Spelling suggestions: "subject:"thermomechanical aprocessing"" "subject:"thermomechanical eprocessing""
11 |
InfluÃncia da LaminaÃÃo a Frio na Microestrutura, Propriedades MecÃnicas e MagnÃticas, Textura e CorrosÃo por Pites de AÃos AISI 301LN e 316L / Influence of Cold Rolling on Microstructure, Mechanical and Magnetic Properties, Texture and pitting corrosion of steels AISI 316L and 301LNPaulo Maria de Oliveira Silva 15 September 2005 (has links)
Os aÃos inoxidÃveis austenÃticos (AIAs) sÃo largamente aplicados nas indÃstrias de alimentos, transportes nuclear, petroquÃmica devido à adequada combinaÃÃo de resistÃncia mecÃnica, conformabilidade e resistÃncia à corrosÃo. Dentre estes tipos de aÃo, destaca-se o AISI 301 por sua resistÃncia mecÃnica superior. Entretanto, este tipo de aÃo apresenta um dos piores desempenhos em termos de corrosÃo. Toda a resistÃncia à corrosÃo dos AIAs se baseia em sua camada de filme passivo contendo Cr203 que pode facilmente ser destruÃda em ambientes contendo cloreto. Neste trabalho, estabeleceu-se a meta de estudar os aÃos AISI 301 LN e 316L em respeito Ãs mudanÃas na microestrutura por imposiÃÃo de deformaÃÃo e seu efeito na corrosÃo por pites, visto que o AISI 301LN foi escolhido como material base dos vagÃes que servirÃo o sistema de transporte metropolitano de Fortaleza. Empregou-se difraÃÃo de raios âX, metalografia quantitativa, microscopias Ãtica, eletrÃnica de varredura e de forÃa atÃmica para caracterizar a microestrutura, textura cristalogrÃfica, caracterizaÃÃo magnÃtica, microdureza e ensaio de imersÃo em FeCl3 6H2O para caracterizar o comportamento dos dois aÃos em corrosÃo por pites. A deformaÃÃo provocou a formaÃÃo de martensita â no aÃo 301LN e encruamento da austenita. Isto provocou o mais baixo desempenho em corrosÃo por pites. A textura cristalogrÃfica forneceu indÃcios para inferir que a transformaÃÃo austenita-ferrita se deu obedecendo a relaÃÃo de KURDJUMOV-SACHS.
|
12 |
Caracterização mecânica e microestrutural de aços microligados processados industrialmente /Mecelis, Guilherme Rosati January 2017 (has links)
Orientador: Juno Gallego / Resumo: Os aços microligados são materiais já tradicionais e muito versáteis por suas propriedades mecânicas superiores, sendo sua evolução diretamente ligada com a otimização da composição química e do processamento termomecânico. É um tipo de aço que apresenta uma microestrutura refinada, alta resistência mecânica, boa usinabilidade e soldabilidade e tem substituído aços comuns por atingir essas propriedades mecânicas a partir de processos de fabricação mais baratos. Os aços estudados são comerciais, apresentam limite de escoamento entre 419 MPa e 646 MPa e grãos ferríticos finos com tamanhos inferiores a 3,70 μm. Neste trabalho são investigadas chapas industriais produzidas por laminação controlada, visando analisar a correlação entre a microestrutura ferrítico-perlítica e as propriedades mecânicas encontradas nas diferentes secções longitudinal, transversal e normal da chapa laminada. As diferenças entre as diferentes secções não são bem exploradas atualmente, então este estudo contribui para uma melhor compreensão da anisotropia introduzida pelo processamento termomecânico industrial. Foram feitas correlações entre as propriedades, confirmando a existência de diferenças estatisticamente significativas entre as secções, constatando que esses aços podem apresentar variações em suas propriedades de acordo com a secção de análise adotada. Foi confirmada a correlação de Hall-Petch nos aços estudados, e a influência dos mecanismos de endurecimento foi avaliada para estes materiais. / Abstract: Microalloyed steels are traditional materials and very versatile due to their superior mechanical properties, being its evolution directly linked with an optimization of the chemical composition and the thermomechanical processing. It is a type of steel that has a fine microstructure, high mechanical strength, good machinability and weldability, and has substituted common steels for achieving these mechanical properties with a cheaper manufacturing process. The studied steels are commercial and have yield strength between 419 MPa and 646 MPa and fine ferritic grains with size smaller than 3.70 μm. In this work are investigated industrial plates produced by controlled lamination, aiming to analyze the correlations between ferrit-perlitic microstructure and the mechanical properties found in the different sections of the hot rolled plate (longitudinal, transverse and normal). The differences between the different sections are not well explored, so this study contributes to a better understanding of the anisotropy introduced by industrial thermomechanical processing. Correlations were made between the properties, confirming the existence of significant differences between the different sections, finding that these steels may show different properties according to the section of analysis adopted. The Hall-Petch correlation was confirmed in the studied steels, and the influence of the hardening mechanisms was also evaluated. / Mestre
|
13 |
An AI-Based Optimization Framework for Optimal Composition and Thermomechanical Processing Schedule for Specialized Micro-alloyed Multiphase SteelsKafuko, Martha January 2023 (has links)
Steel is an important engineering material used in a variety of applications due to its mechanical properties and durability. With increasing demand for higher performance, complex structures, and the need for cost reduction within manufacturing processes, there are numerous challenges with traditional steel design options and production methods with manufacturing cost being the most significant. In this research, this challenge is addressed by developing a micro-genetic algorithm to minimize the manufacturing cost while designing steel with the desired mechanical properties. The algorithm was integrated with machine learning models to predict the mechanical properties and microstructure for the generated alloys based on their chemical compositions and heat treatment conditions. Through this, it was demonstrated that new steel alloys with specific mechanical property targets could be generated at an optimal cost.
The research’s contribution lies in the development of a different approach to optimize steel production that combines the advantages of machine learning and evolutionary algorithms while increasing the number of input parameters. Additionally, it uses a small dataset illustrating that it can be used in applications where data is lacking. This approach has significant implications for the steel industry as it provides a more efficient way to design and produce new steel alloys. It also contributes to the overall material science field by demonstrating its ability in a material’s design and optimization. Overall, the proposed framework highlights the potential of utilizing machine learning and evolutionary algorithms in material design and optimization. / Thesis / Master of Applied Science (MASc) / This research aims to develop an AI-based functional integrated with a heuristic algorithm that optimizes parameters to meet desired mechanical properties and cost for steels. The developed algorithm generates new alloys which meet desired mechanical property targets by considering alloy composition and heat treatment condition inputs. Used in combination with machine learning models for the mechanical property and microstructure prediction of new alloys, the algorithm successfully demonstrates its ability to meet specified targets while achieving cost savings. The approach presented has significant implications for the steel industry as it offers a quick method of optimizing steel production, which can reduce overall costs and improve efficiency. The integration of machine learning within the algorithm offers a different way of designing new steel alloys which has the potential to improve manufactured products by ultimately improving their performance and quality.
|
14 |
Microstructural Stability and Thermomechanical Processing of Boron Modified Beta Titanium AlloysCherukuri, Balakrishna 30 December 2008 (has links)
No description available.
|
15 |
The Development of High Strength Hot Rolled Steel for Automotive ApplicationsHutten, Esther January 2019 (has links)
The development of high strength hot rolled steels is an important area for
improving vehicle fuel efficiency. In collaboration with ArcelorMittal, this project
focussed on developing a hot rolled steel with 980 MPa ultimate tensile strength, 800
MPa yield strength and 50% hole expansion ratio. To achieve the target mechanical
properties, four different chemistries were trialled which varied the carbon, niobium and
vanadium contents. Six combinations of finishing, coiling and intermediate temperatures
were trialled for each chemistry.
The effects of thermomechanical processing parameters and alloying contents on
the mechanical properties were determined through tensile and hole expansion testing.
Microstructural analysis was completed to correlate the mechanical properties to the
microstructural characteristics. Microscopy techniques performed included optical
microscopy, scanning electron microscopy, transmission electron microscopy and atom
probe tomography. The phase transformations which occur during thermomechanical
processing were investigated using dilatometry testing.
Microstructural characterization was used to determine the breakdown of
strengthening contributions from intrinsic, solid solution, grain boundary, precipitation
and dislocation strengthening. Trials varying the processing parameters and steel
chemistry led to an understanding of how thermomechanical processing and alloying
influence the microstructural features and corresponding mechanical properties in hot
rolled microalloyed steels. / Thesis / Master of Applied Science (MASc)
|
16 |
Estudo da liga cu-11,8al-xbe-0,3ti (x = 0,5; 0,6; 0,7) processadas termomecanicamente / Study of the alloy cu-11,8al-xbe-0,3ti (x = 0,5, 0,6 and 0,7) thermomechanical processingJúnior., Manoel Quirino da Silva 28 September 2010 (has links)
Made available in DSpace on 2015-05-08T15:00:04Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2663427 bytes, checksum: 32fe62098d052c5ec88062947422c2d1 (MD5)
Previous issue date: 2010-09-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Shape memory alloys have been object of diverse studies due to a vast fan of possible
applications, such as: medical applications (materials for applications in dentistry and
orthopedics), sensor (thermostats) and thermal-mechanics actuators (connections of tubes).
The objectives of this work were the elaboration and characterization of Cu-Al shape
memory alloys which contend beryl and titanium in the following percentages: Cu-11,8Al-
XBe-0,3Ti (X = 0,5; 0,6 and 0.7% weight); and to analyze the viability of the
thermomechanical process in these alloys. The influence of the variables about chemical
composition, quench hardening, thermal cycling and the thermomechanical treatment in
the transformation temperatures were investigated. It was possible to verify that the
addition of small amounts of Be alters the matrix composition and, consequently, the
transformation temperatures. For its time, Ti forms precipitated with amounts of copper
and aluminum that inhibit the growth of the grain in the thermomechanical process. The
alloys were cycled themically in a range among the temperature below of Mf and above of
Af reaching stable values being evidenced a great thermal stability. The microstructural
evolution before and after the thermomechanical process, the transformation temperatures
and the thermal stability were characterized by the thermal analysis (DSC and DTA),
scanning electron microscopy and x-ray diffraction. Under low speeds of cooling, the
alloys show a decomposition of the β phase with formation of the γ2 and α phases, whereas
in the fast cooling, the β phase passes to β1 without the presence of the other phases. With
the increase of the percentile of Be, the γ2 phase increases and it maintains precipitated
together in the matrix with rich particles of second phase in titanium. However, after
ix
lamination and temper, the γ2 phase is not presented anymore staying the dispersed
particles of second phase in the matrix. / As ligas com efeito memória de forma têm sido objeto de diversos estudos, devido a um
vasto leque de aplicações possíveis, tais como: médicas (materiais para aplicações em
odontologia e ortopedia), sensores (termostatos) e atuadores termomecânicos (conexões de
tubos). Os objetivos deste trabalho foi a elaboração e caracterização de ligas com memória
de forma do sistema Cu-Al contendo berílio e titânio nos seguintes percentuais: Cu-
11,8Al-XBe-0,3Ti (X = 0,5; 0,6 e 0,7 %peso). Forma estudados os efeitos das variáveis de
processamento nas propriedades microestruturais e na estabilidade térmica. Além disso,
foram investigadas a influência das variáveis composição química, meio de têmpera,
ciclagem térmica e o tratamento termomecânico nas temperaturas de transformação. Foi
possível constatar que a adição de pequenos teores de Be altera a composição da matriz e,
consequentemente, as temperaturas de transformação. O Ti por sua vez, forma precipitados
com teores de cobre e alumínio que inibem o crescimento do grão no processo
termomecânico. As ligas foram cicladas termicamente numa faixa entre a temperatura
abaixo da transformação final da martensita e acima da transformação final da austenita,
atingindo valores estáveis, ficando evidenciada uma ótima estabilidade térmica. A
evolução microestrutural antes e depois do processo termomecânico, as temperaturas de
transformação e a estabilidade térmica foram caracterizadas pelas analises térmicas
(calorimetria exploratória diferencial e análise térmica diferencial), microscopia eletrônica
de varredura e difração de raios-X. Sob baixas velocidades de resfriamento as ligas
mostram uma decomposição da fase β CCC com formação das fases γ2 e α CFC, enquanto
que no resfriamento rápido a fase β passa para β1 sem a presença das demais fases. Com o
aumento do percentual de Be a fase γ2 aumenta e se mantém precipitada na matriz
vii
juntamente com partículas de segunda fase ricas em titânio. No entanto, após laminação e
têmpera, a fase γ2 não mais se apresenta permanecendo as partículas de segunda fase
dispersas na matriz.
|
17 |
Processing Mechanics of Additive Friction Stir DepositionHartley II, William Douglas 03 July 2023 (has links)
Additive friction stir deposition (AFSD) is a newly developed solid-state metal additive manufacturing (AM) technology that adds a material feeding mechanism to the friction stir principle (Yu et al.., 2018). As a newly developed process, the development of a sound understanding of the process mechanics is necessary and may shed light on both limiting factors and new opportunities. This work explores the fundamental modes of deformation through an analytical decomposition of three flow components: 1) radial spreading, 2) rotating, and 3) traversing shear flow. The analytical models provide 'back-of-the-envelope' estimates of mechanical requirements (machine torque, for example), and straightforward algebraic equations for estimating the peak strain rate associated with deformation and the expected residence time of material underneath the AFSD tool head. A more complex, but preliminary, numerical modeling approach is then presented to models the steady state material flow as a fully coupled non-Newtonian fluid with rate and temperature dependent properties. Additionally, a transient thermal model is presented which captures the thermal history of the material along a dynamic printing trajectory. The numerical models provide insight into the pressure distribution underneath the AFSD tool, which impacts deformation bonding conditions at the interface, and suggest that temperature differences under the tool may be as high as 70℃. Several interface fracture experiments reveal a well-bonded center region, with high ductility and energy dissipation, and a poorly bonded outer edge region. Novel characterization work has been presented showing evidence of a nearly uniform 50μm thick shear layer on the top surface of a deposit. Analysis of the Prandtl number suggests that this shear layer is a consequence of a thin thermal boundary layer, which in the presence of frictional shear stress, becomes a thermo-mechanical boundary layer with a distinct flow regime from the bulk. Further characterization shows viscous mixing patterns in the wake of tool pins, and incomplete bonding at the edges of the deposition track. An additional application is presented for AFSD – selective area cladding of thin sheet metal. Substrates as thin as 1.4mm were clad without localized deformation, which is dependent on the clamping configuration of the substrate. Cladding quality, interface integrity, and certain failure modes are identified for thin cladding operations. In-situ monitoring and ex-situ laser scanning shows the slow evolution of thermal distortion during cooling of the cladding-on-sheet system. Finally, residual stress and strain estimates are made using curvature methods for bi-layer specimens extracted from the cladding. / Doctor of Philosophy / Additive manufacturing of metal components (colloquially called "3D printing") has generated significant interest and excitement as the manufacturing method of the future, where new materials with complex shapes and functionalities may unlock new possibilities for commerce and industry. Metal 3D printing also gives us new methods to repair aging and damaged structures, providing opportunities to extend the life of existing infrastructure. This work is centrally focused on understanding the most important factors and physical principles at play during a particular metal additive manufacturing process, additive friction stir deposition (ASFD). AFSD uses deformation to heat and bond materials together, building on the principles of friction welding and forge welding. A fundamental understanding of the process mechanics will allow for a better understanding of the current limits and potential opportunities this new technology can provide. Using a combination of analytical analysis, numerical modeling, and experiments, this work aims to provide a deeper understanding of the material flow, thermal fields, and mechanical forces associated with depositing material by AFSD, which may be insightful for new materials, tunable material properties, and may lead to new machine design opportunities.
|
18 |
LOW TEMPERATURE CLEAVAGE FRACTURE OF MICROALLOYED BAINITIC PLATE STEELSEL-KHAZEN, JOHN 07 August 2009 (has links)
Low temperature cleavage fracture behaviour was investigated using four experimental microalloyed bainitic plate steels. The four plate samples were produced by different thermomechanical processing (TMP) schedules and had yield strengths in the range 540 - 670 MPa.
Microstructures were characterized by optical microscopy (OM), scanning electron microscopy (SEM) and electron back scattered diffraction (EBSD). Quantitative data was obtained for prior austenite grain (PAG) size, volume fractions of two bainite types (conventional bainite and acicular ferrite) and EBSD 15° domain size. Charpy impact tests (using two notch orientations) were carried out over a range of temperatures. Cleavage facet sizes were measured on -196°C Charpy samples.
The range of TMP schedules produced variations in PAG width, type of bainite and 15° domain size. The effects of these three microstructural features on cleavage crack propagation are discussed. Results indicate that the microstructures are controlled by i) deformation below TNR and ii) accelerated cooling rate. Domain structure reflects TMP. There is no clear correlation between domain size and cleavage facet size. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2009-07-30 19:17:01.25
|
19 |
Thermomechanical processing of eutectoid steels: strategies to improve the microstructure of the hot rolled stripsCaruso, Matteo 30 October 2013 (has links)
Eutectoid steel strips are designed for the production of parts for intensive use such as clutches, seat slides, and springs as they exhibit<p>excellent strength levels and wear resistance. These properties arise from the unique morphology of lamellar pearlite which can be considered<p>as a self-laminated nanoscale composite. However, a spheroidization annealing step is nowadays necessary to improve the cold forming properties before further cold rolling steps.<p>This thesis is aimed at improving the tensile ductility of the hot rolled products of eutectoid composition in order to eliminate the intermediate<p>annealing step. Two strategies are proposed.<p>The first is to transpose the concept of controlled rolling developed for HSLA to<p>eutectoid steels. Through a strict adjustment of the austenite processing and of the cooling strategy, it is possible to improve the ductility<p>of the final lamellar microstructure. The way the processing parameters influence the hot deformation of austenite, the eutectoid transformation and of the subsequent spheroidization annealing is deeply<p>investigated. It is found that refinement and pancaking of austenite<p>is beneficial as it reduces the pearlite block size improving the total<p>tensile elongation. Accelerated cooling is of paramount importance to<p>achieve fine Interlamellar spacing (ILS), which lead to high strength<p>levels and accelerate spheroidization during subsequent annealing.<p>The second approach involves intercritical or warm deformation. Warm processing of eutectoid steels is first explored by torsion testing<p>and then up-scaled to a pilot rolling-line. The interactions between thermomechanical parameters, rolling forces generated and microstructural<p>evolution are carefully scrutinized. During concurrent hot deformation, spheroidization of cementite takes place almost instantaneously<p>in both torsion and rolling. The restoration processes occurring in the ferrite matrix depends on the strain path and the strain rates. Low strain rates (0,1 s−1) and simple shear promotes the formation of a recrystallized-like HABs network of about 3μm in size.<p>Plane strain compression and high strain rates (10 s−1) leads to the formation of a typical recovered dislocation substructure (LABs) of 1μm in size. During annealing, no recrystallization occurs and the LABs substructure remains stable. This substructure influences drammatically the mechanical properties: the strength is very high and the work-hardening behavior is poor due to high recovery rate in the region close to the LABs. However, due to the presence of spheroidized<p>cementite particles the ductility of warm rolled eutectoid steels is higher than that of ultra fine grained low carbon steels. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
20 |
Моделирование оптимальных химического состава и температурного интервала горячей деформации для низкоуглеродистой высокопрочной трубной стали 06Г2МБ : магистерская диссертация / Simulation of the optimal chemical composition and temperature range of hot deformation for low-carbon high-strength pipe steel 06G2MBЛобанова, Л. А., Lobanova, L. A. January 2022 (has links)
Объектом исследования являются причины зарождения протяженных вязких разрушений магистральных трубопроводов. Материалом исследования являлась низкоуглеродистая трубная сталь 06Г2МБ. В работе рассмотрены возможности, по средствам программного обеспечения Thermo-Calc, установить оптимальные параметры производства стали 06Г2МБ для недопущения формирования в металле возможных первопричин зарождения вязких трещин. Проведены термодинамические расчеты по определению температуры АC3. Построены математические модели, позволяющие оптимизировать химический состав стали в момент выплавки с целью предотвращения химической неоднородности в центральной области непрерывно-литых слябов (фазовой ликвации) и, соответственно, минимизировать количество дефектов кристаллизации. / The research object is the causes of the extended viscous fractures origin of main pipelines. The study material was low-carbon pipe steel 06Mn2MoB. The paper considers the possibilities, using the Thermo-Calc software, to establish the optimal parameters for the steel 06Mn2MoB production to prevent the formation of possible root causes of the viscous cracks initiation in the metal. Thermodynamic calculations were carried out to determine the AC3 temperature. Mathematical models have been constructed that allow optimizing the chemical composition of steel at the time of smelting in order to prevent chemical heterogeneity in the central region of continuously cast slabs (phase segregation) and, accordingly, to minimize the number of crystallization defects.
|
Page generated in 0.122 seconds