• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 2
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Levantamento e estudo das ocorrências de grafita do Distrito Grafitífero Aracoiába-Baturité, CE / Survey and study of graphite occurrences in the Aracoiába-Baturité graphite bearing District, CE

Paulo Roberto Pizarro Fragomeni 23 March 2011 (has links)
O Distrito Grafitífero Aracoiába-Baturité apresenta depósitos do tipo gnaisse grafitoso (minério disseminado) e veio (minério maciço) com diferentes origens genéticas e com características físicas e ambientes geológicos de formação próprios. O minério tipo gnaisse grafitoso é de origem sedimentar, singenético, com teores de 1,5 a 8% de C, que se distribuem ao longo de duas extensas faixas paralelas, hospedadas na Subunidade Baturité, que constitui um importante metalotecto regional. A associação de grafita metamórfica disseminada em metassedimentos da Sequência Acarápe constitui um geoindicador de antiga bacia sedimentar neoproterozóica e, também, pode ser considerado como zona de geosutura resultante do subsequente fechamento de um oceano primitivo. As rochas desta subunidade correspondem na paleogeografia da Sequência Acarápe aos fácies de sopé de talude e de planície abissal. O minério tipo veio (fluido depositado) é epigenético e, com teores entre 20% e 70% de C, forma corpos tabulares e bolsões, controlados em escala local por estruturas de alívio (falhas, fraturas, zonas de contato, eixos de dobras etc.) que permitiram a percolação de soluções penumatolíticas relacionadas ao corpo plutônico de Pedra Aguda. As variações dos valores das relações entre isótopos estáveis de carbono (δ13C) na grafita do minério disseminado são de -26,72 a -23,52 e do minério maciço de -27,03 a -20,83, revelando sinal de atividades biológicas (bioassinaturas) e permitem afirmar que a grafita das amostras acima são derivadas de matéria orgânica. Foram apresentados os principais guias de prospecção para grafita e testados os seguintes métodos geofísicos: Eletro-Resistividade; GPR - Ground Penetrating Radar; Magnetometria; VLF (Very Low Frequency); e Polarização Induzida Espectral (IPS) / Resistividade (ER). A conjugação dos métodos de Polarização Induzida Espectral (IPS) e Eletro Resistividade (ER) foi o que demonstrou a melhor eficiência. Com relação à determinação do teor de carbono por termogravimetria (ATG), que é o método mais utilizado para este elemento. Verificou-se, que as faixas de queima atribuídas ao carbono no minério do Distrito de Aracoiába-Baturité (340 a 570C e de 570 a 1050C) eram diferentes das faixas do minério de Minas Gerais (350C a 650C e 650C a 1.050C). Esta constatação indica a necessidade de se determinar previamente as faixas de temperatura para cada região pesquisada. / The Aracoiába-Baturité Graphite-bearing District has graphitic gneiss deposits (disseminated ore) and vein (solid ore) with different genetic origins and their own physical characteristics and geological environments. The graphite gneiss ore is of sedimentary, syngenetic origin, with 1.5% to 8% C content, which is distributed along two long parallel belts, hosted in the Baturité Sub-unit, which consists of a major regional metallotect. The association of metamorphic graphite disseminated in metasediments of the Acarápe Sequence consists of a geoindicator of an old Neo-Proterozoic sedimentary basin and also can be considered a geosuture zone, the result of the subsequent closing of a primitive ocean. The rocks of this subunit correspond in the paleogeography of the Acarápe Sequence to the facies of the bottom of a slope and of an abyssal plain. The vein ore (deposited fluid) is epigenetic and, with C contents of between 20% and 70%, forms tabular bodies and pockets, controlled on a local scale by relief structures (faults, fractures, contact zones, fold axes, etc.), which allowed seepage of pneumatolithic solutions relating to the plutonic body of Pedra Aguda. The variations in the values of the ratios between stable carbon isotopes (δ13C) in the graphite of the disseminated ore are -26.72 to -23.52 and of the solid ore -27.03 to -20.83, showing a sign of biological activities (biosignatures), and it can be said that the graphite of the above samples is derived from organic matter. The main prospecting guides for graphite were presented and the following geophysical methods tested: Electro-resistivity (ER); Ground Penetrating Radar (GPR); Magnetometry; Very Low Frequency (VLF); and Spectral Induced Polarization (SIP) / Electro-resistivity (ER). It was found that the combination of the Spectral Induced Polarization (SIP) and Electro-resistivity (ER) methods proved the most efficient. In relation to determining the carbon content using thermogravimetry (TG), which is the most commonly used method for this element, it was found that the bands of burning attributed to the carbon in the ore in the Aracoiába-Baturité District (340 to 570C and from 570oC to 1050C) were different from the bands of the ore in Minas Gerais (350C to 650C and 650C to 1050C). This finding suggests the need to determine beforehand the temperature ranges for each region studied.
12

Estudo e desenvolvimento de conjuntos membrana-eletrodos (MEA) para célula a combustível de eletrólito polimérico condutor de prótons (PEMFC) com eletrocatalisadores à base de paládio / Study and development of membrane electrode assemblies for proton exchange membrane fuel cell (PEMFC) with palladium based catalysts

BONIFACIO, RAFAEL N. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:42:20Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:59:42Z (GMT). No. of bitstreams: 0 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Sistemas de PEMFC são capazes de gerar energia elétrica com alta eficiência e baixa ou nenhuma emissão de poluentes, porém questões de custo e durabilidade impedem sua ampla comercialização. Nesse trabalho foi desenvolvido um MEA com eletrocatalisadores à base de paládio. Foram sintetizados e caracterizados eletrocatalisadores Pd/C, Pt/C e Ligas PdPt/C com diferentes razões entre metais e carbono. Foi realizado um estudo da razão entre ionômero de Nafion e eletrocatalisador para formação de triplas fases reacionais de máximos desempenhos, criado um modelo matemático para transpor esse ajuste para eletrocatalisadores com diferentes razões entre metal e suporte, considerando os aspectos volumétricos da camada catalisadora, e então realizado um estudo da espessura da camada catalisadora. Para as caracterizações foram utilizadas as técnicas de Difração de Raios-X, Microscopias Eletrônicas de Transmissão e de Varredura, Energia Dispersiva de Raios-X, Picnometria a Gás, Porosimetria por Intrusão de Mercúrio, Adsorção de Gás, segundo as equações de BET e BJH, Análise Termo Gravimétrica e feitas as determinações de diâmetros de partículas, de áreas de superfície específica e de parâmetros de rede. Todos os eletrocatalisadores foram usados no preparo de MEAs que foram avaliados em célula unitária de 5 cm2 entre 25 e 100 °C a 1 atm; e a melhor composição foi avaliada também a 3 atm. No estudo dos metais para as reações, visando reduzir a platina aplicada aos eletrodos, sem perdas de desempenho, foram selecionados Pd/C para ânodos e PdPt/C 1:1 para cátodos. A estrutura de MEA desenvolvida utilizou 0,25 mgPt.cm-2 e resultou em densidades de potência de até 550 mW.cm-2 e potências de até 2,2 kWe por grama de platina. A estimativa realizada mostrou que houve uma redução de até 64,5 % nos custos em relação à estrutura de MEA previamente conhecida. Em função da temperatura e pressão de operação foram obtidos valores a partir de R$ 3.540,73 para o preparo de MEAs para cada quilowatt instalado. Com base em estudos recentes, concluiu-se que o custo do MEA desenvolvido é compatível às aplicações estacionárias de PEMFC. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP / FAPESP: 10/10028-1
13

Development of Polyethylene Grafted Graphene Oxide Reinforced High Density Polyethylene Bionanocomposites

Upadhyay, Rahul Kumar January 2017 (has links) (PDF)
The uniform dispersion of the nano fillers without agglomeration in a polymeric matrix is widely adapted for the purpose of mechanical properties enhancement. In the context to biomedical applications, the type and amount of nanoparticles can potentially influence the biocompatibility. In order to address these issues, High Density Polyethylene (HDPE) based composites reinforced with graphene oxide (GO) were prepared by melt mixing followed by compression moulding. In an attempt to tailor the dispersion and to improve the interfacial adhesion, polyethylene (PE) was immobilized onto GO sheets by nucleophilic addition-elimination reaction. A good combination of yield strength (ca. 20 MPa), elastic modulus (ca. 600 MPa) and an outstanding elongation at failure (ca. 70 %) were recorded with 3 wt % polyethylene grafted graphene oxide (PE-g-GO) reinforced HDPE composites. Considering the relevance of protein adsorption as a biophysical precursor to cell adhesion, the protein adsorption isotherms of bovine serum albumin (BSA) were determined to realize three times higher equilibrium constant (Keq) for PE-g-GO reinforced HDPE composites as compared to GO reinforced composites. In order to assess the cytocompatibility, osteoblast cells (MC3T3) were grown on HDPE/GO and HDPE/PE-g-GO composites, in vitro. The statistically significant increase in metabolically active cell was observed, irrespective of the substrate composition. Such observation indicated that HDPE with GO or PE-g-GO addition (upto 3 wt %) can be used as cell growth substrate. The extensive proliferation of cells with oriented growth pattern also supported the fact that tailored GO addition can support cellular functionality, in vitro. Taken together, the experimental results suggest that the PE-g-GO in HDPE can effectively be utilized to enhance both mechanical and cytocompatibility properties and can further be explored for potential biomedical applications.
14

Preparation, characterization and performance evaluation of Nanocomposite SoyProtein/Carbon Nanotubes (Soy/CNTs) from Soy Protein Isolate

Sadare, Olawumi Oluwafolakemi 04 1900 (has links)
Formaldehyde-based adhesives have been reported to be detrimental to health. Petrochemical-based adhesives are non-renewable, limited and costly. Therefore, the improvement of environmental-friendly adhesive from natural agricultural products has awakened noteworthy attention. A novel adhesive for wood application was successfully prepared with enhanced shear strength and water resistance. The Fourier transmform infrared spectra showed the surface functionalities of the functionalized carbon nanotubes (FCNTs) and soy protein isolate nanocomposite adhesive. The attachment of carboxylic functional group on the surface of the carbon nanotubes (CNTs) after purification contributed to the effective dispersion of the CNTs in the nanocomposite adhesive. Hence, enhanced properties of FCNTs were successfully transferred into the SPI/CNTs nanocomposite adhesive. These unique functionalities on FCNTs however, improved the mechanical properties of the adhesive. The shear strength and water resistance of SPI/FCNTs was higher than that of the SPI/CNTs. SEM images showed the homogenous dispersion of CNTs in the SPI/CNTs nanocomposite adhesive. The carbon nanotubes were distributed uniformly in the soy protein adhesive with no noticeable clusters at relatively reduced fractions of CNTs as shown in the SEM images, which resulted into better adhesion on wood surface. Mechanical (shear) mixing and ultrasonication with 30 minutes of shear mixing both showed an improved dispersion of CNTs in the soy protein matrix. However, ultrasonication method of dispersion showed higher tensile shear strength and water resistance than in mechanical (shear) mixing method. Thermogravimetric analysis of the samples also showed that the CNTs incorporated increases the thermal stability of the nanocomposite adhesive at higher loading fraction. Incorporation of CNTs into soy protein isolate adhesive improved both the shear strength and water resistance of the adhesive prepared at a relatively reduced concentration of 0.3%.The result showed that tensile shear strength of SPI/FCNTs adhesive was 0.8 MPa and 7.25MPa at dry and wet state respectively, while SPI/CNTs adhesive had 6.91 MPa and 5.48MPa at dry and wet state respectively. There was over 100% increase in shear strength both at dry and wet state compared to the pure SPI adhesive. The 19% decrease in value of the new adhesive developed compared to the minimum value of ≥10MPa of European standard for interior wood application may be attributed to the presence of metallic particles remaining after purification of CNTs. The presence of metallic particles will prevent the proper penetration of the adhesive into the wood substrate. The type of wood used in this study as well as the processing parameters could also result into lower value compared to the value of European standard. Therefore, optimization of the processing parameter as well as the conversion of carboxylic acid group on the surface of the CNTs into acyl chloride group may be employed in future investigation. However, the preparation of new nanocomposite adhesive from soy protein isolate will replace the formaldehyde and petrochemical adhesive in the market and be of useful application in the wood industry. / Civil and Chemical Engineering / M. Tech. (Chemical Engineering)
15

Preparation, characterization and performance evaluation of Nanocomposite SoyProtein/Carbon Nanotubes (Soy/CNTs) from Soy Protein Isolate

Sadare, Olawumi Oluwafolakemi 04 1900 (has links)
Formaldehyde-based adhesives have been reported to be detrimental to health. Petrochemical-based adhesives are non-renewable, limited and costly. Therefore, the improvement of environmental-friendly adhesive from natural agricultural products has awakened noteworthy attention. A novel adhesive for wood application was successfully prepared with enhanced shear strength and water resistance. The Fourier transmform infrared spectra showed the surface functionalities of the functionalized carbon nanotubes (FCNTs) and soy protein isolate nanocomposite adhesive. The attachment of carboxylic functional group on the surface of the carbon nanotubes (CNTs) after purification contributed to the effective dispersion of the CNTs in the nanocomposite adhesive. Hence, enhanced properties of FCNTs were successfully transferred into the SPI/CNTs nanocomposite adhesive. These unique functionalities on FCNTs however, improved the mechanical properties of the adhesive. The shear strength and water resistance of SPI/FCNTs was higher than that of the SPI/CNTs. SEM images showed the homogenous dispersion of CNTs in the SPI/CNTs nanocomposite adhesive. The carbon nanotubes were distributed uniformly in the soy protein adhesive with no noticeable clusters at relatively reduced fractions of CNTs as shown in the SEM images, which resulted into better adhesion on wood surface. Mechanical (shear) mixing and ultrasonication with 30 minutes of shear mixing both showed an improved dispersion of CNTs in the soy protein matrix. However, ultrasonication method of dispersion showed higher tensile shear strength and water resistance than in mechanical (shear) mixing method. Thermogravimetric analysis of the samples also showed that the CNTs incorporated increases the thermal stability of the nanocomposite adhesive at higher loading fraction. Incorporation of CNTs into soy protein isolate adhesive improved both the shear strength and water resistance of the adhesive prepared at a relatively reduced concentration of 0.3%.The result showed that tensile shear strength of SPI/FCNTs adhesive was 0.8 MPa and 7.25MPa at dry and wet state respectively, while SPI/CNTs adhesive had 6.91 MPa and 5.48MPa at dry and wet state respectively. There was over 100% increase in shear strength both at dry and wet state compared to the pure SPI adhesive. The 19% decrease in value of the new adhesive developed compared to the minimum value of ≥10MPa of European standard for interior wood application may be attributed to the presence of metallic particles remaining after purification of CNTs. The presence of metallic particles will prevent the proper penetration of the adhesive into the wood substrate. The type of wood used in this study as well as the processing parameters could also result into lower value compared to the value of European standard. Therefore, optimization of the processing parameter as well as the conversion of carboxylic acid group on the surface of the CNTs into acyl chloride group may be employed in future investigation. However, the preparation of new nanocomposite adhesive from soy protein isolate will replace the formaldehyde and petrochemical adhesive in the market and be of useful application in the wood industry. / Civil and Chemical Engineering / M. Tech. (Chemical Engineering)
16

Wheat Straw-Clay-Polypropylene Hybrid Composites

Sardashti, Amirpouyan 23 September 2009 (has links)
The preparation of polymeric hybrid composite consisting of organic and inorganic fillers is of interest for industries like automotive, construction and packaging. In order to understand and predict the physical and chemical properties of these hybrid composites, it is necessary to fully understand the nature and properties of the employed fillers. In this study, the preparation of polypropylene hybrid composite consisting of wheat straw and clay was investigated. A detailed study was performed on wheat straw from South Western Ontario region. The effect of grinding the straw and compounding it with polypropylene was investigated. Experiments were carried out to identify the thermal stability of the ground wheat straw with respect to their size and composition. It was important to identify a correlation between these properties in order to minimize the straw degradation by processing and also to improve the final properties of the hybrid composite. The composite samples were prepared through melt blending method using a co-rotating twin-screw extruder. Sample test bars were prepared by injection moulding. The composition of the constituents of the hybrid composite; percentages of wheat straw, clay and coupling agent, were varied in order to investigate their influence on thermal stability, water resistance and mechanical properties. The results of the study indicated that grinding the wheat straw with a hammer mill produced particles with different sizes and shapes. It was found that through the grinding system all particles, regardless of their size, had a multi-layered structure similar to the plant structure. Further hammer milling did not produce plant particles with long aspect ratios that would be expected in a defibrillation process. Analysis of the chemical composition of wheat straw particles of different sizes and shapes was used to measure the ratio of hemicelluloses: lignin and the ash content. It was found that the large particles contained more amount of lignin whereas smaller particles had larger amount of ash content. The thermal stability of the particles was found to be a function of particle size rather than the lignin content. Particle size analysis on the wheat straw particles after the extrusion process indicated a reduction in the particle length and aspect ratio. The thermal stability of the composites was found to be enhanced by the addition of clay particles at higher temperature and the addition of coupling agent at lower temperatures. Increasing the amount of wheat straw and clay content increased the flexural modulus and reduced the resistance for water absorption. Increasing the amount of coupling agent also increased the flexural modulus and resistance for water absorption. The morphological study by scanning electron microscopy revealed that coupling agent increased the interfacial interaction between the particles and the polymer matrix.
17

Wheat Straw-Clay-Polypropylene Hybrid Composites

Sardashti, Amirpouyan 23 September 2009 (has links)
The preparation of polymeric hybrid composite consisting of organic and inorganic fillers is of interest for industries like automotive, construction and packaging. In order to understand and predict the physical and chemical properties of these hybrid composites, it is necessary to fully understand the nature and properties of the employed fillers. In this study, the preparation of polypropylene hybrid composite consisting of wheat straw and clay was investigated. A detailed study was performed on wheat straw from South Western Ontario region. The effect of grinding the straw and compounding it with polypropylene was investigated. Experiments were carried out to identify the thermal stability of the ground wheat straw with respect to their size and composition. It was important to identify a correlation between these properties in order to minimize the straw degradation by processing and also to improve the final properties of the hybrid composite. The composite samples were prepared through melt blending method using a co-rotating twin-screw extruder. Sample test bars were prepared by injection moulding. The composition of the constituents of the hybrid composite; percentages of wheat straw, clay and coupling agent, were varied in order to investigate their influence on thermal stability, water resistance and mechanical properties. The results of the study indicated that grinding the wheat straw with a hammer mill produced particles with different sizes and shapes. It was found that through the grinding system all particles, regardless of their size, had a multi-layered structure similar to the plant structure. Further hammer milling did not produce plant particles with long aspect ratios that would be expected in a defibrillation process. Analysis of the chemical composition of wheat straw particles of different sizes and shapes was used to measure the ratio of hemicelluloses: lignin and the ash content. It was found that the large particles contained more amount of lignin whereas smaller particles had larger amount of ash content. The thermal stability of the particles was found to be a function of particle size rather than the lignin content. Particle size analysis on the wheat straw particles after the extrusion process indicated a reduction in the particle length and aspect ratio. The thermal stability of the composites was found to be enhanced by the addition of clay particles at higher temperature and the addition of coupling agent at lower temperatures. Increasing the amount of wheat straw and clay content increased the flexural modulus and reduced the resistance for water absorption. Increasing the amount of coupling agent also increased the flexural modulus and resistance for water absorption. The morphological study by scanning electron microscopy revealed that coupling agent increased the interfacial interaction between the particles and the polymer matrix.
18

Synthesis and characterisation of substituted smithsonite and calcite

Hales, Matthew Cameron January 2008 (has links)
Carbonate minerals play a very important role in nature, they represent some of the most diverse and common mineral species on the Planet. They are directly involved in the carbon dioxide (CO2) cycle acting as relatively stable long term chemical storage reservoirs, moderating both global warming trends and oceanaquatic chemistry through carbonate buffering systems. A range of synthetic metal carbonates have been synthesised for analysis under multiple experimental conditions, in order to study the variation in physical and chemical properties such as phase specificity, metal substitution, hydration/hydroxy carbonate formation under varying partial pressures of CO2 and thermal stability. Synthetic samples were characterised by a variety of instrumental analysis techniques in order to investigate chemical purity and phase specificity. Some of the techniques included, vibrational spectroscopy (IR/Raman), thermal analysis (TGA-MS) (thermal Raman), X-Ray diffraction (XRD) and electron microscopy (SEM-EDX). From the instrumental characterisation techniques, it was found that single phase smithsonite, hydrozincite, calcite and nesquehonite could successfully be synthesised under the conditions used. Minor impurities of other minerals and / or phases were found to form under specific chemical or physical conditions such as in the case of hydrozincite / simonkolleite if zinc chloride was used during hydrothermal synthesis.
19

Effet de la variabilité intra et interspécifique du bois sur les procédés de traitement thermique / Effect of the intra and interspecific variability of wood on heat modification processes

Hamada, Joël 16 November 2016 (has links)
Dans le contexte du développement durable qui a vu l’introduction de la directive produits biocides BPD 98/8/CE, l’étude des méthodes innovantes de préservation du bois comme le traitement thermique revêt une importance prépondérante. Le traitement thermique du bois permet d’améliorer ses propriétés de résistance biologique, de stabilité dimensionnelle ainsi que son aspect esthétique, sans ajout de produit chimique. Les études actuelles sur la problématique de la qualité du bois traité thermiquement se focalisent sur les caractéristiques finales du bois déjà traité, l’influence des conditions de traitement ou encore l’effet essence. Les propriétés intrinsèques du bois avant le traitement ne sont pas encore prises en compte. Les propriétés du bois telles que la densité ou la composition chimique étant variables principalement sous l’effet de l’activité humaine comme la sylviculture, l’objectif de cette thèse était d’évaluer l’impact de cette variabilité chez le chêne sessile (Quercus petraea Liebll.) et le sapin (Abies alba Mill) sur leur modification par voie thermique. Un scanner et un micro-densitomètre à rayons X ont été utilisés pour caractériser la variation de la densité des échantillons de planches et des cernes de croissance provenant des arbres étudiés. Des traitements thermiques ont été réalisés dans un four pilote à conduction sous vide de type macro-thermobalance et un analyseur thermogravimétrique (ATG). Des analyses chimiques ont été également réalisées. Les résultats montrent qu’en prenant la perte de masse due à la dégradation thermique du bois comme réponse, les types de tissus du bois et la composition chimique influencent sa thermo-dégradation. Que ce soit chez Quercus petraea ou chez Abies alba, le bois de printemps était plus sensible au traitement thermique que son voisin de bois d’été. De plus, les portions radiales du tronc, du bois juvénile à l’aubier en passant par le bois mature, se dégradaient suivant des cinétiques différentes. En conclusion, la variation de la microstructure et la composition chimique de ces bois influencent leur cinétique globale de thermo-dégradation. La sylviculture impacte cette différence intraspécifique de cinétique de dégradation à l’échelle intra- et interarbre. En effet, dans le cas du sapin pectiné, une gestion très dynamique des forêts dans le but de stimuler la croissance rapide des arbres qui produisent de gros bois contenant des cernes très larges, est source de variation dans la structure anatomique et la composition chimique à l’intérieur des arbres en comparaison aux petits bois à croissance lente plus homogènes. Toutes ces analyses ont pour objectif final de comprendre le lien entre les propriétés initiales du bois et les modifications thermiques intervenant au cours du traitement afin d’apporter une information utile aux industriels lors du choix des pièces de bois destinées au traitement thermique en vue d’une amélioration de la qualité du bois traité thermiquement / In the context of sustainable development which has seen the introduction of the biocides directive BPD 98/8/CE in the EU, innovative wood preservation practices such as Heat Treatment (HT) become relevant. Wood HT, also termed wood thermal modification, is a physical modification technology by which wood is heated at around 200 °C in an inert atmosphere. The main purpose of the treatment is to improve the biological durability and dimensional stability of wood. Current studies on thermally modified wood (TMW) quality are focusing on treated material, on treatment conditions or on species effect on the end-product characteristics. Relatively little is known about the effect of intrinsic wood properties on its thermal modification. As wood properties vary especially under the influence of human activities through sylviculture, this thesis studied the effect of European oak and silver fir wood density and chemical composition on their thermal modification kinetic. An X rays computed tomography (CT) and densitometer were used to characterize wood samples. Boards were heat-treated by conduction under vacuum using a pilot furnace, whereas sawdust samples underwent thermo-gravimetric analysis under nitrogen. The analysis allowed finding intra- and interspecific variations, especially within growth rings and along radial direction (from pith to bark). Forest management impacted heat modification kinetic of the studied samples, especially in silver fir where fast grown wood was more sensitive to treatment. The finding will be used as additional information to the wood industry which will account for homogeneity of loadings destined to heat treatment
20

Etudes expérimentale et numérique de la pyrolyse oxydante de la biomasse en lit fixe / Experimental and numerical studies of biomass oxidative pyrolysis in a fixed bed reactor

Daouk, Elias 20 November 2015 (has links)
Les procédés de gazéification de bois à lits fixes étagés sont adaptés à la production d'électricité de petites puissances. Dans ces procédés, la pyrolyse est opérée dans un réacteur continu à lit fixe descendant. La particularité de ce type de réacteur est son fonctionnement autothermique. L'énergie nécessaire au chauffage, au séchage et à la pyrolyse est apportée par la combustion partielle du bois : on parle de “pyrolyse oxydante”. L'injection d'air par le haut du réacteur provoque la propagation d'une zone d'oxydation dans le milieu poreux à contre-courant des écoulements des solides et des gaz. Les travaux présentés dans ce manuscrit visent une meilleure description de cette étape du procédé. Le problème posé est de type multi-échelles. Ainsi, nous avons préalablement mené une étude à l'échelle de la particule isolée avant de s'intéresser au comportement global du lit fixe. A l'échelle de la particule, nous avons quantifié l'effet de l'oxygène et de la taille des particules sur la cinétique de la pyrolyse oxydante. Cette étude nous a guidés pour la mise en place d'un modèle cinétique de cette transformation. A l'échelle du lit fixe, la propagation de la zone d'oxydation a été caractérisée par des approches expérimentale et numérique, offrant ainsi une meilleure connaissance de cette étape du procédé étagé. / Wood Multi-staged gasification in a fixed bed reactor is suitable for small-scale electricity generation. In these processes, the pyrolysis is performed in a continuous downward fixed bed reactor. The main feature of this reactor is the autothermal operation. Energy for heating, drying and pyrolysis is supplied by partial combustion of wood, known as “oxidative pyrolysis”. The air introduced from the top of the reactor induces a combustion front that propagates countercurrent with the solids and gazes flows. The work presented in this document aimed to achieve a better description of this process. A multi-scale approach was considered. Therefore, we have firstly studied the behavior of an isolated particle before focusing on the overall fixed bed. At the particle scale, we have quantified the effect of oxygen and of particle size on the oxidative pyrolysis kinetics. This led us to the setup of a kinetic model for this transformation.At the fixed bed scale, the propagation of the combustion front was studied considering the experimental and numerical approaches, which provides a better understanding of this step of the wood staged gasifiers.

Page generated in 0.0579 seconds