• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 27
  • 17
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 155
  • 155
  • 36
  • 28
  • 26
  • 25
  • 25
  • 22
  • 22
  • 22
  • 21
  • 19
  • 18
  • 18
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Thermo-Mechanical Analysis of Temporary Bonding Systems for Flexible Microelectronics Fabrication Applications

January 2011 (has links)
abstract: Temporary bonding-debonding of flexible plastic substrates to rigid carriers may facilitate effective substrate handling by automated tools for manufacture of flexible microelectronics. The primary challenges in implementing practical temporary bond-debond technology originate from the stress that is developed during high temperature processing predominately through thermal-mechanical property mismatches between carrier, adhesive and substrate. These stresses are relaxed through bowing of the bonded system (substrate-adhesive-carrier), which causes wafer handling problems, or through delamination of substrate from rigid carrier. Another challenge inherent to flexible plastic substrates and linked to stress is their dimensional instability, which may manifest itself in irreversible deformation upon heating and cooling cycles. Dimensional stability is critical to ensure precise registration of different layers during photolithography. The global objective of this work is to determine comprehensive experimental characterization and develop underlying fundamental engineering concept that could enable widespread adoption and scale-up of temporary bonding processing protocols for flexible microelectronics manufacturing. A series of carriers with different coefficient of thermal expansion (CTE), modulus and thickness were investigated to correlate the thermo-mechanical properties of carrier with deformation behavior of bonded systems. The observed magnitude of system bow scaled with properties of carriers according to well-established Stoney's equation. In addition, rheology of adhesive impacted the deformation of bonded system. In particular, distortion-bowing behavior correlated directly with the relative loss factor of adhesive and flexible plastic substrate. Higher loss factor of adhesive compared to that of substrate allowed the stress to be relaxed with less bow, but led to significantly greater dimensional distortion. Conversely, lower loss factor of adhesive allowed less distortion but led to larger wafer bow. A finite element model using ANSYS was developed to predict the trend in bow-distortion of bonded systems as a function of the viscoelastic properties of adhesive. Inclusion of the viscoelasticity of flexible plastic substrate itself was critical to achieving good agreement between simulation and experiment. Simulation results showed that there is a limited range within which tuning the rheology of adhesive can control the stress-distortion. Therefore, this model can aid in design of new adhesive formulations compatible with different processing requirements of various flexible microelectronics applications. / Dissertation/Thesis / Ph.D. Chemical Engineering 2011
32

Thermo-mechanical fatigue crack propagation in a single-crystal turbine blade

Koernig, Andreas, Andersson, Nicke January 2016 (has links)
Simulation of crack growth in the internal cooling system of a blade in a Siemens gas turbine has been studied by inserting and propagating cracks at appropriate locations. The softwares used are ABAQUS and FRANC3D, where the latter supports finite element meshing of a crack and calculation of the stress intensities along the crack front based on the results from an external finite element program. The blade is subjected to thermo-mechanical fatigue and the cracks are grown subjected to in-phase loading conditions.   The material of the blade is STAL15SX, a nickel-base single-crystal superalloy. The <001> crystalline direction is aligned with the loading direction of the blade, while the secondary crystalline directions are varied to examine how it affects the thermo-mechanical crack propagation fatigue life of the blade.   The finite element model is set up using a submodeling technique to reduce the computational time for the simulations. Investigations to validate the submodeling technique are conducted.   From the work it can be concluded that a crack located at a critical location in the cooling lattice reach above the crack propagation target life. Cracks located at noncritical locations have crack propagation lives of a factor 5.2 times the life of the critical crack.
33

Évolution thermo-mécanique des systèmes de subduction-collision / The thermo-mechanical evolution of the subduction-collision systems

Regorda, Alessandro 05 April 2017 (has links)
La finalité de ce travail est de développer un modèle thermomécanique 2D pour analyser en détails les effets de la dissipation visqueuse et de l'hydratation du coin de manteau sur l’état thermique et la dynamique dans les zones de subduction. L’état thermique et la dynamique résultant des modèles prenant en compte la dissipation visqueuse et/ou l'hydratation du manteau sont comparés aux modèles ne les prenant pas en compte (Marotta and Spalla, 2007), afin d’analyser leurs effets sur la viscosité et sur la vitesse de déformation. Notre nouveau modèle démontre l’activation de la convection du manteau à courte longueur d’onde en fonction de l'hydratation et de la serpentinisation du coin de manteau. Il en résulte un recyclage des croûtes continentales et océaniques subduites. En outre, les effets de la vitesse de subduction sur l’ampleur de la région hydratée ont été analysés. Les évolutions des conditions P-T des marqueurs de crustaux et l'état thermique enregistré dans les différentes portions du complexe de subduction sont utilisés pour avoir une meilleure compréhension de la distribution et de l'évolution, dans le temps et dans l'espace, de conditions métamorphiques caractérisées par des rapports P/T contrastés. Une fois ces modèles établis, les évolutions P-T prédites par les modèles sont comparées aux données métamorphiques naturelles observées dans la chaine varisque, plus particulièrement dans les Alpes et le Massif Central français. Afin de prendre en compte l’exhumation de croûte subduite jusqu’aux niveaux les plus superficiels, le modèle prend en compte le rôle de l'atmosphère et donc des mécanisme d’érosion et de sédimentation. / The aim of this work was to develop a 2D thermo-mechanical model to analyse in detail the effects of the shear heating and mantle wedge hydration on the thermal state and dynamics of an ocean/continent subduction system. The thermal setting and dynamics that result from models with shear heating and/or mantle hydration are directly compared to a model that does not account for either (Marotta and Spalla, 2007) to analyse their effects on both the strain rate and the viscosity. The new model show the activation of short-wavelength mantle convection related to the hydration and the serpentinisation of the mantle wedge, with the consequent recycling of oceanic and continental subducted material. The effects of the subduction velocities on the size of the hydrated area are also analysed, andpredictions of the pressure-temperature evolutions of crustal markers and the thermal field, which affect different portions of subduction systems, are used to infer the thermal regimes that affect the models. Similarly, the model can help to understand extensively both the distribution and the evolution, in time and space, of metamorphic conditions characterised by contrasting P/T ratios in subduction systems. In a second phase, P-T predicted by the model has been compared with natural P max -T estimates related to the Variscan metamorphism, from both the present domains of the Alps and from the French Central Massif. However, the model did not allow to compare simulated P-T paths with successive metamorphic stages recorded and preserved by the rocks during their metamorphic evolution, because of the lack of exhumation of subducted material up to the shallowest portion of the crust.
34

Prédiction de la durée de vie de structures mécanosoudées soumises à des chargements thermiques anisothermes : application aux collecteurs d'échappement en tôle / Lifetime of welded structures subjected to anisothermal loadings : application to steel exhaust manifolds

Benoit à la Guillaume, Aurélie 29 March 2012 (has links)
Traditionnellement, les collecteurs d'échappement sont fabriqués en fonte, d'un seul tenant. En raison de l'augmentation des performances des moteurs, des tôles d'acier mécano-soudées sont maintenant utilisées pour améliorer la tenue mécanique du collecteur à haute température. Cette technologie permet de réduire la masse du collecteur et de répondre ainsi favorablement aux normes de dépollution les plus sévères. L'objectif de la thèse est de proposer un modèle numérique de soudure et un critère de ruine associé permettant de prédire la durée de vie de ces structures mécano-soudées soumises à des chargements thermiques anisothermes. La procédure de dimensionnement consiste à simuler plusieurs cycles de chargements et à évaluer le critère de fatigue sur le dernier cycle simulé, considéré comme stabilisé.Dans un premier temps, une étude théorique est menée sur la caractérisation des différents états asymptotiques (adaptation, accommodation et rochet). Elle permet, d'une part de vérifier que l'état stabilisé est effectivement atteint et éventuellement d'estimer le nombre de cycles nécessaires pour l'atteindre, d'autre part de déterminer la nature de l'état limite. Dans un second temps, des essais de durée de vie isothermes, réalisés sur des éprouvettes en tôle, en tôle soudée et en tôle soudée arasée (abrasion du cordon puis polissage de la zone utile) mettent en évidence l'influence de la géométrie et de la microstructure au niveau de la soudure sur la durée de vie de ces structures. Enfin, des essais de durée de vie anisothermes, inspirés de chargements effectivement observés sur le collecteur, ont été réalisés sur des éprouvettes en tôle et en tôle soudée.La rigidité du cordon de soudure est modélisée à l'aide d'éléments coques dimensionnés de sorte à reproduire la déformée des éprouvettes en tôle soudée observée expérimentalement. Différents critères de ruine sont mis au point sur le matériau de base pour caractériser l'endommagement induit par des chargements anisothermes puis sont adaptés à la zone soudée. Enfin, la simulation d'un essai de choc thermique sur un collecteur d'échappement permet de valider le modèle de soudure proposé et de tester la pertinence des critères vis-à-vis de l'application industrielle. / Exhaust manifolds are classically designed in cast-iron. However, the engine performance increasing, the output gas reaches higher temperature, and other types of material like welded steel plates are considered to design exhaust manifolds. These components are subjected to complex thermomechanical loadings which must be taken into account in fatigue design. To limit the computational costs, only a few loading cycles are simulated and a fatigue criterion is used to estimate the lifetime of the structure. This study proposes a junction model combined with a fatigue criterion to assess the lifetime of a welded structure. The model is simple enough to be integrated into a computation on a complete structure and the fatigue criterion is available for anisothermal loadings.The theoretical characterization of the asymptotic states (elastic or plastic shakedown, ratchetting) is studied and adapted to anisothermal loadings in order to check whether the structure reaches a stabilized behaviour and to find the trend line of the evolution of the structure. Then isothermal low cycle fatigue tests are completed up to specimen crack initiation on plate, butt-welded plate and butt-welded plate after smoothing out the weld bead. The geometry and the microstructure of the weld have significant influence on strain localization and on the fatigue lifetime of the specimens. Finally anisothermal tests were completed on welded specimens to reproduce the typical loading seen by welds on exhaust manifolds.The stiffness of the weld is modelled thanks to additional shell elements calibrated to reproduce the deflected shapes of the welded specimens. Various fatigue criteria are developed on the base material to characterize anisothermal damage, and are then adapted to welded zones. The junction model is finally validated thanks to the simulation of a thermal shock on an exhaust manifold and the relevance of the criteria is estimated in relation to the industrial application.
35

Prévision de la durée de vie à l’écaillage des barrières thermiques / Lifetime prediction to spallation of a thermal barrier coatings

Soulignac, Romain 18 December 2014 (has links)
Cette étude porte sur la modélisation de la durée de vie à l'écaillage des barrières thermiques pour aubes de turbines aéronautiques. La caractérisation expérimentale de l'adhérence du revêtement combine l'identification de la durée de vie - qualifiée par l'écaillage macroscopique de la céramique - à une caractérisation de l'endommagement à l'échelle de la microstructure du revêtement et en particulier à la dégradation des interfaces céramique / oxyde / métal. Des essais de compression uniaxiale sur des éprouvettes en AM1 revêtues NiAlPt et YSZ par EB-PVD, vieillies en fatigue thermique et mécano-thermique permettent d'estimer l'adhérence du revêtement. Ces essais sont complétés par des essais de propagation du délaminage interfacial par compression. Un essai original de compression in situ en laminographie aux rayons X a également permis d'analyser l'écaillage et la propagation du front de délaminage. Tous ces essais sont instrumentés et équipés de moyens d'observation permettant de réaliser des mesures de surfaces délaminées ou écaillées et de déterminer leur évolution en fonction des déformations locales mesurées.Une analyse microstructurale complète l'étude afin de comprendre l'influence du vieillissement thermique ou mécano-thermique sur l'évolution de l'endommagement du système. Cette analyse porte sur les mécanismes d'oxydation, de diffusion, de changement de phase principalement dans l'oxyde et la sous-couche. Elle est complétée par l'étude de l'ondulation de surface au cours du cyclage thermique, phénomène de « rumpling », et de ses conséquences, notamment au niveau de l'endommagement global de l'interface et de son adhérence. Le lien entre endommagement de l'interface à l'échelle d'imperfections de rugosité (quelques microns) et de la propagation d'une fissure d'interface (quelques dizaines à quelques centaines de microns) est analysé numériquement par la méthode des zones cohésives.Ces deux études complémentaires ont permis d'établir un modèle phénoménologique de durée de vie à l'écaillage. Celui-ci se base sur une estimation de l'énergie contenue dans la couche de céramique comparée à la valeur théorique d'énergie critique à rupture obtenue par un modèle d'endommagement, fonction de l'oxydation et des paramètres de chargement mécano-thermique. Ce modèle est implémenté en post-processeur d'un calcul par éléments finis facilitant son utilisation industrielle. / This study aims to model lifetime of thermal barrier coating (TBC) used on aircraft turbine blades. Experimental characterization of the coating adherence combines the lifetime identification – described by macroscopic spallation of the ceramic – with damage estimation trough the analysis of the influence of the microstructure of the coating and evolutions of interfaces ceramic / oxide / metal.Adherence of the ceramic is assessed using uniaxial mechanical compressive tests on AM1 specimen coated with NiAlPt bond coat and EB-PVD yttria stabilized zirconia varying the thermal and thermo-mechanical fatigue ageing conditions. Those tests are completed with analysis of interfacial crack propagation. A pioneering in situ compressive test using X-ray laminography has also been developed to analyze spallation and further delamination. The use of in-situ surface imaging by CCD cameras has enabled measurement of delaminated or spalled areas as function of measured local strain.The influence of thermal or thermo mechanical ageing on damage evolution of TBCs is studied through a microstructural analysis. Oxidation, diffusion and phase transformation mechanisms in the alumina and the bond coat are main parts of this analysis. Moreover the oxide rumpling and its consequences have been detailed, particularly through the measurement of global interfacial damage and adherence evolution. The link between interfacial damage at the scale of local defects (few microns) and the propagation of an interfacial crack (from tens to hundreds of microns) is numerically analyzed with a cohesive zone model.Those two spatial length of analysis were used to build a phenomenological lifetime model to spallation. This model was based on the assessment of the elastic strain energy stored in the ceramic layer and it comparison to fracture energy. A damage model is used to model the fracture strain energy evolution as a function of oxidation and thermo mechanical loading. This model is implemented in post processor of a FEM analysis, making its industrial use easier.
36

Microstructure and thermo-mechanical properties of gradient nickel alloys

Jie Ding (8771438) 28 April 2020 (has links)
<p>Gradient structured (GS) metallic materials have shown unique properties including the synergy of high strength and good ductility, improved fatigue and wear/friction resistance etc. One of the severe surface modification technique, surface mechanical grinding treatment (SMGT), has been proven an effective method for the generation of gradient structures in metallic materials. Most of Ni-based superalloys are precipitation strengthened and with an extraordinary combination of high strength, ductility and resistance to oxidation at high temperatures. The precipitation behaviors of these materials are sensitive to their initial microstructures. This thesis focuses on the microstructure evolution and mechanical behaviors of two types of gradient Ni alloys. </p> <p>GS Hastelloy C-22HS and Inconel 718 (IN718) Ni-based superalloys were fabricated through the SMGT technique. The gradient structures consist of nanograined (NG) or nanolaminate (NL) surface layer and the subsurface layers with deformation twins. <i>In situ </i>compression test results reveal that intergranular back stress may contributes to the high work hardening capability of the GS C-22HS alloy. Mo-rich thick grain boundaries (GBs) formed in the gradient C-22HS samples after heat treatment. <i>In situ</i> micropillar compression studies coupled with molecular dynamics (MD) simulations reveal that the Mo-rich thick GBs are stronger barriers than conventional thin GBs to the transmission of dislocations, leading to significant strengthening. Furthermore, the formation of thick GBs also contributes to the improvement of thermal stability of nanograins in the C-22HS alloys. The gradient microstructures in the IN718 alloy changed the precipitation behavior and thermal stability of nanograins in the alloy. The studies on precipitation behaviors of GS IN718 alloy reveal that η phase formed in the severely deformed surface NG layer after annealing at 700 <sup>o</sup>C. Thermal stability studies show that NG IN718 alloy with grain sizes smaller than the critical value of ~ 40 nm is thermally more stable than their coarse-grained counterpart. The underlying mechanisms of strengthening and improved thermal stability of the gradient Ni-based superalloys are discussed based on transmission electron microscopy studies and MD simulations. This work suggests that tailoring the gradient microstructures may lead to the discovery of metallic materials with novel mechanical and thermodynamic properties. </p>
37

Thermo-Mechanical Fatigue Assessment of Marine Boiler : Using linear Finite Element Analyses

Alagbada, Adefemi Samuel January 2020 (has links)
This thesis is on fatigue crack growth assessments of a thermomechanical loaded Marine Boiler- Sunrod CPDB12. The installation position of the marine boiler in the ship in relation to its fatigue life under mode 1 loading is investigated. Thermomechanical loading embodies pressures, temperatures, RAO, subjected to the rigid body dynamic of ship in the marine environment.   Linear elastic fracture mechanics (LEFM) method was used is predicting the growth rates of the welding flaws at the joint based on stress range of the Paris law relationship. FEA Numerical simulation delivered better crack growth rate assessments and life predictions of the smallest detectable flaws in the boiler.   The identified smallest detestable flaws at the welding joint diminishing the designed safe life of the boiler significantly.  Also, installation position within the ship do affect the fatigue life of the boiler.
38

2-D Finite Element Modeling for Nanoindentation and Fracture Stress Analysis

Chen, Chi 24 March 2009 (has links)
In Chapter 1, a brief introduction of nanoindentation and finite element method is presented. General procedures have been developed based on FEM modeling of nanoindentation data to obtain the mechanical properties of thin films. Selected FEM models are illustrated in detail. In Chapter 2, nanoindentation test is simulated using finite element method based on contact mechanics approach. The relationship between load and indentation depth is obtained. The numerical results show good agreement with experimental data. It is shown that FEM is an effective tool for simulation of nanoindentation tests of metallic films. However, limitations caused by simplification of models and assumptions should not be neglected. In Chapter 3, finite element method is used to analyze bonded repair structure of aluminum plates with Multiple Site Damage (MSD). A 2-D 3-layer technique is used to deal with the damage area. A typical aluminum plate with multiple collinear twin cracks is taken as an example. The effects of relative position of two cracks, patch size, and patch thickness on stress intensity factors are studied in detail. The results reveal that the stress intensity factors at the tips of collinear twin cracks can be reduced greatly through bonded composite repair. In order to increase the performance of the patch repair, the adhesive properties, the patch length and thickness must be optimized. In Chapter 4, finite element method is used for thermo-mechanical analysis of porous coatings in steel micro channels used for catalysis. Thermal stresses in the coating due to temperature changes are obtained. The effects of micro channel geometry on thermal stresses are studied in detail. The results reveal that in order to increase the mechanical performance of the coatings, film thickness and profile geometry must be optimized. Chapter 5 summarizes major results and outlines future work.
39

Influence of In-vessel Pressure and Corium Melt Properties on Global Vessel Wall Failure of Nordic-type BWRs

Goronovski, Andrei January 2013 (has links)
The goal of the present study is to investigate the effect of different scenarios of core degradation in a Nordic-type BWR (boiling water reactor) on the reactor pressure vessel failure mode and timing. Specifically we consider the effects of (i) in-vessel pressure, (ii) melt properties. Control rod guide tube (CRGT) cooling and cooling of the debris from the top are considered as severe accident management (SAM) measures in this study. We also consider the question about minimal amount of debris that can be retained inside the reactor pressure vessel (RPV). Analysis is carried out with coupled (i) Phase-change Effective Convectivity (PECM) model implemented in Fluent for prediction of the debris and melt pool heat transfer, and (ii) structural model of the RPV lower head implemented in ANSYS for simulation of thermo-mechanical creep. The coupling is done through transient thermal load predicted by PECM and applied as a boundary condition in ANSYS analysis. Results of the analysis suggest that applying only CRGT and top cooling is insufficient for maintaining vessel integrity with 0.4 m deep (~12 tons) corium melt pool. The failure of the vessel by thermally induced creep can be expected starting from 5.3 h after the dryout of the debris bed in the lower plenum. However, earlier failure of the instrumentation guide tubes (IGTs) is possible due to melting of the nozzle welding. The internal pressure in the vessel in the range between 3 to 60 bars has no significant influence on the mode and location of the global RPV wall failure. However, depressurization of the vessel can delay RPV wall failure by 46 min for 0.7 m (~ 30 tons) and by 24 min for 1.9 m (~ 200 tons) debris bed. For 0.7 m pool case, changes in vessel pressure from 3 to 60 bars caused changes in liquid melt mass and superheat from ~18 tons at 180 K to ~13 tons at 100 K superheat, respectively. The same changes in pressure for 1.9 m case caused changes in liquid melt mass and superheat from ~40 tons at 42 K to ~10 tons at about 8 K superheat, respectively. Investigation of the influence of melt pool properties on the mode and timing of the vessel failure suggest that the thermo-mechanical creep behavior is most sensitive to the thermal conductivity of solid debris. Both vessel wall and IGT failure timing is strongly dependent on this parameter. For given thermal conductivity of solid debris, an increase in Tsolidus or Tliquidus generally leads to a decrease in liquid melt mass and superheat at the moment of vessel wall failure. Applying models for effective thermal conductivity of porous debris helps to further reduce uncertainty in assessment of the vessel failure and melt ejection mode and timing. Only in an extreme case with Tsolidus, Tliquidus range larger than 600 K, with thermal conductivity of solid 0.5 W∙m‑1∙K‑1 and thermal conductivity of liquid melt 20 W∙m‑1∙K‑1, a noticeable vessel wall ablation and melting of the crust on the wall surface was observed. However, the failure was still caused by creep strain and the location of the failure remained similar to other considered cases. / APRI-8
40

Three-Dimensional Finite Element Analysis of the Pile Foundation Behavior in Unsaturated Expansive Soil

Wu, Xingyi 22 April 2021 (has links)
Expansive soils, which are widely referred to as problematic soils are extensively found in many countries of the world, especially in semi-arid and arid regions. Several billions of dollars are spent annually for maintenance or for repairs to the structures constructed with and within expansive soils. The major problems of expansive soils can be attributed to the volume changes associated with the alternate wetting and drying conditions due to the influence of environmental factors. Pile foundations have been widely accepted by practicing engineers as a reasonably good solution to reduce the damages to the structures constructed on expansive soils. Typically, piles foundations are extended through the active layer of expansive soil to reach the bedrock or placed on a soil-bearing stratum of good quality. Such a design and construction approach typically facilitates pile foundations to safely carry the loads from the superstructures and reduce the settlement. However, in many scenarios, damages associated with the pile foundations are due to the expansion of the soil that is predominantly in the active zone that contributes to the pile uplift. Such a behavior can be attributed to the water infiltration into the expansive soil, which is a key factor that is associated with the soil swelling. Due to this phenomenon, expansive soil typically moves upward with respect to the pile. This generates extra positive friction on the pile because of the relative deformation. If the superstructure is light or the applied normal stress on the head of the piles is not significant, it is likely that there will be an uplift of the pile contributing to the damage of the superstructure. In conventional engineering practice, the traditional design methods that include the rigid pile method and the elastic pile method are the most acceptable in pile foundation design. These methods are typically based on a computational technique that uses simplified assumptions with respect to soil and water content profile and the stiffness and shear strength properties. In other words, the traditional design method has limitations, as they do not take account of the complex hydromechanical behavior of the in-situ expansive soils. With the recent developments, it is possible to alleviate these limitations by using numerical modeling techniques such as finite element methods. In this thesis, a three-dimensional finite element method was used to study the hydro-mechanical behavior of a single pile in expansive soils during the infiltration process. In this thesis, a coupled hydro-mechanical model for the unsaturated expansive soil is implemented into Abaqus software for analysis of the behavior of single piles in expansive soils during water infiltration. A rigorous continuum mechanics based approach in terms of two independent stress state variables; namely, net normal stress and suction are used to form two three-dimensional constitutive surfaces for describing the changes in the void ratio and water content of unsaturated expansive soils. The elasticity parameters for soil structure and water content in unsaturated soil were obtained by differentiating the mathematical equations of constitutive surfaces. The seepage and stress-deformation of expansive soil are described by the coupled hydro-mechanical model and the Darcy’s law. To develop the subroutines, the coupled hydro-mechanical model is transferred into the coupled thermal-mechanical model. Five user-material subroutines are used in this program. The user-defined field subroutine (USDFILD) in Abaqus is used to change and transfer parameters. Three subroutines including user-defined material subroutine (UMAT), user-defined thermal material subroutine (UMATHT), and user-defined thermal expansion subroutine (UEXPAN) are developed and used to calculate the stress-deformation, the hydraulic behavior, and the expansion strain, respectively. Except for the coupled hydro-mechanical model of unsaturated expansive soils, a soil-structure interface model is implemented into the user-defined friction behavior subroutine (FRIC) to calculate the friction between soil and pile. The program is verified by using an experimental study on a single pile in Regina clay. The results show that for the single pile in expansive soil under a vertical load, water infiltration can cause a reduction in the pile shaft friction. More pile head load is transferred to the pile at greater depth, which increases the pile head settlement and pile base resistance. In future, the proposed method can also be extended for verification of other case studies from the literature. In addition, complex scenarios can be investigated to understand the behavior of piles in expansive soils.

Page generated in 0.1507 seconds