occurs below the critical heat flux limit, the intermittent boiling regime demonstrates the highest heat transfer coefficient in confined boiling. Then, this study provides a mechanistic explanation for the enhanced heat transfer rate due to geometrical confinement. Mainly, small residual pockets of vapor, termed ‘stem bubbles’ herein, remain on the boiling surface through a pinch-off process. These stems bubbles act as seeds for vapor growth in the next phase of the boiling process without the need for active nucleation sites. Furthermore, this dissertation develops a more accurate, mechanistic-based model for the phenomena that occur at CHF in confined configurations. The newly developed mechanistic understanding and model provides guidance on new directions for designing extremely compact two-phase thermal solutions.</p>
216

Optimisation d’un système poly-articulé imparfait : méthode numérique multi-physique d’aide à la convergence sur le design d’une vanne multivoie / Optimization of a multi-articulated imperfect system : multi-physics numerical method to help convergence in the design of a multi-way valve

Khammassi, Montassar 25 June 2018 (has links)
La maîtrise de la gestion thermique du moteur à combustion interne permet de répondre à des problématiques telles que la réduction de la consommation de carburant et des émissions de polluants. Cette gestion peut être réalisée par des systèmes mécatroniques, plus précisément grâce à une vanne électromécanique multivoie, appelée ACT valve (Active Cooling thermo-management valve), permettant de mettre en œuvre une stratégie de gestion thermique lors du contrôle des températures dans différentes branches du circuit de refroidissement du moteur thermique.L’objectif du travail est d’améliorer la robustesse du processus de conception de cette vanne en tenant compte des contraintes fonctionnelles multi-physiques telles que la déformation, l’usure, mais aussi de contraintes de fabrication et de tolérancement géométrique liées au processus d’injection des pièces thermoplastiques. Ces incertitudes doivent être prises en compte dès la phase de la conception pour assurer l'efficacité et la fiabilité de ces vannes jusqu'à la fin de leurs vies.Ces travaux de thèses proposent tout d’abord une nouvelle méthode de conception de ces vannes qui se base sur des modèles numériques multi-physiques permettant à tous les métiers d’avoir une base de données commune. Validés expérimentalement, Ces modèles ont permis de mettre en évidence la sensibilité de certains paramètres géométriques sur le couple développé par l’actionneur de la vanne et de s’assurer de la fiabilité du système par la prédiction de l’usure sur un des éléments clés de l’ACT valve.Bien que l’analyse de sensibilité nous ait permis de comprendre l’influence de certains paramètres sur le système, nous avons proposé une nouvelle technique d’identification des configurations optimales du design de cette vanne en utilisant une méthode d’optimisation méta-heuristique multi-objectifs. Les suggestions de conception offertes par cette méthode permettent de réduire le couple résistant sur l’actionneur de la vanne ainsi que l’encombrement global du système. / The thermal management of the internal combustion engine can solve issues related to fuel consumption reduction and pollutant emissions. This management can be applied using mechatronic systems, more precisely thanks to a multi-way electromechanical valve, called ACT valve (Active Cooling thermo-management valve), that presents a thermal management strategy when controlling temperatures in different branches of the engine cooling circuit.The aim of this work is to improve the robustness of the design process of this valve taking into account the multi-physical functional constraints such as deformation, wear, but also geometrical tolerances constraints related to the thermoplastic parts manufacturing process. These uncertainties must be taken into account in the first steps of the design phase to ensure the effectiveness and reliability of this valve over its lifetime.This work first proposes a new method of designing these valves, which is based on multi-physical modeling, allowing the product designers to have a common database. Experimentally validated, these models made it possible to highlight the sensitivity of certain geometrical parameters on the torque developed by the actuator of the valve and to make sure of the reliability of the system with wear prediction on one of the key elements of ACT valve.Although the sensitivity analysis allowed us to understand the influence of certain parameters on the system, we proposed a new technique for identifying optimal configuration configurations of this valve using a metaheuristic, multi-objective optimization method. The design suggestions offered by this method can reduce the resistive torque on the valve DC-actuator as well as the overall packaging.
217

Characterization of a Rotating Detonation Engine with an Air Film Cooled Outer Body

Chriss, Scott Llewellyn 10 August 2022 (has links)
No description available.
218

Graphite sheets and graphite gap pads used as thermal interface materials : A thermal and mechanical evaluation

Fältström, Love January 2014 (has links)
The electronic market is continually moving towards higher power densities. As a result, the demand on the cooling is increasing. Focus has to be put on the whole thermal management chain, from the component to be cooled to the ambient. Thermal interface materials are used to efficiently transfer heat between two mating surfaces or in some cases across larger gaps. There are several different thermal interface materials with various application areas, advantages and disadvantages. This study aimed to evaluate thermal and mechanical properties of graphite sheets and graphite gap pads. The work was done in cooperation with Ericsson AB. A test rig based on the ASTM D5470 standard was used to measure the thermal resistance and thermal conductivity of the materials at different pressures. It was found that several graphite sheets and gap pads performed better than the materials used in Ericsson’s products today. According to the tests, the thermal resistance could be reduced by about 50 % for the graphite sheets and 90 % for the graphite gap pads. That was also verified by placing the materials in a radio unit and comparing the results with a reference test. Both thermal values and mechanical values were better than for the reference materials. However, the long term reliability of graphite gap pads could be an issue and needs to be examined further. / Elektronikbranschen rör sig mot högre elektriska effektertätheter, det vill säga högre effekt per volymenhet. Som en följd av detta ökar också efterfrågan på god kylning. Kylningen måste hanteras på alla nivåer, från komponenten som ska kylas, ända ut till omgivningen. Termiska interface material (TIM) används för att förbättra värmeöverföringen mellan två ytor i kontakt med varandra eller för att leda värmen över större gap. Det finns flera olika TIM med olika tillämpningsområden, fördelar och nackdelar. Denna studie gick ut på att utvärdera termiska och mekaniska egenskaper hos grafitfilmer och så kallade ”graphite gap pads” då de används som TIM. Projektet gjordes i sammarbete med Ericsson AB. En testuppställning baserat på ASTM D5470-standarden användes för att utvärdera värmeledningsförmågan och den termiska resistansen hos de olika materialen vid olika trycknivåer. Resultaten visade att flera grafitfilmer och ”gap pads” presterade bättre än materialen som används Ericssons produkter idag. Enligt testerna skulle den termiska resistansen kunna minskas med 50 % för grafitfilmerna och 90 % för ”gap padsen”. Materialens fördelaktiga egenskaper verifierades i en radioenhet där temperaturerna kunde sänkas i jämförelse med ett referenstest med standard-TIM. De nya materialen var mjukare än referensmaterialen och skulle därför inte orsaka några mekaniska problem vid användning.  Den långsiktiga tillförlitligheten för grafitbaserade ”gap pads” måste dock undersökas vidare eftersom de elektriskt ledande materialen skulle kunna skapa kortslutningar på kretskorten.
219

Modelling of Heat Losses through Coated Cylinder Walls and their Impact on Engine Performance

Escalona Cornejo, Johan Enrique 13 April 2021 (has links)
[ES] Actualmente, los vehículos propulsados por motores de combustión interna alternativos (MCIA) constituyen uno de los mayores agentes contaminantes para el medio ambiente. En este sentido, ha existido una importante cooperación internacional para promulgar leyes que regulen las emisiones contaminantes. De manera que los fabricantes de coches han impulsado el desarrollo de tecnologías más limpias y amigables con el medio ambiente. Ante esta situación, ha surgido recientemente la electrificación, como uno de los proyectos más ambiciosos de la industria automotriz para los próximos años. Sin embargo, esta meta parece aún lejana en el horizonte. En tal sentido, la hibridación con motores térmicos y eléctricos parece ser el camino a seguir en el corto plazo. Por consiguiente, los MCIA seguirán siendo la principal fuente de propulsión terrestre durante los años venideros. Para mitigar los inherentes efectos contaminantes de los motores de combustión interna, se han propuesto diferentes tecnologías para desarrollar motores más eficientes. Entre ellas, la aplicación de recubrimientos térmicos en las paredes de la cámara de combustión apunta a reducir las pérdidas por calor en el motor, y así aumentar su eficiencia térmica. El objetivo principal de esta tesis es estudiar el impacto de aplicar recubrimientos térmicos en las paredes de la cámara de combustión en motores de combustión interna. En este sentido, determinar los flujos de calor experimentalmente a través de las paredes es complicado y no del todo fiables, debido a que dependen de la medición de las temperaturas de pared. Por este motivo, el CFD-CHT es utilizado. El primer paso fue validar la herramienta computacional que es utilizada para los cálculos en motores de combustión interna. Para ello se realizó un estudio preliminar en geometrías sencillas como una tubería circular o un canal rectangular. Se evaluaron los modelos de transferencia de calor y se determinó la relevancia de ciertos parámetros como la rugosidad. Para complementar el estudio, se realizó un análisis de las temperaturas en una geometría más realista como el pistón de un MCIA. Los valores de temperatura calculados por el software fueron casi iguales a las medidas experimentales. Por consiguiente, la fiabilidad de la herramienta computacional fue verificada. Seguidamente, se plantea una metodología para abordar al problema de modelar capas muy finas de recubrimientos térmicos en el espacio tridimensional. Para de esta manera poder simular las paredes recubiertas en la cámara de combustión. La metodología consiste en definir un material equivalente con un espesor y número de nodos que permitan un mallado computacionalmente realista. Para ello se utilizó un DoE en combinación con un análisis de regresión múltiple. Los primeros estudios se llevaron a cabo en un motor de gasolina. El modelado se llevó a cabo para dos configuraciones: motor con paredes metálicas y motor con pistón y culata recubiertos. A través de un análisis exhaustivo de la transferencia del calor, se evaluó el impacto que tenía aplicar el revestimiento térmico en el motor. La comparación con datos experimentales demuestran la utilidad del cálculo CHT para evaluar las pérdidas de calor en un MCIA. Sin embargo, ninguna mejora fue observada en el motor de gasolina debido al tipo de recubrimiento aplicado en las paredes de la cámara de combustión. Las simulaciones llevadas a cabo en el motor de gasolina permitieron determinar que los cálculos CHT son computacionalmente largos. En este sentido, una serie de estrategias diseñadas a optimizar los cálculos han sido analizadas con el fin de reducir los tiempos de cálculo. A través de este estudio, se encontró una metodología para optimizar la malla del dominio computacional. Esta última, emplea un refinamiento AMR basado en la distancia de pared. Este método es utilizado para modelar el impacto de aplicar un revestimiento tér / [CA] Actualment, els vehicles propulsats per motors de combustió interna alter- natius (MCIA) constitueixen un dels majors agents contaminants per al medi ambient. En aquest sentit, ha existit una important cooperació internacional per a promulgar lleis que regulen les emissions contaminants. De manera que els fabricants de cotxes han impulsat el desenvolupament de tecnologies més netes i amigables amb el medi ambient. Davant aquesta situació, ha sorgit recentment l'electrificació, com un dels projectes més ambiciosos de la indústria automotriu per als pròxims anys. No obstant això, aquesta meta sembla encara llunyana en l'horitzó. En tal sentit, la hibridació amb motors tèrmics i elèctrics sembla ser el camí a seguir en el curt termini. Per consegüent, els MCIA continuaran sent la principal font de propulsió terrestre durant els anys esdevenidors. Per a mitigar els inherents efectes contaminants dels motors de combustió interna, s'han proposat diferents tecnologies per a desenvolupar motors més eficients. Entre elles, l'aplicació de recobriments tèrmics en les parets de la cambra de combustió apunta a reduir les pèrdues per calor en el motor, i així augmentar la seua eficiència tèrmica. L'objectiu principal d'aquesta tesi és estudiar l'impacte d'aplicar reco- briments tèrmics en les parets de la cambra de combustió en motors de combustió interna. En aquest sentit, determinar els fluxos de calor experi- mentalment a través de les parets és complicat i no del tot fiable, pel fet que depenen del mesurament de les temperatures de paret. Per aquest motiu, el CFD-CHT (Computational fluid dynamics-Conjugate Heat Transfer) és utilitzat. El primer pas va ser validar l'eina computacional que és utilitzada per als càlculs en motors de combustió interna. Per a això es va realitzar un estudi preliminar en geometries senzilles com una canonada circular o un canal rectangular. Es van avaluar els models de transferència de calor i es va determinar la rellevància de certs paràmetres com la rugositat. Per a complementar l'estudi, es va realitzar una anàlisi de les temperatures en una geometria més realista com el pistó d'un MCIA. Els valors de temperatura calculats pel software van ser quasi iguals a les mesures experimentals. Per consegüent, la fiabilitat de l'eina computacional va ser verificada. Seguidament, es planteja una metodologia per a abordar el problema de modelar capes molt fines de recobriments tèrmics en l'espai tridimensional, per a d'aquesta manera poder simular les parets recobertes en la cambra de combustió. La metodologia consisteix a definir un material equivalent amb una grossària i nombre de nodes que permeten un mallat computacionalment realista. Per a això es va utilitzar un DoE (Design of experiments) en combinació amb una anàlisi de regressió múltiple. Els primers estudis es van dur a terme en un motor de gasolina. El mod- elatge es va dur a terme per a dues configuracions: motor amb parets metàl·liques i motor amb pistó i culata recoberts. A través d'una anàlisi exhaustiva de la transferència de la calor, es va avaluar l'impacte que tenia aplicar el revestiment tèrmic en el motor. La comparació amb dades experi- mentals demostren la utilitat del càlcul CHT per a avaluar les pèrdues de calor en un MCIA. No obstant això, cap millora va ser observada en el motor de gasolina a causa de la mena de recobriment aplicada en les parets de la cambra de combustió. Les simulacions dutes a terme en el motor de gasolina van permetre determinar que els càlculs CHT són computacionalment llargs. En aquest sentit, una sèrie d'estratègies dissenyades per a optimitzar els càlculs han sigut analitzades amb la finalitat de reduir els temps de càlcul. A través d'aquest estudi, es va trobar una metodologia per a optimitzar la malla del domini computacional. Aquesta última, empra un refinament AMR basat en la distància de paret. / [EN] Currently, vehicles powered by internal combustion engines (ICE) are targeted as contributing largely to environmental pollution. In this regard, there has been significant international cooperation to enact laws that regulate the polluting emissions. Hence, the car manufacturers have oriented efforts to the development of cleaner and more eco-friendly technologies. In order to face this situation, electrified vehicles have emerged as one of the most promising projects in the automotive industry for the coming years. However, this target still seems far on the horizon. In this sense, hybridization with thermal and electric engines seems to be the path to follow in the short term. Consequently, ICEs will continue to be one of the important sources of terrestrial propulsion in the coming years. To mitigate the inherent polluting effects of internal combustion engines, different technologies have been proposed to develop more efficient engines. Among them, the application of thermal coatings on the combustion chamber walls. This technology aims at reducing the heat losses in the engine, and thus increase its thermal efficiency. The main objective of this thesis is to study the impact of coating the combustion chamber walls of an engine on heat losses and thermal efficiency. The experimental definition of the heat fluxes through the walls is complex and not very reliable because it requires the measurement of wall temperatures. For this reason, CFD-CHT (Computational fluid dynamics-Conjugate Heat Transfer) is used. The first step was to validate the computational tool employed for CFD-CHT calculations in internal combustion engines. For this, a preliminary study in simple geometries such as a circular pipe or a rectangular channel was performed. Heat transfer models were evaluated and the relevance of certain parameters such as roughness was determined. To reinforce the study, a thermal analysis in a more realistic geometry such as the piston of a CI engine was carried out. The temperature values calculated by the software were almost the same as the experimental measurements. Consequently, the reliability of the computational tool was verified. Next, a methodology was proposed to address the problem of modeling very thin layers of thermal coating for three-dimensional CFD-CHT calculations. The methodology consists in defining an "equivalent material" with a thickness and number of nodes that allow a computationally realistic mesh. For this, a DoE in combination with a multiple regression analysis was employed. The first CFD-CHT simulations in ICEs were carried out for a gasoline engine. The study was performed for two configurations: metallic engine and engine with coated piston and cylinder head. An exhaustive heat transfer analysis was made in order to determine the impact of applying the thermal coating on the engine. Comparison with experimental data proved the suitability of the CHT calculations to evaluate heat losses in ICEs. However, no improvement on engine efficiency was observed in the gasoline engine due to the type of coating applied on the combustion chamber walls. Experience with the gasoline engine calculations showed that CHT calculations were very time consuming. In this regard, some strategies aimed at optimizing the calculations were analyzed in order to reduce calculation times. The most successful methodology was based on AMR cell refinement to optimize the mesh and reduce significantly the computational costs. This approach was used to study the impact of applying a new generation thermal coating on the piston top of a Diesel engine. The results obtained indicated that this type of coating allows for some improvement in the thermal efficiency of the engine without affecting its performance. / The author wishes to acknowledge the financial support received through contract FPI-2018-S2-1205 of the Programa para la Formación de Personal investigador (FPI) 2018 of Universitat Politècnica de València. Parts of the work presented in this thesis have received funding from the European Union’s Horizon 2020 research and innovation programme undergrant agreement No 724084.The author wishes to thank IFPEN for their permission to use their single cylinder engine geometry and experimental results, as well as Saint Gobain Research Provence for providing the coating characteristics.The respondent wants to express its gratitude to CONVERGENT SCIENCE Inc. and Convergent Science GmbH for their kind support for performingthe CFD-CHT calculations using CONVERGE software / Escalona Cornejo, JE. (2021). Modelling of Heat Losses through Coated Cylinder Walls and their Impact on Engine Performance [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165244 / TESIS
220

Icing Mitigation via High-pressure Membrane Dehumidification in an Aircraft Thermal Management System

Hollon, Danielle D. 08 May 2023 (has links)
No description available.

Page generated in 0.0722 seconds