• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 18
  • 10
  • 5
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 18
  • 16
  • 11
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Study of the Thermal Decomposition Products of Lignite

Tomlinson, Julian B. 08 1900 (has links)
Lignite is a low grade of coal widely distributed throughout the world. A complete analysis of lignite has not been made, due to the difficulty encountered in the separation of the complex organic compounds bonded therein.
12

Thermal Decomposition Of Haloethanols And Ignition Of JP-10

Chakravarty, Harish Kumar 08 1900 (has links) (PDF)
In this thesis, the thermal decomposition investigation of haloethanols namely 2-chloroethanol and 2-bromoethanol are reported both experimental and theoretical. Computational calculation of enthalpy of formation haloethanols using isodesmic and atomization reactions has also been reported. Finally, the chemistry of JP-10 ignition has also been investigated using shock tube. Chapter 1 gives a brief introduction to the experimental shock tube technique. Brief surveys of literature pertinent to haloethanols and JP-10 have also been discussed. The importance of thermal rate coefficient and detection techniques in shock tube chemistry is presented. Details of the theoretical methods used in the determination of thermal rate coefficients have been described at the end of the chapter. In Chapter 2, I have discussed experimental methods used in carrying out this work. The details of the experimental shock tube set-up employed in this work have been elaborated in this chapter. Kinetic simulations performed to understand the mechanism of chemical transformation of haloethanols at high temperature have also been presented. In chapter 3, thermal decomposition results obtained for 2-chloroethanol have been described. The kinetic data have been obtained in the temperature range of 930-1100 K behind the reflected shock wave in a shock tube. Analyses of pre and post shock mixture using FT-IR and gas chromatographic techniques are presented. Chemical kinetic simulation performed to simulate the product distribution is presented. The reduced kinetic model has also been presented which was obtained using the sensitivity analysis and was validated by comparison to the shock tube measurements. The details of the β-substitution effect have been shown. The kinetic parameters of the unimolecular elimination of HCl and H2O have been presented both experimentally and theoretically. Theoretical results were obtained by transition state theory using quantum chemistry calculations HF, MP2 (FULL) and B3LYP/6-311++G** level of theory. The details of intrinsic reaction coordinate calculation and potential energy surface calculations have also been described. These experimental and theoretical results suggest that the rate of HCl elimination is faster than that of H2O and HOCl elimination reaction. In chapter 4, I have reported thermal decomposition results obtained for 2-bromoethanol. The kinetic data have been obtained in the temperature range of 910-1102 K behind the reflected shock wave in a shock tube. Analyses of pre and post shock mixture using FT-IR and gas chromatographic techniques are discussed. Chemical kinetic simulation performed to simulate the product distribution is presented. The details of the β-substitution effect are explained. Both experimental and theoretical kinetic parameters of the unimolecular elimination of HBr and H2O have been presented. Theoretical results were obtained by transition state theory using quantum chemistry calculations at the HF, MP2 (FULL) and B3LYP/6-311++G** level of theory. The intrinsic reaction coordinate calculation and potential energy surface have been investigated in details. From this experimental and theoretical studies, it has been concluded that the rate of HBr elimination much faster than that of H2O. However, the experiments show that the rate of HOBr elimination is faster than that of the H2O. In chapter 5, I have reported the computational calculation of enthalpy of formation of haloethanols. The enthalpy of formation of haloethanols of the general formula XC2H4OH were calculated by the HF, MP2, B3LYP, G2, G3, G2MP2, G3B3, G3MP2B3, CBS-Q, CBS-QB3 and CCSD/cc-pVDZ level of theories applying isodesmic and atomization reactions. Results obtained using the Benson’s group and bond additivity methods have also been described at 298.15 K and at 1 atm in the gaseous state. In chapter 6, ignition delay measurement on neat jet propellent-10 (JP-10) and JP-10 + Triethyl amine (TEA) mixture have been reported. The JP-10 (Exo-tetrahydrodicyclopentadiene, C10H16) ignition delay times were measured behind a single pulse reflected shock wave in a shock tube. Experiments were performed over high temperature, high pressure, and three equivalence ratio and for different composition. It has been shown that the TEA can reduce the ignition delay of JP-10. A higher level quantum chemistry calculation has also been presented that were performed to obtain the bond dissociation energies of C-H bonds in JP-10. Chapter7 is the concluding chapter where the main work done in this thesis is summarized and future direction is presented.
13

Bleed air oil contamination particulate characterization

Roth, Jake January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Mohammad H. Hosni / Byron W. Jones / Gas turbine engine oil is contaminating the bleed air of an aircraft with enough frequency and intensity that health concerns are of public interest. While previous work measured micro particles and used only a simulator, this work mainly consists of measurements in the nanoparticle and ultrafine range using both the simulator and two different gas turbine engines. No previous research has been conducted using working jet engines to simulate a bleed air system and characterize the oil particulate contamination. Oil was injected into a bleed air simulator and an Allison 250 CC18 turbine engine in order to observe the particle size distributions resulting from thermal degradation and was measured with three particle sizing counters and an FTIR. The aerosol size distributions are given for various temperature and pressure ranges consistent with the process conditions associated with the bleed air in a commercial aircraft. Particle sizes of approximately 80nm to 100nm were observed at temperatures over 200°C while particles similar to injection distributions and smaller than measureable size were observed at lower power settings. Temperature is thought to be the controlling factor affecting particle size above 200°C while blade shear is likely the dominant factor for lower temperatures. The bleed air simulator produced results similar to the gas turbine engine results at higher temperatures, but did not replicate the size characteristics at lower temperatures. The observed particles are ultrafine and situated in the size range that may impact health safety more than larger particles.
14

Ceramic nanostructured catalysts

Gilbank, Alexander January 2015 (has links)
Catalysis has an effect on almost every aspect of our lives. They are used to help grow the food we eat, clean the water we drink and produce the fuels our civilisation is so dependent upon. Homogeneous catalysts, those in the same phase as the reaction medium, are highly selective as a result of their tuneable nature, for example through changes to ligands in a metal complex. However, their separation from the reaction medium can become a problematic, costly, non-green issue, overcome through the use of heterogeneous catalysts which can be removed and recycled by simple separation techniques such as filtering and sedimentation. A major limitation on understanding the behaviour of heterogeneous catalysts is the presence of different active sites due to different exposed crystal surface, concentration of defects and morphological variations. With such considerations, the first section of this thesis focuses on the synthesis of discrete and well-defined nanostructured materials (ceria and titanate) using a single-step hydrothermal method. Nanostructured ceria with different morphologies (particles, rods and cubes), present a high oxygen storage capacity and thermal stability. Their oxidation catalytic activity was assessed using CO oxidation as a model reaction as a function of their physical and chemical properties, tuned by morphological control at the nanoscale. An inverse relationship is observed between crystallite size and rates of reaction normalised per surface area. Smaller crystallites present a constrained geometry resulting in a higher concentration of defects, highly active catalytically due to their unsatisfied coordination and high surface energy. The surface to bulk oxygen ratio generally increased as the surface area increased, however, ceria nanorods present a higher surface oxygen content than that which would be predicted according to their surface area, likely due to the selective exposure of the (110) and (100) dominating crystal surfaces presenting more facile oxygen atoms in their surface. Additionally a relationship between surface to bulk oxygen ratios and activation energies was also ascribed to the more facile nature of oxygen atoms on these surfaces and their more readily formed oxygen vacancies as a result. This activity is as a result of the formation of oxygen vacancies being the rate-controlling step. The thermal stability of nanostructured ceria (particles, rods and cubes) was also studied to investigate their performance under cyclic high temperature applications. For this, the materials were pre-treated at 1000 °C under different atmospheres (inert, oxidative and reducing). In all cases, the materials sinter, consequently resulting in a dramatic decrease in surface area. Interestingly, their catalytic activity per surface area towards CO oxidation, seems to be maintained, although those materials pre-treated under inert and oxidising atmospheres became inactive in consecutive catalytic runs. However, nanostructured ceria pre-treated at 1000 °C under hydrogen appeared to maintain its activity per surface area. The presence of hydrogen during thermal treatment does not only facilitate the removal of surface oxygen, but also the bulk oxygen, resulting in a rearrangement of the structure that facilitates its catalytic stability. Titanate nanotubes were shown to be inactive for CO oxidation and thus were used in the second part of this thesis as a support for platinum nanoparticles to study the effect of the structure and metal-support interaction on the resulting catalytic activity. The study focuses on the effect of different loading methods (ion exchange and incipient wetness impregnation) of platinum nanoparticles on the resulting metal particle size, dispersion, metal-support interaction and consequently their resulting catalytic activity. Ion exchange consistently resulted in smaller nanoparticles with a lower dispersion of sizes and more active catalyst, both in terms of turnover frequency values and activation energy, compared with incipient wetness impregnation. The catalytic activity of the platinum supported on titanate nanotubes increases as the metal particle size decreases to a size value (between 1 and 2.5 nm) below which a dramatic decrease in activity is observed. Despite initial differences in catalytic activity between the different catalysts, it was observed that after initial reactions to 400 °C, the activation energy was independent of metal loading weight and was instead inherent of the loading method, suggesting the presence of similar active sites.
15

Estudos da Decomposição Térmica de Alguns Sulfóxidos -Funcionalizados / Studies of thermal decomposition of some α- functionalized sulfoxides

Yoshikawa, Eduardo Kunio Chinone 30 June 2000 (has links)
A decomposição térmica dos compostos sulfoxídicos (1)-(4) foi efetuada a ca. 140 °C, até conversão total do material de partida. A mistura de produtos resultante, em cada caso, foi analisada por cromatografia gasosa/espectrometria de massas. Foram preparadas amostras autênticas dos compostos assim identificados e, no caso dos sulfóxidos (2)-(4), a composição do produto de termólise foi determinada através de análises por cromatografia gasosa e RMN de 1H, utilizando-se o método do padrão interno. Os resultados obtidos estão sumarizados abaixo: Tabela - ver arquivo em PDF - Para três dos substratos estudados, os produtos finais poderiam originar-se de hemitiocetais intermediários, formados por um rearranjo de Pummerer. Este mecanismo de decomposição parece ser geral para sulfóxidos β-carbonílicos. No entanto, o substrato (1) decompõe-se termicamente por mecanismo radicalar. / The thermal decomposition of sulfoxides (1)-(4) was performed at ca. 140 °C, until complete consumption of the starting materiais. In each case, the product mixture was analyzed by GC/MS. Authentic samples of identified components were prepared, and in the case of sulfoxides (2)-(4), the crude product composition was determinded by gas chromatography and 1H NMR analyses (internal standard method).Results are as follows: See chart PDF file - For three cases, final products could originate from intermediate hemithioacetals, generated via a thermal Pummerer rearrangement. lhis decomposition mechanism seems to be general for the thermolysis of β-carbonyl sulfoxides. However, sulfoxide (1) decomposes under heating via a radical mechanism.
16

Development of Techniques to Produce Nickel Coated Composite Materials as well as Hollow Nickel Fibres and Kinetic Study of the Process Involved

Li, Fan January 2007 (has links)
The present thesis was mainly to study the preparation of nickel composite materials by chemical plating process. Nickel coated boron nitride particles, nickel coated spherical silica particles and nickel viscose composite fibres were prepared. Both experiment and model development were carried out to study the kinetics of the processes. Preparation of hollow nickel fibres was also investigated. NiSO4-(NH4)2SO4-NH3·H2O-N2H4·H2O was found a suitable system for nickel plating. This system could be employed in preparing nickel coating layer on surface of boron nitride particles, spherical silica powder and viscose fibres. The main factors which could affect the plating process were investigated. The optimum conditions were suggested for different substrate materials based on the experimental results. It was found that Pd on the surface of substrate materials acted as an active center for nickel deposition at the initial stage of the process. Thereafter, Ni itself would act as an active center to catch Ni from the solution through the reaction: Ni2+ + 2H* ad ⇒ Ni + 2H+. The rate of the process was found to be controlled by the reaction at the interface under the present experimental conditions. A kinetic model was developed on the basis of the mechanism study. The model predictions were found to be in agreement with the experimental data for different substrate materials. Since the kinetic model does not have any parameters related to the shape and surface area of the substrate, it could be used as a general model to describe the processes controlled by interface reaction with growing interface area. Hollow nickel fibers were prepared by thermal decomposition method from nickel viscose composite. The experiments showed that viscose filling could be removed by heat treatment in air atmosphere. Experiments showed that hollow nickel fiber could be prepared by direct thermal decomposition in air flow at low temperature, e.g. 573 K. But slight surface oxide is inevitable. Decomposition of the viscose filling could also be carried at higher temperature. However, serious oxidation of nickel would also take place during the decomposition. To remove nickel oxide, reduction by hydrogen gas could be applied. Preliminary effort was made to extend the application of the present method to prepare copper viscose composite fibres. Promising result was obtained. More detailed study is required to confirm the applicability of the technique. / QC 20100804
17

Preparation And Characterization Of Magnetite Nanoparticles By Thermal Decomposition Method For Their Potential Use In Tumor Imaging

Tatlici, Zehra 01 December 2010 (has links) (PDF)
In biomedical applications, magnetic nanoparticles have been used as they offer attractive possibilities. First, they have controllable sizes ranging from a few nanometers up to tens of nanometers and second, the nanoparticles are magnetic and magnetic fields can penetrate into human tissue which means that they can be manipulated by an external magnetic field gradient. In this study, Fe
18

Silica Coating Of Monodisperse Hydrophobic Magnetite Nanoparticles Through Reverse Microemulsion Techniques

Ergul, Zeynep 01 January 2012 (has links) (PDF)
Magnetic nanoparticles find broad applications in biomedical field such as drug delivery, hyperthermia and magnetic resonance imaging (MRI). For these applications magnetic nanoparticles need to be coated with suitable materials which are soluble, biocompatible and nontoxic. Among these materials, silica is the most often used coating material. This thesis is focused on preparation of silica coated iron oxide magnetic nanoparticles. Magnetic iron oxide nanoparticles are synthesized by thermal decomposition method. In the presence of iron acetylacetonate Fe(acac)3, a high boiling point organic solvent and a reducing agent, particle sizes ranging from about 5 nm to 7 nm were obtained. Nanoparticles were characterized by transmission electron microscopy (TEM). The obtained nanoparticles were coated with ultra thin silica shell via reverse microemulsion method. The influence of the amount of Igepal CO-520, NH4OH and TEOS was studied systematically and their amounts were optimized to yield monodisperse and well defined particles. The size of the silica coated magnetic nanoparticles and their agglomerates were determined by TEM images and particle size analyzer (zeta sizer). X-Ray photoelectron spectroscopy (XPS) was used to confirm the presence of silica whenever the coating could not be seen by TEM measurements. Magnetic nanoparticles having 4-6 nm thickness of silica shell were obtained. The results showed that the amount of surfactant Igepal CO-520 played an important role in the reaction system.
19

S?ntese de nanopart?culas de magnetita via decomposi??o t?rmica em meio n?o-aquoso

Costa, Tharsia Cristiany de Carvalho 25 April 2013 (has links)
Made available in DSpace on 2014-12-17T14:07:14Z (GMT). No. of bitstreams: 1 TharsiaCCC_TESE.pdf: 4165596 bytes, checksum: b73b464d52ff23430b153992ec45405a (MD5) Previous issue date: 2013-04-25 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / This work aims at obtaining nanoparticles of iron oxide, the magnetite one (Fe3O4), via synthesis by thermal decomposition through polyol. Thus, two routes were evaluated: a simple decomposition route assisted by reflux and a hydrothermal route both without synthetic air atmosphere using a synthesis temperature of 260?C. In this work observed the influence of the observe of surfactants which are generally applied in the synthesis of iron oxide nanoparticles decreasing cluster areas. Further, was observed pure magnetite phase without secondary phases generally found in the iron oxide synthesis, a better control of crystallite size, morphology, crystal structure and magnetic behavior. Finally, the introduction of hydroxyl groups on the nanoparticles surface was analyzed besides its employment in the polymer production with OH radicals. The obtained materials were characterized by XRD, DLS, VSM, TEM, TG and DSC analyses. The results for the magnetite obtainment with a particle size greater than 5 nm and smaller than 11 nm, well defined morphology and good magnetic properties with superparamagnetic behavior. The reflux synthesis was more efficient in the deposition of the hydroxyl groups on the nanoparticles surface / O objetivo desse trabalho foi a obten??o de nanopart?culas de ?xido de ferro, a magnetita (Fe3O4), via s?ntese por decomposi??o t?rmica via poliol, avaliando assim duas rotas: a rota simples decomposi??o assistida por refluxo e a rota hidrot?rmica, ambas sem atmosfera de ar sint?tico e usando a temperatura de s?ntese de 260?C. Observou-se nesse trabalho a influ?ncia da aus?ncia de surfactantes, comumente utilizados em s?nteses de ?xidos de ferro, com a finalidade de promover uma melhor dispers?o das nanopart?culas, diminuindo assim as ?reas de aglomerados. Al?m disso, visou-se: a obten??o de uma fase puramente de magnetita, sem a forma??o de fases secund?rias comumente encontradas nas s?nteses dos ?xidos de ferro; um melhor controle do tamanho de cristalito; da morfologia; da estrutura cristalina e do comportamento magn?tico. Por fim, analisou-se a introdu??o dos grupos hidroxilas na superf?cie das nanopart?culas, e sua empregabilidade na produ??o de pol?meros com radicais (OH). Os materiais obtidos foram caracterizados por an?lises de DRX, DLS, VSM, TEM, TG e DSC. Os resultados foram satisfat?rios quanto ? obten??o da magnetita, com tamanho de part?cula maior que 5 nm e menor que 11 nm, de morfologia bem definida e com boas propriedades magn?ticas com comportamento superparamagn?tico. Quanto ? deposi??o dos grupos de hidroxilas na superf?cie das nanopart?culas, a s?ntese com refluxo mostrou-se mais eficiente
20

Nanopartículas de óxido de ítrio dopado com Eu3+ contendo prata

Ferrari, Jefferson Luis [UNESP] 24 March 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:29:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-03-24Bitstream added on 2014-06-13T19:58:51Z : No. of bitstreams: 1 ferrari_jl_me_araiq.pdf: 1795087 bytes, checksum: 87abc0de0228b0e627f84f2a3c8a78eb (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Este trabalho apresenta o estudo da decomposição térmica em diferentes temperaturas da resina precursora obtida pelo método citrato, assim como as características estruturais e as propriedades ópticas dos materiais constituídos por Y2O3 dopado com Eu3+ em diferentes proporções e Y2O3:Eu3+ 5% at. contendo Ag também em diferentes proporções. Estudos das propriedades fotoluminescentes e estruturais dessa matriz cristalina obtida pelo método citrato revelaram que a dopagem de 5% at. de Eu3+ em Y2O3 apresenta a maior intensidade relativa de emissão e essa proporção de Eu3+ foi utilizada no estudo da decomposição térmica da resina precursora. A partir dos resultados de decomposição térmica o co-dopante Ag foi adicionado em 1, 3, 5 e 7% na preparação da resina, posteriormente tratada em 750 ºC/4 h e 900 ºC/4 h para a obtenção dos materiais. Com 1% de Ag e tratamento a 750 ºC/4 h o material apresenta a maior intensidade de emissão e a formação de nanopartículas de Ag0, comprovada por voltametria cíclica e por reflectância na região do UV-Vis. Já, no material tratado a 900ºC/4 h, não é observada a formação de nanopartículas de Ag0, no entanto, a amostra Y2O3:Eu3+ contendo 1% de Ag apresenta a maior intensidade relativa de emissão. O filme preparado com nanopartículas de Y2O3:Eu3+ 5% at. contendo 1% de Ag obtidas a 900 ºC/4 h foi recoberto com siloxano preparado a partir de solução de metiltrimetoxisilano. Esse filme recoberto apresenta boa aderência ao substrato vítreo assim como luminescência detectável. Assim, os métodos utilizados para a preparação do material luminescente Y2O3:Eu3+ contendo 1% de Ag e para a deposição dos filmes são adequados para otimização de propriedades fotoluminescentes. / This work deals with the thermal decomposition study of the precursor resin prepared from the citrate method in different heat treatment temperatures along with structural features and optical properties of materials composed by Y2O3 containing Eu3+ in different molar ratios: Y2O3:Eu3+ 5 at.% containing 1, 3, 5 and 7 at.% of Ag prepared at 750 ºC / 4 h and 900º C / 4 h. The studies on the structural and optical properties revealed that the addition of 5 at.% of Eu3+ to the Y2O3 matrix gave rise to the highest relative emission intensity. This amount of Eu3+ was used in the thermal decomposition study of the precursor resin. Therefore the co-dopant Ag was added to the resin preparation and it was heat treated at 750 ºC / 4h and 900 ºC / 4h. Among the materials obtained at 750 ºC / 4 h it was observed the formation of Ag0 nanoparticles when Ag was present in 1 at.%, as also evidenced by cyclic voltammetry and UV-Vis reflectance spectroscopy. This was the sample liable for the highest emission intensity among all materials. The formation of Ag0 nanoparticles was not observed in the material fired at 900 ºC / 4 h, even though the highest relative emission intensity was obtained for the sample Y2O3:Eu3+ containing 1 at.% of Ag compared to materials prepared at 750 ºC / 4 h. Then this material was chosen for the preparation of the luminescent film. The film prepared with Y2O3:Eu3+ nanoparticles containing 1 at.% of Ag fired at 900 ºC / 4 h was covered with silanol obtained from an MTMS solution. The covered film presented suitable adherence to the glass substrate as well as good luminescence. This way the preparation method of the luminescent material Y2O3:Eu3+ containing 1 at.% of Ag, along as that of the film, turned out to be successful in preparing materials with high relative emission intensity and good adherence to the substrate, respectively.

Page generated in 0.0851 seconds