• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 27
  • 17
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 155
  • 155
  • 36
  • 28
  • 26
  • 25
  • 25
  • 22
  • 22
  • 22
  • 21
  • 19
  • 18
  • 18
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

A Computational Study of Structural and Thermo-Mechanical Behavior of Metallic Nanowires

Sutrakar, Vijay Kumar January 2013 (has links) (PDF)
This thesis is an attempt to understand ways to improve thermo-mechanical and structural properties of nano-structured materials. A detailed study on computational design and analysis of metallic nanowires is carried out. Molecular dynamic simulation method is applied. In particular, FCC metallic nanowires, NiAl, and CuZr nanowires are studied. Various bottom-up approaches are suggested with improved structural and thermo¬mechanical properties. In the first part of the thesis, Cu nanowires are considered. Existence of a novel and stable pentagonal multi-shell nanobridge structure of Cu under high strain rate tensile loading is reported. Such a structure shows enhanced mechanical properties. A three-fold pseudo-elastic-plastic shape recovery mechanism in such nanowires is established. This study also shows that the length of the pentagonal nanobridge structures can be characterized by its inelastic strain. It is also reported that an initial FCC structure is transformed into a new HCP structure. The evidence of HCP structure is confirmed with the help of experimental data published in the literature. Subsequent to the above study, a novel mechanism involving coupled temperature-stress dependent reorientation in FCC nanowires is investigated. A detailed map is generated for size dependent stress-temperature induced solid-solid reorientation in Cu nanowires. In the second part of the thesis, deformation mechanisms in NiAl based intermetallic nanowires are studied. A novel mechanism of temperature and cross-section dependent pseudo-elastic/pseudo-plastic shape and strain recovery by an initial B2 phase of NiAl nanowire is reported. Such a recoverable strain, which is as high as ~ 30%, can potentially be utilized to realize various types of shape memory and strain sensing phenomena in nano-scale devices. An asymmetry in tensile and compressive yield strength behavior is also observed, which is due to the softening and hardening of the nanowires under tensile and compressive loadings, respectively. Two different deformation mechanisms dominated by twinning under tension and slip under compression are found. Most interestingly, a superplastic behavior with a failure strain of up to 700% in the intermetallic NiAl nanowires is found to exist at a temperature of 0.36Tm. Such superplastic behavior is attributed to the transformation of the nanowire from a crystalline phase to an amorphous phase after yielding of the nanowire. In the last part the work, another type of nanowires having Cu-Zr system is considered. A novel stress induced martensitic phase transformation from an initial B2 phase to BCT phase in a CuZr nanowire under tensile loading is reported. It is further shown that such a stress induced martenistic phase transformation can be achieved under both tensile as well as compressive loadings. Tensile-compressive asymmetry in the stress-strain behavior is observed due to two different phase transformation mechanisms having maximum transformation strains of ~ 5% under compressive loading and ~ 20% under tensile loading. A size and temperature dependent tensile phase transformation in the nanowire is also observed. Small nanowires show a single step tensile phase transformation whereas the nanowires with larger size show a two step deformation mechanism via an intermediate R-phase hardening followed by R-phase yielding. A study of energetic behavior of these nanowires reveals uniform distribution of stress over the nanowire cross-section and such stress distribution can lead to a significant improvement in its thermo-mechanical properties. Similar improvement is demonstrated by designing the nanowires via manipulating the surface configuration of B2-CuZr system. It is found that the CuZr nanowires with Zr atoms at the surface sites are energetically more stable and also give a uniform distribution of stresses across the cross-section. This leads to the improvement in yield strength as well as failure strain. An approach to design energetically stable nano-structured materials via manipulating the surface configurations with improved thermo-mechanical properties is demonstrated which can help in fundamental understanding and development of similar structures with more stability and enhanced structural properties. Further ab-initio and experimental studies on the confirmation of the stability of the nanowires via manipulating the surface site is an open area of research and related future scopes are highlighted in the closure.
152

Magneticky uspořádané struktury v polymerních nanokompozitech a jejich vliv na mechanickou odezvu / Magnetically assembled nanoparticle structures and their effect on mechanical response of polymer nanocomposites

Zbončák, Marek January 2018 (has links)
Magneticky řízené samo-uspořádávání v polymerních nanokompozitech je studováno v této dizertační práci. Strukturování polymerních nanokompozitů pomocí relativně slabých magnetických polí (B=0-50 mT) bylo prokázáno jako praktická metoda pro kontrolu jejích nano a mikrostruktury. Vliv intenzity magnetického pole, množství nanočástic, viskozity a času uspořádávání na výslednou strukturu byl studován v různých systémech jako fotopolymer, polyuretan nebo koloidně dispergované nanočástice v acetonu s malým množstvím rozpuštěného polymeru. Samo-uspořádané struktury – bez aplikace vnějšího magnetického pole vykazují vícekrokovou agregaci nanočástic do uskupení s komplexním tvarem. Magnetické interakce byly označené jako odpovědné za agregaci nanočástic v samo-uspořádaných systémech pomocí výpočtů energii mezi-částicových interakcí. S rostoucím magnetickým polem, magnetické nanočástice jsou rychle uspořádané do jednorozměrných částicových řetězů s vysokým aspektním poměrem a homogenní orientaci v polymerní matrici. S prodluženým časem uspořádaní, tyto struktury postupně rostou z malých submikrometrových struktur do velkých mikroskopických super struktur. Táto metoda vykazuje velký potenciál pro kontrolovanou přípravu široké škály struktur v polymerních nanokompozitech vhodných pro technologické aplikace a také pro fundamentální studie. Magneticky uspořádané polymerní nanokompozity vykazují značnou směrovou anisotropii tuhosti kompozitu nad jeho skelným přechodem přičemž, pod skelným přechodem systému není pozorován žádný efekt. Podélně orientované struktury vykazují větší příspěvek k tuhosti kompozitů. Efektivnost vyztužení vykazuje teplotně závislý průběh a maximum je pozorováno přibližně 60 °C nad skelným přechodem. Struktura magneticky uspořádaného polymerního nanokompozitu byla popsána vícero-úrovňovým hierarchickým modelem materiálu. Mikromechanika byla využitá k popisu směrově závislého vyztužení polymerních nanokompozitů a k popisu teplotně závislé tuhosti hybridních struktur složených z nanočástic a polymeru. Schopnost nést napětí, deformovat se a nenulová tuhost hybridních struktur je odpovědná za vyztužení polymerních nanokompozitů. Přítomnost polymerních přemostění mezi nanočásticemi, které přenášejí napěti skrze magnetické struktury je označená jako nezbytná pro mechanickou odezvu polymerních nanokompozitů a pro tuhost hybridních struktur.
153

Welds in the lean duplex stainless steel LDX 2101 : effect of microstructure and weld oxides on corrosion properties

Westin, Elin M. January 2008 (has links)
Duplex stainless steels are a very attractive alternative to austenitic grades due to their higher strength and good corrosion performance. The austenitic grades can often be welded autogenously, while the duplex grades normally require addition of filler metal. This is to counteract segregation of important alloying elements and to give sufficient austenite formation to prevent precipitation of chromium nitrides that could have a negative effect on impact toughness and pitting resistance. The corrosion performance of the recently-developed lean duplex stainless steel LDX 2101 is higher than that of 304 and can reach the level of 316. This thesis summarises pitting resistance tests performed on laser and gas tungsten arc (GTA) welded LDX 2101. It is shown here that this material can be autogenously welded, but additions of filler metal, nitrogen in the shielding gas and use of hybrid methods increases the austenite formation and the pitting resistance by further suppressing formation of chromium nitride precipitates in the weld metal. If the weld metal austenite formation is sufficient, the chromium nitride precipitates in the heat-affected zone (HAZ) could cause local pitting, however, this was not seen in this work. Instead, pitting occurred 1–3 mm from the fusion line, in the parent metal rather than in the high temperature HAZ (HTHAZ). This is suggested here to be controlled by the heat tint, and the effect of residual weld oxides on the pitting resistance is studied. The composition and the thickness of weld oxide formed on LDX 2101 and 2304 were determined using X-ray photoelectron spectroscopy (XPS). The heat tint on these lean duplex grades proved to contain significantly more manganese than what has been reported for standard austenitic stainless steels in the 300 series. A new approach on heat tint formation is consequently presented. Evaporation of material from the weld metal and subsequent deposition on the weld oxide are suggested to contribute to weld oxide formation. This is supported by element loss in LDX 2101 weld metal, and nitrogen additions to the GTA shielding gas further increase the evaporation. / QC 20101126
154

Thermo-mechanical Analysis of Laser Hot-wire Directed Energy Deposition (LHW-DED) Additive Manufacturing Process

Kalel, Mukesh 03 May 2023 (has links)
No description available.
155

Leveraging Multistability to Design Responsive, Adaptive, and Intelligent Mechanical Metamaterials

Aman Rajesh Thakkar (17600733) 19 December 2023 (has links)
<p dir="ltr">Structural instability, traditionally deemed undesirable in engineering, can be leveraged for beneficial outcomes through intelligent design. One notable instance is elastic buckling, often leading to structures with two stable equilibria (bistable). Connecting bistable elements to form multistable mechanical metamaterials can enable the discretization and offer tunability of mechanical properties without the need for continuous energy input.<i> </i>In this work, we study the physics of these multistable metamaterials and utilize their state and property alterations along with snap-through instabilities resulting from state change for engineering applications. These materials hold potential for diverse applications, including mechanical and thermo-mechanical defrosting, energy absorption, energy harvesting, and mechanical storage and computation.</p><p dir="ltr">Focusing on defrosting, we find that the energy-efficient mechanical method using embedded bistable structures in heat exchanger fins significantly outperforms the thermal methods. The combination of manufacturing methods, material choice, boundary conditions, and actuation methodologies is systematically investigated to enhance defrosting performance. A purely mechanical strategy is effective against solid, glaze-like ice accumulations; however, performance is substantially diminished for low-density frost. To address this limitation, we study frost formation on the angular shape morphing fins and subsequently introduce a thermo-mechanical defrosting strategy. This hybrid approach focuses on the partial phase transition of low-density frost to solid ice through thermal methods, followed by mechanical defrosting. We experimentally validate this approach on a multistable heat exchanger fin pack.</p><p dir="ltr">Recent advancements have led to a new paradigm of reusable energy-absorbing materials, known as Phase Transforming Cellular Materials (PXCM) that utilize multiple negative stiffness elements connected in series. We explore the feasibility of this multistable metamaterial as frequency up-conversion material and utilize these phase transformations for energy harvesting. We experimentally demonstrate the energy-harvesting capabilities of a phase-transforming unit-cell-spring configuration and investigate the potential of multicell PXCM as an energy harvesting material.</p><p dir="ltr">The evolution towards intelligent matter, or physical intelligence, in the context of mechanical metamaterials can be characterized into four distinct stages: static, responsive, adaptive, and intelligent mechanical metamaterials. In the pursuit of designing intelligent mechanical metamaterials, there has been a resurgence in the field of mechanical computing. We utilize multistable metamaterials to develop mechanical storage systems that encode memory via bistable state changes and decode it through a global stiffness readout. We establish upper bounds for maximum memory capacity in elastic bit blocks and propose an optimal stiffness distribution for unique and identifiable global states. Through both parallel and series configurations, we realize various logic gates, thereby enabling in-memory computation. We further extend this framework by incorporating viscoelastic mechano-bits, which mimic the decay of neuronal action potentials. This allows for temporal stiffness modulation and results in increased memory storage via non-abelian behavior, for which we define a fundamental time limit of detectability. Additionally, we investigate information entropy in both elastic and viscoelastic systems, showing that temporal neural coding schemes can extend the system’s entropy beyond conventional limits. This is experimentally validated and shown to not only enhance memory storage but also augment computational capabilities.</p><p dir="ltr">The work in this thesis establishes multistability as a key design principle for developing responsive, adaptive, and intelligent materials, opening new avenues for future research in the field of multistable metamaterials.</p>

Page generated in 0.0564 seconds