• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 18
  • 10
  • 5
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 18
  • 16
  • 11
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Étude expérimentale et modélisation de la décomposition thermique d'oxalates d'actinides en oxydes / Experimental study and modelling of the thermal decomposition of actinide oxalates into oxides

Almeida, Lucie de 19 December 2012 (has links)
Les oxydes mixtes d'uranium et de plutonium sont les matières premières privilégiées des combustibles nucléaires de nouvelles générations. Les mécanismes de leur élaboration par décomposition thermique d'oxalates mixtes, précurseurs de référence, font l'objet des présentes recherches, en vue d'une maîtrise plus aboutie des caractéristiques physico-chimiques du solide produit. La décomposition thermique de différents précurseurs oxalates en oxydes a donc été analysée expérimentalement sous atmosphères inerte et oxydante, les processus réactionnels ont été clarifiés, les paramètres thermodynamiques et cinétiques déterminés et des modèles physico-chimiques prédictifs ont été proposés. La méthodologie d'étude expérimentale de ce processus jusqu'à sa modélisation a tout d'abord été développée à l'aide de composés modèles à base de lanthanides, de complexité croissante. La conversion en oxyde des oxalates simples de Nd et Ce, comparée à celle de l'oxalate de Pu(III), a permis de cerner l'effet du redox du métal. Des oxalates doubles lanthanide-hydrazinium, par un comportement spécifique dû à leur structure cristallographique singulière, ont ensuite illustré de manière exacerbée l'importance des interactions gaz-gaz et solide-gaz en présence notamment de gaz réactifs azotés. La résolution globale des mécanismes de décomposition des oxalates mixtes d'actinides en oxydes a bénéficié ensuite d'une approche comparative des systèmes U-Ce, Th-Pu et U-Pu, compte tenu d'analogies structurales ciblées. Un mécanisme général en cinq étapes élémentaires principales a été proposé, associé à des données thermodynamiques et cinétiques. Ceci a notamment permis de simuler les diagrammes de spéciation de la phase solide suivant différentes programmations de température (linéaire ou de type double-four industriel), aussi bien pour le système simulant U-Ce utilisé dans les essais systématiques d'optimisation technologique du procédé que pour le système d'intérêt U-Pu. Enfin, une première ébauche de modèle « procédé » a été réalisée en considérant les phénomènes de transport associé à deux réactions-clés pour ces systèmes : l'étape de décomposition thermique de l'oxalate anhydre en oxyde et l'équilibre de Boudouard entre gaz carbonés. La réactivité du système et les phénomènes prépondérants concernant les flux de gaz de calcination dégagés et la formation de carbone élémentaire au sein d'un lit de poudre statique ont pu être simulés globalement / Mixed uranium-plutonium oxides are preferential raw materials for news generation nuclear fuels. The research project presented herein deals with their elaboration process by thermal decomposition of mixed oxalates, as reference precursors, in order to improve the physicochemical characteristics of the resulting product. The thermal decomposition of several oxalate precursors into oxides was thus experimentally studied under both inert and oxidizing atmospheres, the reaction mechanisms were determined, as well as the thermodynamics and kinetics, and predictive physicochemical models were proposed. The methodology of the study up to the modelling was first developed using lanthanide model compounds with increasing complexity. The conversion into oxides of simple Nd and Ce oxalates, compared with Pu(III) oxalate, allowed to understand the role of the metal cation redox properties. Double lanthanide-hydrazinium oxalates, displaying a specific behaviour due to their peculiar crystallographic structure, underlined the importance of gas-gas and solid-gas interactions. Then, the global resolution of the decomposition mechanisms of mixed actinide oxalates into oxides was carried out through a comparative approach of U-Ce, Th-Pu and U-Pu systems, given ... analogies. A general mechanism including five main steps was proposed, with the corresponding thermodynamic and kinetic parameters. This especially enabled to simulate the speciation diagrams of the solid phases according to different temperature programs (linear or double industrial oven) for the U-Ce surrogate system (used in systematic technological process optimisation tests) as well as for the U-Pu system of interest. Finally, a first attempt at process modelling was undertaken, taking into account transport phenomena associated with two key-reactions for these systems: the thermal decomposition of anhydrous oxalate into oxide and the Boudouard equilibrium between carbonaceous species. The overall system reactivity and the predominant phenomena concerning evolved gas fluxes and elemental carbon formation, within a static powder bed, were simulated
42

Ultrajemné částice generované spalovacím procesem / Ultrafine combustion particles

Sitek, Tomáš January 2018 (has links)
This diploma thesis deals with issues of fine and ultrafine particles formation during thermal decomposition and combustion of biomass. An introduction is devoted to a utilization of biomass as fuel. A following part describes the gas products emerging generally during combustion process. A current emission and air pollution situation in the Czech Republic as well as the health impacts of solid pollutants on human are also mentioned. Within an experimental measurement three basic factors that have impact on fine particles formation during combustion of beech wood (i. e. oxygen content in combustion atmosphere, type of the sample and size of the sample) were thoroughly analyzed. Attention was paid to a progress of thermal decomposition and combustion of sample with respect to the particles formation. Finally, a measurement of fine particles amount was accomplished in a real boiler successively with four different biomass pellet types.
43

Synthesis and characterization of superparamagnetic iron oxide nanoparticles coated with silica

Marinin, Aleksandr January 2012 (has links)
Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are a promising research field for lots of biomedical applications. The scope of this work is a preparation of SPIONs and coating them with silica to form core-shell structured nanoparticles for nanomedicine applications. SPIONs were synthesized by two chemical methods – co-precipitation and thermal decomposition of organic iron precursor. Prepared nanoparticles were carefully characterized –average size, size distribution, morphology, crystallinity, colloidal stability and magnetic properties were studied. After comparing SPIONs synthetized by two routes the most suitable method for biomedical applicable nanoparticles preparation is determined. The nanomedicine requires nanoparticles of the highest quality. The next step was coating SPIONs with silica shell. For this purpose inverse microemulsion method was chosen. TEOS was used as a silica precursor. Mean size, size distribution, magnetic properties, structure of silica shell were studied.
44

Caracterização térmica de amostras de esponja sintética dupla face e palha de aço / Thermal characterization of synthetic sponge double sided and straw steel samples

Neres, Renata Aparecida 31 October 2014 (has links)
Este trabalho tem por objetivo a caracterização comparativa do comportamento de degradação e/ou decomposição térmica da esponja sintética dupla face, base poliuretana (parte amarela e parte verde), e da palha de aço, a partir das técnicas termoanalíticas. As esponjas sintéticas para limpeza doméstica, em substituição à palha de aço, apesar da vantagem econômica, podem apresentar restrições de descartes para o meio ambiente ou expor o usuário a riscos de contaminação. Amostras de esponja sintética dupla face (verde e amarela) e de palha de aço foram caracterizadas por análise térmica (TG/DTG, DTA e DSC) empregando atmosfera dinâmica de ar e de N2. Essas amostras foram estudadas por métodos cinéticos por termogravimetria isotérmica e não isotérmica. Os parâmetros cinéticos obtidos permitiram estimar os tempos necessários para a decomposição de ambas as partes da amostra da esponja sintética e também da palha de aço sob atmosfera de ar. Os resultados evidenciaram claramente que a matriz polimétrica da esponja sintética para ser degradada completamente exige um tempo muito longo, acima de 20.000 anos. Por outro lado, os resultados indicaram comportamento similar entre as amostras de esponja sintética e de palha de aço considerando apenas o efeito temperatura e tipo de atmosfera. Contudo, no cotidiano sabe-se que a palha de aço se oxida muito facilmente sob atmosfera de ar na presença de umidade. / This work aims at a comparative characterization of degradation behavior and/or thermal decomposition of synthetic double-face sponge, polyurethane base (yellow part and green part), and steel wool, from thermoanalytical techniques. Synthetic sponges for household cleaning, replacing steel wool, despite the economic advantage, may have restrictions on discharges to the environment or expose the user to risks of contamination. Samples dual synthetic sponge face (green and yellow) and steel wool were characterized by thermal analysis (TG/DTG and DTA DSC) employing an atmosphere of air and N2. These samples were studied by kinetic methods isothermal and non-isothermal thermogravimetric analysis. The kinetic parameters obtained allowed the estimation necessary for decomposition of the sample both sides of the synthetic spomge and also of steel straw times under air atmosphere. The results clearly showed that polymetric matrix of synthetic sponge to be degraded completely requires a very long time, over 20,000 years. Moreover, the results showed similar behavior among synthetic sponge and steel wool sample considering only the effect of temperature and type of atmosphere. However, in daily life it is known that the steel wool oxidizes very easily under air atmosphere in the presence of moisture.
45

Nanomateriais magnéticos para aplicações em terapia e imagem / Magnetic nanomaterials for application in therapy and imaging

Effenberger, Fernando Bacci 19 April 2012 (has links)
Em virtude da grande atenção que os nanomateriais magnéticos recebem atualmente, cientistas de diversas áreas (química, física, engenharia e medicina) vêm estudando as propriedades e as aplicações de nanopartículas magnéticas, gerando uma grande demanda por materiais de alta qualidade. As propriedades dos nanomateriais magnéticos são fortemente dependentes de suas propriedades intrínsecas (p. ex., composição, cristalinidade, tamanho e forma) e das interações entre as partículas, portanto sofrendo grande influencia do método de síntese aplicado. Várias técnicas para produção de nanomateriais magnéticos são conhecidas, porém muitas delas geram materiais com baixa qualidade no que diz respeito a tamanho médio e faixa de distribuição de tamanhos nas amostras. O presente trabalho teve por objetivo estudar a síntese de nanopartículas de magnetita (Fe3O4) por decomposição térmica do acetilacetonato de ferro (III), um método já conhecido e que se destaca pela alta qualidade de amostras (elevado controle no tamanho, estreita distribuição de tamanhos e forma bem definida), porém de alto custo. Estudamos a influência dos aditivos normalmente empregados no meio reacional no controle da morfologia, tamanho e polidispesão das amostras preparadas e sugerimos outros reagentes (monoóis, dióis e polióis) em busca de novas condições de síntese de nanopartículas magnéticas com morfologia e tamanho controlados. Do ponto de vista prático, reduzimos o custo de produção de nanomateriais magnéticos de alta qualidade pela utilização de aditivos mais baratos e de fácil obtenção no mercado. Os diferentes aditivos propostos modificaram as propriedades magnéticas ligadas às interações dipolares entre as partículas magnéticas. A influência dos aditivos foi testada em crescimentos sucessivos usando partículas de magnetita já formadas como sementes. O perfil de crescimento se mostrou diferente em função dos reagentes empregados e as amostras tiveram suas interações hiperfinas medidas para avaliar a relação entre o tamanho e aumento da cristalinidade das partículas formadas. O revestimento das partículas de magnetita com ouro foi estudado buscando aumentar a biocompatibilidade e proteger os núcleos magnéticos, porém as estruturas core-shell obtidas não apresentaram comportamento superparamagnético. Os estudos das interações hiperfinas mostraram perda da cristalinidade após o revestimento com ouro. As partículas de magnetita foram aplicadas para produzir calor através de hipertermia magnética, sendo que a interação entre as partículas se mostrou fundamental para o aumento do calor gerado. Outra aplicação biomédica testada foi o uso das partículas de magnetita como contraste para imagem por ressonância magnética nuclear. Nossas amostras mostraram desempenho semelhante às partículas disponíveis no mercado a alto custo / Magnetic nanomaterials have received a great deal of attention from scientists of various research fields (chemistry, physics, engineering and medicine) that have been studying the properties and applications of magnetic nanoparticles, generating a great demand for high quality materials. The magnetic properties of nanomaterials are strongly dependent on their intrinsic properties (eg., composition, crystallinity, size and shape) and the interactions between particles, therefore are influenced by the method of synthesis applied. Various techniques for the production of nanomarerials are known, but many of them produce poor quality materials, regarding to the average size, broad size distribution range and variable shape. The present work aimed to study the synthesis of magnetite nanoparticles (Fe3O4) by thermal decomposition of iron (III) acetylacetonate, a method already known for delivering high quality samples (high control on the size and narrow size distribution ), but at high cost. We studied the influence of additives normally used in the reaction medium to control the morphology, size and polydispersion and suggested other reagents (monols, diols and polyols) in the search for new conditions to synthesize magnetic nanoparticles with controlled size and morphology. From a practical viewpoint, we have reduced cost of producing high-quality magnetic nanoparticles using cheaper additives available on the market. The different additives used in the synthetic protocol modified the magnetic properties which are related to dipolar interactions between magnetic particles. The influence of additives was tested in successive growth using magnetite particles previously formed as seeds. The growth profile showed to be different depending on the additives used and the samples had their hyperfine interactions measured to estimate the relationship between the size increasing and the crystallinity of the particles formed. The coating of the magnetite particles with gold was studied in order to increase the biocompatibility and to protect the magnetic core. In this case, the core-shell structure lost the superparamagnetic behavior. Studies of hyperfine interactions showed the loss of crystallinity after coating the nanoparticles with gold. The synthesized particles were used to produce heat by magnetic hyperthermia, where the interaction between the particles proved to be crucial to increase the generated heat. Another biomedical application tested was the use of magnetite particles as contrast agent for magnetic resonance imaging. Our samples showed similar performance to the commercially available particles at high cost.
46

Thermal Decomposition Products Testing With 1,1,1,2,2,4,5,5,5 nonafluoro-4-trifluoromethyl pentan-3-one (C6 F-ketone) During Fire Extinguishing

Ditch, Benjamin D. 06 January 2003 (has links)
The thermal decomposition products (TDP) generated during fire suppression with 1,1,1,2,2,4,5,5,5 nonafluoro-4-trifluoromethyl pentan-3-one were studied using wet chemistry and FTIR. Small-scale testing was conducted in a 1.28-m3 (45-ft3) enclosure. The effects of fire size, agent discharge time, and agent concentration on TDP are reported. A comparison of the two methods is presented. In terms of magnitude and generation trends, the TDPs were found to be comparable to other in-kind halon alternatives.
47

Burning Behaviors of Solid Propellants using Graphene-based Micro-structures: Experiments and Simulations

Shourya Jain (5929820) 21 December 2018 (has links)
<div>Enhancing the burn rates of solid propellants and energetics is a crucial step towards improving the performance of several solid propellant based micro-propulsion systems. In addition to increasing thrust, high burn rates also help simplify the propellant grain geometry and increase the volumetric loading of the rocket motor, which in turn reduces the overall size and weight. <b><i>Thus, in this work, burn rate enhancement of solid propellants when coupled to highly conductive graphene-based micro-structures was studied using both experiments and molecular dynamic (MD) simulations.</i></b></div><div><b><i><br></i></b></div><div><div>The experiments were performed using three different types of graphene-structures i.e. graphite sheet (GS), graphene nano-pellets (GNPs) and graphene foam (GF), with nitrocellulose (NC) as the solid propellant.</div></div><div><br></div><div><div>For the NC-GS samples, propellant layers ranging from 25 µm to 170 µm were deposited on the top of a 20 µm thick graphite sheet. Self-propagating combustion waves were observed, with burn rate enhancements up to 3.3 times the bulk NC burn rate (0.7 cm/s). The burn rates were measured as a function of the ratio of fuel to graphite layer thickness and an optimum thickness ratio was found corresponding to the maximum enhancement. Moreover, the ratio of fuel to graphite layer thickness was also found to affect the period and amplitude of the combustion wave oscillations. Thus, to identify the important non-dimensional parameters that govern the burn rate enhancement and the oscillatory nature of the combustion waves, a numerical model using 1-D energy conservation equations along with simple first-order Arrhenius kinetics was also developed.</div><div><br></div><div><div>For the GNP-doped NC lms, propellant layers, 500 30 µm thick, were deposited on the top of a thermally insulating glass slide with the doping concentrations of GNPs being varied from 1-5% by mass. An optimum doping concentration of 3% was obtained for which the burn rate enhancement was 2.7 times. In addition, the effective thermal conductivities of GNP-doped NC lms were also measured experimentally using a steady state, controlled, heat flux method and a linear increase in the thermal conductivity value as a function of the doping concentration was obtained.</div></div><div><br></div><div><div>The third type of graphene structure used was the GF - synthesized using a chemical vapor deposition (CVD) technique. The effects of both the fuel loading ratio and GF density were studied. Similar to the GNPs, there existed an optimum fuel loading ratio that maximized the burn rates. However, as a function of the GF density, a monotonic decreasing trend in the burn rate was obtained. Overall, burn rate enhancement up to 7.6 times was observed, which was attributed to the GF's unique thermal properties resulting from its 3D interconnected network, high thermal conductivity, low thermal boundary resistance and low thermal mass. Moreover, the thermal conductivity of GF strut walls as a function of the GF density was also measured experimentally.</div></div><div><br></div><div><div>Then as a next step, the GF structures were functionalized with a transition metal oxide (MnO<sub>2</sub>). The use of GF-supported catalyst combined the physical eect of enhanced thermal transport due to the GF structure with the chemical effect of increased chemical reactivity (decomposition) due to the MnO<sub>2</sub> catalyst, and thus, resulted in even further burn rate enhancements (up to 9 times). The burn rates as a function of both the NC-GF and MnO<sub>2</sub>-NC loadings were studied. An optimum MnO<sub>2</sub>-NC loading corresponding to the maximum burn rate was obtained for each NC-GF loading. In addition, thermogravimetric (TG) and differential scanning</div><div>calorimetry (DSC) analysis were also conducted to determine the effect of NC-GF and MnO<sub>2</sub>-NC loadings on the activation energy (E) and peak thermal decomposition (PTD) temperatures of the propellant NC.</div></div><div><br></div><div><div>In addition to the experimental work, molecular dynamics simulations were also conducted to investigate the thermal transport and the reactivity of these coupled solidpropellant/graphene-structures. A solid monopropellant, Pentaerythritol Tetranitrate (PETN), when coupled to highly conductive multi-walled carbon nanotubes (MWCNTs) was considered. The thickness of the PETN layer and the diameter of the MWCNTs were varied to determine the effect of PETN-MWCNT loading on the burn rates obtained. Burn rate enhancement up to 3 times was observed and an optimal PETN-MWCNT loading of 45% was obtained. The enhancement was attributed to the faster heat conduction in CNTs and to the layering of PETN molecules around the MWCNTs surface. Moreover, the CNTs remained unburned after the combustion process, conrming that these graphene-structures do not take part in the chemical reactions but act only as thermal conduits, transferring heat from the burned to the unburned portions of the fuel.</div></div><div><br></div><div><div>A long-pursued goal, which is also a grand challenge, in nanoscience and nanotechnology is to create nanoscale devices, machines and motors that can do useful work. However, loyal to the scaling law, combustion would be impossible at nanoscale because the heat loss would profoundly dominate the chemical reactions. <b><i>Thus, in addition to the solid propellant work, a preliminary study was also conducted to understand as how does the heat transfer and combustion couple together at nano-scales.</i></b></div></div><div><b><i><br></i></b></div><div><div>First, an experimental study was performed to understand the feasibility of combustion at nano-scales for which a nano-scale combustion device called "nanobubbles" was designed. These nanobubbles were produced from short-time (< 2000 µs) water electrolysis by applying high-frequency alternating sign square voltage pulses (1-500 kHz), which resulted in H<sub>2</sub> and O<sub>2</sub> gas production above the same electrode. Moreover, a 10 nm thick Pt thermal sensor (based on resistance thermometry) was also fabricated underneath the combustion electrodes to measure the temperature changes obtained. A signicant amount of bubble production was seen up to 30 kHz but after that the bubble production decreased drastically, although the amount of faradaic current measured remained unchanged, signifying combustion. The temperature changes measured were also found to increase above this threshold frequency of 30 kHz.</div></div><div><br></div><div><div>Next, non-reactive molecular dynamic simulations were performed to determine as how does the surface tension of water surrounding the electrodes is affected by the presence of dissolved external gases, which would in turn help to predict the pressures inside nanobubbles. Knowing the bubble pressure is a perquisite towards understanding the combustion process. The surface tension of water was found to decrease with an increase in the supersaturation ratio (or an increase in the external gas concentration), thus, the internal pressure inside a nanobubble is much smaller than what would have been predicted using the planar-interface surface tension value of water. Once the pressure behavior as a function of external gas supersaturation was understood, then as a next step, reactive molecular dynamic simulations were performed to study the effects of surface-assisted dissociation of H<sub>2</sub> and O<sub>2</sub> gases and initial system pressure on the ignition and reaction kinetics of the H<sub>2</sub>/O<sub>2</sub> system at nano-scales. A signicant amount of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), 6-140 times water (H<sub>2</sub>O), was observed in the combustion products. This was attributed to the low temperature(~300 K) and high pressure (2-80 atm) conditions at which the chemical reactions were taking place. Moreover, the rate at which heat was being lost from the combustion chamber (nanobubble) was also compared to the rate at which heat was being released from the chemical reactions and only a slight rise in the reaction temperature was observed (~68 K), signifying that, at such small-scales, heat losses dominate.</div></div><div><br></div></div>
48

[en] MODELING, SIMULATION AND PARAMETER ESTIMATION OF THERMAL DECOMPOSITION OF POTASSIUM ALUM / [pt] MODELAGEM, SIMULAÇÃO E ESTIMAÇÃO DE PARÂMETROS DA DECOMPOSIÇÃO TÉRMICA DO ALÚMEN DE POTÁSSIO

RENATA BULCAO NOFAL 07 March 2019 (has links)
[pt] O potássio é um íon essencial para a nutrição de plantas, geralmente fornecido sob a forma de cloretos e sulfatos. De acordo com a disponibilidade e demanda brasileira de fertilizantes agrícolas, a importação de compostos portadores desse elemento químico é mandatória para atender a enorme demanda por esse nutriente. Assim, iniciativas que buscam fontes alternativas de potássio tornam-se cada vez mais interessantes e economicamente atraentes. Uma rota potencial está associada com a digestão com ácido sulfúrico de minerais portadores de glauconita e operações unitárias sequenciais para recuperar compostos de alumínio, ferro, magnésio e potássio. No contexto deste processo químico, o alúmen de potássio dodecahidrato aparece como um produto intermediário relevante que permite a recuperação seletiva de potássio e alumínio através de decomposição térmica seguida de solubilização em água e filtração. Com base no que foi dito, o presente trabalho investiga a cinética da decomposição do alúmen de potássio dodecahidratado sob condições não-redutoras e redutoras, e um novo modelo matemático é proposto para descrever a perda de massa ao longo do tempo. Uma abordagem estocástica, com o uso do método de otimização enxame de partículas, é empregada para estimar os parâmetros desconhecidos do modelo. As previsões do modelo são validadas por dados experimentais obtidos via análise termogravimétrica dinâmica em diferentes atmosferas de reação (inerte e oxidante), e com a presença ou não de agente redutor (finos de coque metalúrgico). Com os parâmetros do modelo validado, é possível usar o mesmo para monitorar as composições mássicas de todos os compostos presentes no meio assim como empregar o modelo futuramente para monitoramento online uma vez que sua simulação leva menos do que 1 s para simular 20 min de decomposição térmica. / [en] Potassium is an essential ion for plant nutrition, usually supplied in the form of chlorides and sulfates. According to Brazilian availability and demand of agriculture fertilizers, the importation of compounds carrying this chemical element is mandatory in order to fulfill the huge demand for this nutrient. So initiatives looking for alternative sources of potassium become increasingly interesting and economically attractive. A potential route is associated with the sulfuric digestion of glauconite-bearing greensands and sequential unit operations in order to recover aluminum, iron, magnesium and potassium compounds. In the context of this chemical process, the potassium alum dodecahydrate appears as a relevant intermediate product that allows the selective recovery of potassium and aluminum through thermal decomposition followed by solubilization in water and filtration. Based on what was said, the present work investigates the kinetics of potassium alum dodecahydrate decomposition under nonreductive and reductive conditions, and a novel mathematical model is proposed to describe the weight loss during time. A stochastic approach approach, using particle swarm optimization method, is employed to estimate the unknown model parameters. The model predictions are validated by experimental data obtained through dynamic thermogravimetric analysis at different reaction atmospheres (inert and oxidant), and with the presence or not of reducing agent (metallurgical coke breeze). With the validated model parameters, it is possible to use them to monitor the mass compositions of all compounds present in the process as well as to use the model for future online monitoring since its simulation takes less than 1 s to simulate 20 min of decomposition thermal.
49

Modelagem e simulação da decomposição térmica do óleo mineral isolante aplicadas à classificação de defeitos em transformadores de potência / Modeling and simulation of the mineral insulating oil thermal decomposition applied to faults classification in power transformers

Vinicius Gabriel Macedo Cruz 20 February 2015 (has links)
Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro / A análise de gases dissolvidos tem sido aplicada há décadas como a principal técnica de manutenção preditiva para diagnosticar defeitos incipientes em transformadores de potência, tendo em vista que a decomposição do óleo mineral isolante produz gases que permanecem dissolvidos na fase líquida. Entretanto, apesar da importância desta técnica, os métodos de diagnóstico mais conhecidos são baseados em constatações de modelos termodinâmicos e composicionais simplificados para a decomposição térmica do óleo mineral isolante, em conjunto com dados empíricos. Os resultados de simulação obtidos a partir desses modelos não reproduzem satisfatoriamente os dados empíricos. Este trabalho propõe um modelo termodinâmico flexível aprimorado para mimetizar o efeito da cinética de formação de sólidos como restrição ao equilíbrio e seleciona, entre quatro modelos composicionais, aquele que apresenta o melhor desempenho na simulação da decomposição térmica do óleo mineral isolante. Os resultados de simulação obtidos a partir do modelo proposto apresentaram uma melhor adequação a dados empíricos do que aqueles obtidos a partir dos modelos clássicos. O modelo propostofoi, ainda, aplicado ao desenvolvimento de um método de diagnóstico com base fenomenológica.Os desempenhos desta nova proposta fenomenológica e de métodos clássicos de diagnóstico por análise de gases dissolvidos foram comparados e discutidos; o método proposto alcançou desempenho superior a vários métodos usualmente empregados nessa área do conhecimento. E, ainda, um procedimento geral para a aplicação do novo método de diagnóstico é descrito / The dissolved gas analysis has been applied for decades as the main predictive maintenance technique for diagnosing incipient faults in power transformers since the decomposition of the mineral insulating oil produces gases that remain dissolved in the liquid phase. Nevertheless, the most known diagnostic methods are based on findings of simplified thermodynamic and compositional models for the thermal decomposition of mineral insulating oil, in addition to empirical data. The simulations results obtained from these models do not satisfactorily reproduce the empirical data. This work proposes a flexible thermodynamic model enhanced to mimic the kinetic effect of solid formation as a restriction to equilibrium and selects, among four compositional models, the one offering the best performance on the simulation of the thermal decomposition of mineral insulating oil. The simulation results obtained from the proposed model showed better adequacy to reported data than the results obtained from the classical models. The proposed model was also applied in the development of a diagnostic method with a phenomenological basis. The performances of this new phenomenological proposition and of classical dissolved gas analysis diagnostic methods are compared and discussed; the proposed method achieved a performance superior to several methods usually employed in this area of knowledge.Also, a general procedure for the application of the new diagnostic method is described
50

New strategies towards the synthesis of innovative multifunctional magnetic nanoparticles combining MRI imaging and/or magnetic hyperthermia therapy / Nouvelles stratégies vers la synthèse de nanoparticules magnétiques multifonctionnelles innovantes combinant imagerie par IRM et/ou thérapie par hyperthermie magnétique

Cotin, Geoffrey 24 November 2017 (has links)
Bien que de nombreux progrès aient été réalisés dans le traitement du cancer, de nouvelles approches sont nécessaires afin de minimiser les effets secondaires délétères et d’augmenter le taux de survie des patients. Aujourd’hui de nombreux espoirs reposent sur l’utilisation de nanoparticules (NPs) d’oxyde de fer fonctionnalisées permettant de combiner, en un seul nano-objet, le diagnostic (agent de contraste en IRM) et la thérapie par hyperthermie magnétique (i.e. « theranostic »). Dans ce contexte, la stratégie développée est la synthèse de NPs à propriétés magnétiques optimisées par le contrôle de leurs taille, forme et composition, leur biofonctionnalisation et la validation de leurs propriétés théranostiques. Une démarche d’ingénierie des NPs a été mise en place allant de la synthèse du précurseur de fer et de l’étude fine de sa décomposition en passant par l’étude in situ de la formation des NPs jusqu'à leur fonctionnalisation et la détermination de leurs propriétés theranostiques. / Despite numerous advances in cancer treatment, new approaches are necessary in order to minimize the deleterious side effects and to increase patient’s survivals rate. Nowadays, many hopes rely on functionalized iron oxide nanoparticles (NPs) that combine, in a single nano-objects, diagnosis (MRI contrast agent) and magnetic hyperthermia therapy (i.e. “theranostic”). In this context, the strategy is to develop the synthesis of optimized magnetic properties NPs through the control of their size, shape, composition, biofunctionalization and the validation of their theranostic properties. A process of NPs engineering has been developed starting at the iron precursor synthesis and the fine study of its decomposition passing through the in situ formation of the NPs to their functionalization and the determination of their theranostic properties.

Page generated in 0.1073 seconds