• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 27
  • 20
  • Tagged with
  • 118
  • 118
  • 118
  • 118
  • 70
  • 32
  • 24
  • 23
  • 21
  • 21
  • 16
  • 16
  • 16
  • 16
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Molecular typing of wine yeasts : evaluation of typing techniques and establishment of a database

Hoff, Justin Wallace 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: The yeast species, Saccharomyces cerevisiae and S. bayanus are well known for the key role they play during alcoholic fermentation in both wine and beer industries. These yeasts are available in pure active dried form and can be used to produce different wine styles and to manage quality. There are more than 200 commercial wine yeast strains on the market and include naturally isolated strains and hybrids. With all these commercial yeasts available, strain authenticity is very important to the manufacturer of active dried wine yeasts (ADWY) because it can prevent commercial losses and maintain market credibility. It is as important to the winemaker as it may impact wine quality. Various traditional and molecular techniques have been successfully applied to perform quality control of wine yeast strains. The aims of this study were to evaluate electrophoretic karyotyping (CHEF) and PCRbased methods to distinguish between Saccharomyces wine yeast strains and to establish a database containing molecular profiles of commercial strains. CHEF karyotyping was chosen because it is generally used in the wine industry to distinguish between wine yeast strains, but can be time-consuming. Alternatively, PCR-based methods are considered to be reliable and fast. These PCR methods included the evaluation of interdelta regions, multiplex-PCR of miniand microsatellites, MET2 gene RFLP analysis and the use of several species-specific primers. In this study, 62 commercial wine yeast strains, were randomly selected from various manufacturers of ADWY, and two reference strains, S. bayanus CBS 380 and S. cerevisiae CBS 1171, were evaluated. CHEF karyotyping could successfully differentiate between all 64 yeast strains. The two primer sets used for interdelta amplifications, delta1-2 and delta12-21, yielded 59 and 62 profiles, respectively. Yeast strains considered to be similar or identical according to interdelta amplification results, were resolved with CHEF karyotyping. CHEF karyotyping was proven to be more accurate than interdelta amplifications in distinguishing between commercial wine yeast strains. However, the results of interdelta amplifications were very useful and less time-consuming. The multiplex-PCR of mini- and microsatellite primers only succeeded in identifying a specific band within 55 of the 64 yeast strains including the S. cerevisiae reference strain, a possible indication of species specificity. However, oenological designation using MET2 gene RFLP analysis and species-specific primers indicated that all the commercial strains in this study had a S. cerevisiae ancestry. Restriction analysis of the MET2 gene with EcoRI also successfully identified AWRI Fusion and Zymaflore X5 as hybrid yeast strains. A wine yeast database was created and contains three libraries, i.e. CHEF karyotypes, delta1-2 and delta12-21 electrophoretic profiles. The database was proven to be functional and showed great accuracy in grouping and identifying test strains. The database has many possible applications, but there is still some optimisation and refinement needed. / AFRIKAANSE OPSOMMING: Die Saccharomyces sensu stricto kompleks, is bekend vir die belangrike rol wat hierdie giste speel tydens alkoholiese fermentasie in biede wyn en bier industrieë. Dit is om hierdie rede dat kelders rein aktief gedroogte wyngis gebruik vir die produksie van spesifieke wynstyle, asook kwaliteit. Daar is meer as 200 kommersiële wyngiste op die mark beskikbaar en dit sluit natuurlike isolate en hibriede in. Daarom is gisras verifikasie baie belangrik vir die vervaardiger van aktief gedroogde wyngiste asook die wynmaker om finansiële verliese te voorkom en mark vertrouenswaardigheid te handhaaf. Verskeie tradisionele en molekulêre metodes word suksesvol toegepas vir gehalte beheer van die gisrasse. Die doel van hierdie studie was om elektroforetiese kariotipering (CHEF) en PKR gebaseerde tegnieke se vermoë om tussen Saccharomyces wyngiste te onderskei, te ondersoek. Ook deel van die doelwitte was om ‘n databasis te skep wat die verskillende elektroforetiese profiele van die kommersiële gisrasse bevat. Tydens hierdie studie is 62 kommersiële gisrasse van verskeie vervaardigers ewekansig geselekteer. Saccharomyces bayanus CBS 380 en S. cerevisiae CBS 1171 is as verwysingsrasse gebruik. Elektroforetiese kariotipering (CHEF) is gekies omdat dit een van die mees algemeenste tegnieke is wat gebruik word om tussen wyngiste te onderskei, maar dit word as tydrowend en arbeidsintensief beskou. As ‘n alternatief is daar na PKR gebaseerde tegnieke gekyk. Hierdie tegnieke word as betroubaar en vinnig beskou. Verskeie PKR gebaseerde tegnieke is ondersoek, naamlik PKR van interdelta areas, multipleks-PKR van mini- en mikrosatelliete, MET2 geen RFLP analise en die gebruik van spesie-spesifieke inleiers. Interdelta amplifikasies en mini- en makrosatelliet inleiers is geselekteer as gevolg van hul vermoë om Saccharomyces wyngiste tot op spesie en ras vlak te onderskei. Die MET2 geen en spesie-spesifieke inleiers is geselekteer om die kommersiele wyngis as S. cerevisiae, S. bayanus of as hibriede te klassifiseer. CHEF kariotipering kon tussen al 64 giste onderskeid tref. Die twee stelle inleiers wat vir interdelta amplifikasie gebruik was, delta1-2 en delta12-21, het onderskeidelik 59 en 62 profiele gelewer. Gis rasse wat identiese profiele met die delta inleiers gelewer het, kon egter met CHEF kariotipering onderskei word. Die resultate het getoon dat CHEF kariotipering beter tussen die kommersiële wyngiste kon onderskei as die interdelta amplifikasies, maar dat die interdelta amplifikasies nogsteeds goeie onderskeiding toon en dat dit minder tydrowend is. Die multipleks-PKR van mini- en mikrosatelliete kon slegs ‘n enkele band in 55 van die 64 giste uit lig. ‘n Moontlike aanduiding van spesie spesifiekheid. Die oenologiese groepering volgens MET2 geen analise en spesies-spesifieke inleiers dui aan dat al die kommersiele wyngiste wat in hierdie studie gebruik is, moontlik van S. cerevisiae afkomstig is. Restriksie analise van die MET2 geen met EcoRI het ook AWRI Fusion en Zymaflore X5 as hibriede geïdentifiseer. Die CHEF kariotipes en interdelta elektroforetiese profiele is gebruik om ‘n databasis van die kommersiële Saccharomyces wyngiste op te stel. Die databasis is funksioneel en het die toets rasse akkuraat geïdentifiseer en korrek gegroepeer. Die databasis moet egter nog verdere optimisering en verfyning ondergaan.
112

The effect of enzymatic processing on banana juice and wine

Byarugaba-Bazirake, George William 12 1900 (has links)
Thesis (PhD (Viticulture and Oenology. Wine Biotechnology))--Stellenbosch University, 2008. / Although bananas are widely grown worldwide in many tropical and a few subtropical countries, banana beverages are still among the fruit beverages processed by use of rudimentary methods such as the use of feet or/and spear grass to extract juice. Because banana juice and beer remained on a home made basis, there is a research drive to come up with modern technologies to more effectively process bananas and to make acceptable banana juices and wines. One of the main hindrances in the production of highly desirable beverages is the pectinaceous nature of the banana fruit, which makes juice extraction and clarification very difficult. Commercial enzyme applications seem to be the major way forward in solving processing problems in order to improve banana juice and wine quality. The particular pectinolytic enzymes that were selected for this study are Rapidase CB, Rapidase TF, Rapidase X-press and OE-Lallzyme. In addition this study, investigate the applicability of recombinant yeast strains with pectinolytic, xylanolytic, glucanolytic and amylolytic activities in degrading the banana polysaccharides (pectin, xylan, glucan starch) for juice and wine extraction and product clarification. The overall objective of this research was to improve banana juice and wine by enzymatic processing techniques and to improve alcoholic fermentation and to produce limpid and shelf-stable products of clarified juice and wine. The focus was on applying the selected commercial enzyme preparations specifically for the production of better clarified banana juice and wine. This is because the turbid banana juice and beer, which contain suspended solids that are characterised by a very intense banana flavour, require a holistic approach to address challenges and opportunities in order to process pure banana beverages with desirable organoleptic qualities. The specific objectives of applying commercial enzymes in the processing of banana juice and wine, comparing with grape winemaking practices, use of recombinant yeast and analyses of various parameters in the juices and wines made have enabled generation of information that could be of help to prospective banana juice and wine processors. The research findings obtained could be used to establish a pilot plant or small-scale industry in the banana processing beverages producing large quantities,and finally the overall objective of obtaining limpid and shelf stable products would be achieved.
113

Evaluation of evolutionary engineering strategies for the generation of novel wine yeast strains with improved metabolic characteristics

Horsch, Heidi K. 12 1900 (has links)
Thesis (PhD (Viticulture and Oenology. Wine Biotechnology))--Stellenbosch University, 2008. / The occurrence of sluggish and stuck fermentations continues to be a serious problem in the global wine industry, leading to loss of product, low quality wines, cellar management problems and consequently to significant financial losses. Comprehensive research has shown that many different factors can act either in isolation, or more commonly synergistically, to negatively affect fermentative activity of wine yeast strains of the species Saccharomyces cerevisiae. The individual factors most commonly referred to in the literature are various nutrient and oxygen limitations. However, other factors have been shown to contribute to the problem. Because of the mostly synergistic nature of the impacts, no single factor can usually be identified as the primary cause of stuck fermentation. In this study, several strategies to evolutionarily engineer wine yeast strains that are expected to reduce the occurrence of stuck and sluggish fermentations are investigated. In particular, the investigations focus on improving the ability of wine yeast to better respond to two of the factors that commonly contribute to the occurrence of such fermentations, nitrogen limitation and the development of an unfavorable ratio of glucose and fructose during fermentation. The evolutionary engineering strategies relied on mass-mating or mutagenesis of successful commercial wine yeast strains to generate yeast populations of diverse genetic backgrounds. These culture populations were then exposed to enrichment procedures either in continuous or sequential batch cultivation conditions while applying specific evolutionary selection pressures. In one of the stragegies, yeast populations were subjected to continuous cultivation under hexose, and especially fructose, limitation. The data show that the strains selected after this procedure were usually able to out-compete the parental strains in these selective conditions. However, the improved phenotype was not detectable when strains were evaluated in laboratory scale wine fermentations. In contrast, the selection procedure in continuous cultivation in nitrogen limiting conditions proved to be highly efficient for the generation of yeast strains with higher total fermentative capacity in low nitrogen musts. Furthermore, yeast strains selected after mutagenesis and sequential batch cultivation in synthetic musts with a very low glucose on fructose ratio showed a fructose specific improvement in fermentative capacity. This phenotype, which corresponds to the desired outcome, was also present in laboratory scale wine fermentations, where the discrepancy between glucose and fructose utilization of the selected strains was significantly reduced when compared to the parents. Finally, a novel strategy for the rectification of stuck fermentations was adjusted to industrial conditions. The strategy is based on the use of a natural isolate of the yeast species Zygosaccharomyces bailii, which is known for its preference of fructose. This process was successfully established and implemented in the wine industry.
114

Evaluation of the role of PGIPs in plant defense responses

Becker, John van Wyk, 1975- 12 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: Plants have developed sophisticated means of combating plant diseases. The events that prepare the plant for, and follow plant-pathogenic interactions, are extremely complex and have been the topic of intensive investigation in recent years. These interactions involve a plethora of genes and proteins, and intricate regulation thereof; from the host and pathogen alike. Studying the contribution of single genes and their encoded proteins to the molecular dialogue between plant and pathogen has been a focus of plant molecular biologists. To this end, a gene encoding a polygalacturonase-inhibiting protein (PGIP) was recently cloned from Vitis vinifera. These proteins have the ability to inhibit fungal endopolygalacturonases (ePGs), enzymes which have been shown to be required for the full virulence of several fungi on their respective plant hosts. The activity of PGIP in inhibiting fungal macerating enzymes is particularly attractive for the improvement of disease tolerance of crop species. The VvPGIP-encoding gene was subsequently transferred to Nicotiana tabacum for high-level expression of VvPGIP. These transgenic plants were found to be less susceptible to infection by Botrytis cinerea in an initial detached leaf assay. Also, it was shown that ePG inhibition by protein extracts from these lines correlated to the observed decrease in susceptibility to B. cinerea. This study expands on previous findings by corroborating the antifungal nature of the introduced PGIP by whole-plant, timecourse infection assays. Six transgenic tobacco lines and an untransformed wildtype (WT) were infected and the lesions measured daily from day three to seven, and again at day 15. The transgenic lines exhibited smaller lesions sizes from three to seven days post-inoculation, although these differences only became statistically significant following seven days of incubation. At this point, four of the six lines exhibited significantly smaller lesions than the WT, with reductions in disease susceptibility ranging between 46 and 69% as compared to the WT. Two of the lines exhibited disease susceptibility comparable to the WT. In these resistant plant lines, a correlation could be drawn between Vvpgip1 expression, PGIP activity and ePG inhibition. These lines were therefore considered to be PGIP-specific resistant lines, and provided ideal resources to further study the possible in planta roles of PGIP in plant defense. The current hypothesis regarding the role(s) of PGIP in plant defense is twofold. Firstly, PGIPs have the ability to specifically and effectively inhibit fungal ePGs. This direct inhibition results in reduced fungal pathogenicity. Alternatively, unhindered action of these enzymes results in maceration of plant tissue and ultimately, tissue necrosis. Subsequently, it could be shown that, in vitro, the inhibition of ePGs prolongs the existence of oligogalacturonides, molecules with the ability to activate plant defense responses. Thus, PGIPs limit tissue damage by inhibition of ePG; this inhibition results in activation of plant defense responses aimed at limiting pathogen ingress. Several publications reported reduced susceptibility to Botrytis in transgenic plant lines overexpressing PGIP-encoding genes. However, none of these publications could expand on the current hypotheses regarding the possible in planta roles of PGIP in plant defense. In this study we used transgenic tobacco lines overexpressing Vvpgip1 as resources to study the in planta roles for PGIP. Transcriptomic and hormonal analyses were performed on these lines and a WT line, both before and following inoculation with Botrytis cinerea. Transcriptomic analysis was performed on uninfected as well as infected tobacco leaf material utilizing a Solanum tuberosum microarray. From the analysis with healthy, uninfected plant material, it became clear that genes involved in cell wall metabolism were differentially expressed between the transgenic lines and the WT. Under these conditions, it could be shown and confirmed that the gene encoding tobacco xyloglucan endotransglycosylase (XET/XTH) was downregulated in the transgenic lines. Additionally, genes involved in the lignin biosynthetic pathway were affected in the individual transgenic lines. Biochemical evidence corroborated the indication of increased lignin deposition in their cell walls. Additionally, phytohormone profiling revealed an increased indole-acetic acid content in the transgenic lines. These results show that constitutive levels of PGIP may affect cell wall metabolism in the Vvpgip1-transgenic lines which may have a positive impact on the observed reduced susceptibilities of these plants. An additional role for PGIP in the contribution to plant defenses is therefore proposed. PGIP may directly influence defense responses in the plant leading to the strengthening of cell walls. This might occur by virtue of its structural features or its integration in the cell wall. These reinforced cell walls are thus “primed” before pathogen ingress and contribute to the decrease in disease susceptibility observed in lines accumulating high levels of PGIP. Transcriptional and hormonal analyses, at the localized response, were performed on Botrytis-infected leaf tissue of the transgenic lines and a WT line. Several Botrytis responsive genes were found to be upregulated in both the WT and the transgenic lines. Although limited differential expression was observed between the two genotypes, the analyses identified a gene which was upregulated two-fold in the transgenic lines, as compared to WT. This was confirmed by quantitative Real-Time PCR. This gene is involved in the lipoxygenase pathway, specifically the 9-LOX branch, leading to the synthesis of the divinyl ether oxylipins colneleic and colnelenic acid, which show inhibitory effects on Botrytis spore germination. Phytohormone profiling revealed that the transgenic lines accumulated more of the defense-related hormone pool of jasmonates. These are formed via the 13-LOX pathway and have been shown to be important for the restriction of Botrytis growth at the site of infection. Collectively, the results from the infection analyses indicate that in these transgenic lines, both branches of the lipoxygenase pathway are differentially induced at the level of the localized response to Botrytis infection. Similarly, an increased induction of the synthesis of the defense-related hormone salicylic acid could be observed, although this hormone did not accumulate to significantly higher levels. These results are the first report of differential induction of a defense-related pathway in pgip-overexpressing lines and substantiate the proposal that following ePG inhibition by PGIP, signaling which activates plant defense responses, takes place. Taken together, these results significantly contribute to our understanding of the in planta role of PGIP in plant defense responses. / AFRIKAANSE OPSOMMING: Plante het deur evolusie gesofistikeerde meganismes teen die aanslag van plantsiektes ontwikkel. Die gebeure wat die plant voorberei, asook dié wat op plant-patogeen interaksies volg, is uiters kompleks en vorm die kern van verskeie navorsingstemas die afgelope paar jaar. Etlike plant- én patogeengene en proteïene is by hierdie interaksies betrokke en aan komplekse reguleringsprosesse onderworpe. Die bestudering van die bydrae van enkelgene en hul gekodeerde proteïene tot die molekulêre interaksie tussen ‘n plant en patogeen is ‘n sterk fokus van plant-molekulêre bioloë. Met hierdie doel as fokus, is ‘n geen wat vir ‘n poligalakturonaseinhiberende proteïen (PGIP) kodeer, van Vitis vinifera gekloneer. Hierdie proteïene beskik oor die vermoë om fungiese endopoligalakturonases (ePG's), ensieme wat benodig word vir die virulensie van verskeie fungi op hul gasheerplante, te inhibeer. Die inhibisie van ePG's deur PGIP en die gepaardgaande verminderde weefseldegradasie is ‘n baie belowende strategie vir die verbetering van verboude gewasse se patogeentoleransie. Die VvPGIPenkoderende geen is gevolglik na Nicotiana tabacum oorgedra vir hoëvlakuitdrukking van VvPGIP. Daar is gevind dat hierdie transgeniese plante minder vatbaar vir Botrytis cinerea-infeksies was in ‘n inisiële antifungiese toets wat gebruik gemaak het van blaarweefsel wat van die moederplant verwyder is. Daar is ook ‘n korrelasie gevind tussen B. cinerea-siekteweerstand en ePG-inhibisie deur proteïenekstrakte van die transgeniese populasie. Die huidige studie bou voort op en bevestig vorige bevindinge betreffende die antfungiese aard van die heteroloë PGIP in die heelplant en oor tyd. Ses transgeniese tabaklyne en 'n ongetransformeerde wilde-tipe (WT) is geïnfekteer en die lesies is vanaf dag drie tot sewe, en weer op dag 15, gemeet. Die transgeniese lyne het in die tydperk van drie tot sewe dae ná-inokulasie kleiner lesies as die WT getoon, alhoewel hierdie verskille slegs statisties beduidend geword het na sewe dae van inkubasie. Op daardie tydstip het vier van die ses lyne aansienlik kleiner lesies as die WT getoon, en verlagings in siektevatbaarheid het, in vergelyking met die WT, van 46% tot 69% gewissel. Twee van die lyne het siektevatbaarheid getoon wat vergelykbaar was met dié van die WT. In die siekteweerstandbiedende plantlyne was daar 'n verband tussen Vvpgip1-ekspressie, PGIP-aktiwiteit en ePG-inhibisie. Hierdie plantlyne is dus as PGIP-spesifieke siekteweerstandslyne beskou en dien dus as ideale eksperimentele bronne vir die ontleding van die moontlike in plantafunksies van PGIP in plantsiekteweerstandbiedendheid. Die huidige hipotese betreffende die funksie(s) van PGIP in plantsiekteweerstand is tweeledig. Eerstens het PGIP die vermoë om fungusePG's spesifiek en doeltreffend te inhibeer. Hierdie direkte inhibisie veroorsaak ‘n vermindering in patogenisiteit van die fungus op die gasheer. Indien ePG's egter hulle ensimatiese aksie onverstoord voortsit, sal weefseldegradasie en uiteindelik weefselnekrose die gevolg wees. Daar kon ook bewys word dat die in vitroinhibisie van ePG's deur PGIP die leeftyd van oligogalakturoniede, molekules wat die vermoë het om die plantweerstandsrespons aan te skakel, kan verleng. PGIP het dus nie net die vermoë om ePG's, en dus weefseldegradasie, te inhibeer nie; maar hierdie inhibisie lei ook daartoe dat plantweerstandsresponse aangeskakel word met die oog op die vermindering van patogeenindringing. Verskeie publikasies het reeds gerapporteer oor verminderde Botrytisvatbaarheid in PGIP transgeniese plantlyne. Geeneen van hierdie publikasies kon egter uitbrei op die huidige hipotese aangaande die moontlike in planta-funksie van PGIP in plantsiekteweerstand nie. In hierdie studie is transgeniese tabaklyne wat PGIP ooruitgedruk gebruik om hierdie moontlike in planta-funksies vir PGIP uit te klaar. Transkriptoom- en hormonale analises is op hierdie plantlyne en ‘n WT voor en ná inokulasie met die nekrotroof Botrytis cinerea uitgevoer,. Transkriptoomanalises is uitgevoer op ongeïnfekteerde, sowel as geïnfekteerde tabakblaarmateriaal deur gebruik te maak van ‘n Solanum tuberosum-mikroraster. Die analises met gesonde, ongeïnfekteerde plantmateriaal het daarop gewys dat gene betrokke by selwandmetabolisme tussen die transgeniese lyne en die WT verskillend uitgedruk was. Dit kon bewys word dat, sonder infeksiedruk, die geen wat xiloglukaan-endotransglikosilase (XET) kodeer, in die transgeniese lyne afgereguleer was. Gene wat betrokke is in die lignien-biosintetiese pad was ook in die individuele transgeniese lyne beïnvloed. Biochemiese toetse het ook die aanduiding van verhoogde ligniendeposisie in die transgeniese lyne se selwande bevestig. Addisionele fitohormoonprofiele het getoon dat hierdie lyne ook beskik oor verhoogde vlakke van indoolasynsuur (IAA). Hierdie resultate wys daarop dat konstitutiewe vlakke van PGIP selwandmetabolisme in die Vvpgip1-transgeniese lyne moontlik kan beïnvloed, wat plantsiekteweerstand in dié lyne positief kan beïnvloed. Dit wil dus voorkom asof PGIP 'n bykomende funksie in plantsiekteweerstand het. Plantweerstandsreponse kan direk deur PGIP beïnvloed word, wat tot die versterking van plantselwande kan lei; dit kan geskied by wyse van die strukturele eienskappe van die proteïen of die integrasie daarvan in die selwand. Hierdie selwande is dus “voorberei” alvorens patogeenindringing plaasvind en kon bydra tot die verminderde siektevatbaarheid wat waargeneem is in lyne wat hoë vlakke van PGIP akkumuleer. Transkriptoom- en hormonale analises is ook uitgevoer op Botrytisgeïnfekteerde blaarmateriaal van beide die transgeniese lyne en ‘n WT. Verskeie Botrytis-responsgene is in beide die transgeniese lyne en die WT opgereguleer. Differensïele geenekspressie tussen die twee genotipes was taamlik beperk, maar in die analises kon ‘n geen geïdentifiseer word wat tweevoudig in die transgeniese lyne opgereguleer was in vergelyking met die WT. Hierdie resultaat is ook bevestig met behulp van die “Real-Time” Polimerasekettingreaksie (PKR). Hierdie geen is betrokke in die lipoksigenase (LOX) -pad (spesifiek die 9-LOXarm), wat tot die sintese van die diviniel-eter oksilipiene “colneleic-” en “colnelenic”-suur lei. Daar is al bewys dat hierdie twee verbindings Botrytisspoorontkieming kan inhibeer. Fitohormoonprofiele van die geïnfekteerde plante het gewys dat die transgeniese lyne verhoogde vlakke van die poel van jasmonate wat plantsiekteweerstands-hormone is, ná inokulasie akkumuleer. Hierdie hormone word in die 13-LOX-arm van die lipoksigenase pad gevorm en is belangrik vir die beperking van Botrytis by die infeksiesetel. Die resultate van die analises wat op Botrytis-infeksie volg, dui daarop dat beide arms van die lipoksigenasepad in die transgeniese lyne verskillend by die lokale respons geïnduseer word. ‘n Verhoogde induksie van ‘n ander plantsiekteweerstandshormoon, salisielsuur, kon ook opgemerk word, alhoewel die totaal geakkumuleerde vlakke nie beduidend hoër was as dié van die WT nie. Hierdie resultate is die eerste wat onderskeidende induksie van ‘n siekteweerstandspad in enige van die pgip-ooruitgedrukte plantlyne rapporteer. Daarmee ondersteun dit ook die hipotese dat, seintransduksie wat plantweerstandsresponse aanskakel, ná inhibisie van ePG deur PGIP plaasvind. Die resultate wat met hierdie studie verkry is, dra dus beduidend by tot die huidige kennis van die in planta-funksie van PGIP in plantsiekteweerstandsresponse.
115

Evaluating the influence of winemaking practices on biogenic amine production by wine microorganisms

Smit, Anita Yolandi 12 1900 (has links)
Thesis (MScAgric (Viticulture and Oenology))--University of Stellenbosch, 2007. / Biogenic amines are nitrogenous compounds of low molecular weight found in most fermented foods, including wine. These biologically produced amines are essential at low concentrations for normal metabolic and physiological functions in animals, plants and micro-organisms. However, biogenic amines can have adverse effects at high concentrations and pose a health risk for sensitive individuals. Symptoms include nausea, hot flushes, headaches, red rashes, respiratory distress and fluctuations in blood pressure. A number of countries have implemented upper limits for histamine in food and wine. This development has already started to threaten commercial export transactions and may become more serious in the near future, especially in the competitive wine industry of today. The most important biogenic amines in wine include histamine, tyramine, putrescine, cadaverine and phenylethylamine which are produced from the amino acids histidine, tyrosine, ornithine, lysine and phenylalanine respectively. Biogenic amines are mainly produced in wine by microbial decarboxylation of the corresponding precursor amino acid. It may be produced by yeast during alcoholic fermentation, by lactic acid bacteria during malolactic fermentation, or potentially by spoilage microbes such as acetic acid bacteria and Brettanomyces. However, lactic acid bacteria are widely accepted as the main causative agents. Inoculation with commercial malolactic fermentation starter cultures that do not possess the relevant decarboxylase genes may inhibit the growth and activity of decarboxylase positive indigenous bacteria and as such control the production of biogenic amines in wine. In this study it was shown that co-inoculation of malolactic starter cultures together with alcoholic fermentation could reduce the incidence of biogenic amines in wine compared to conventional inoculation protocols; presumably because undesirable activities were restrained at an earlier stage during co-inoculation. It was also indicated in this work that in some cases the effect of co-inoculation on biogenic amine reduction may only be visible after a period of ageing. The frequency of biogenic amine occurrence in wines aged for a short period was generally higher in the presence of fermentation lees than in its absence. This work also included a preliminary investigation into the contribution of commercial wine yeast starter cultures to biogenic amine production. Diamines and polyamines (putrescine, spermidine and cadaverine) were produced to variable extents by all yeasts with very little or no production of physiologically important biogenic amines (histamine, tyramine and phenylethylamine). Another objective of this study was to evaluate the influence of common winemaking practices on biogenic amine production under winemaking conditions. We have shown that biogenic amine production by lactic acid bacteria could be influenced, amongst others, by the presence of precursor amino acids in the grape must or wine, the time of contact between juice or wine and grape skins, the time of contact between wine and yeast lees, the presence of microbial nutrients, wine pH, sulphite and ethanol levels, the phenolic composition of the wine and the number of decarboxylase positive lactic acid bacteria present in the wine. Lately, the wine industry is under increasing pressure to increase measures to ensure food safety and security and to eliminate any compound, present even in trace amounts that could reduce the wholesomeness of the wine. The need arises for a rapid and inexpensive method for quality control. In this study we investigated the potential to use Fourier transform infrared spectroscopy to rapidly screen for the presence of elevated levels of biogenic amines. This presents a novel method for the detection and quantification of total biogenic amines in wines.
116

Plant defence genes expressed in tobacco and yeast

Becker, John van Wyk 03 1900 (has links)
Thesis (MSc (Viticulture and Oenology. Wine Biotechnology))--University of Stellenbosch, 2002. / Pathogen devastation of food products has been the topic of extensive research efforts worldwide. Fungal infections are foremost amongst these pests, contributing not only to losses in product yield, but also significantly affecting the quality thereof. It is not surprising then that producers of these foodstuffs and their derived products continually strive towards the highest possible product quality. Therefore, it remains imperative that satisfactory methods are implemented to control these fungal pathogens. The current strategies are all hampered by drawbacks, and severe crop losses are still experienced. New technologies are being explored; one such technology is the genetic transformation of plant species. This method has enabled scientists to introduce foreign genes, with known functions and predictable outcomes, into plants. Genes identified to be involved in disease resistance have become the focus of numerous research efforts concerned with the improvement of the plant's innate defence response. This study aimed to enhance disease resistance to fungal pathogens by means of the genetic transformation of two genes previously shown to be involved in disease resistance. These genes encode polygalacturonase-inhibiting proteins (PGIPs) from Phaseolus vulgaris and resveratrol synthase from Vitis vinifera. PGIPs specifically inhibit the action of fungal polygalacturonases (PGs), which are enzymes responsible for the hydrolytic breakdown of plant cell walls. These enzymes were also found to be the first enzymes that are secreted by fungal pathogens during infection of the host plant. Additionally, PGIP-PG interaction results in the existence of molecules involved in the activation of plant defence responses. Resveratrol, the product of resveratrol synthase, exerts its antifungal action by destruction of the microbial cellular membranes. These mentioned genes were transformed alone, and in combination, into Nicotiana tabacum and the resultant transgenic lines were evaluated for enhanced disease resistance and for possible synergistic effects between the transgenes. Several independent transgenic lines were regenerated with genes integrated into the tobacco genome. Almost all the plants harbouring only pgip or vst1 genes also expressed these genes at a high frequency. Some non-expressing lines were identified from the transgenic plants that had integrated both genes, but several lines were obtained expressing both transgenes. Good correlations were observed between transgene product activity and enhanced resistance to the fungus Botrytis cinerea in an antifungal in planta assay. Lines showing the highest PGIP activity and resveratrollevels were more resistant to the pathogen, leading to disease resistance of up to 80% seven days after inoculation in comparison to an untransformed control. These lines maintained their strong inhibition, even three weeks post-inoculation, showing a complete halt in disease development and fungal growth. These results provide good indications of the efficacy of these transgenes in the upregulation of plant defence. However, the study will have to be expanded to include even more transgenic lines to elucidate the possible synergistic effects of these genes. In an additional pilot study, genes encoding for precursors and for the formation of resveratrol were introduced into the yeast Saccharomyces cerevisiae. The resultant recombinant yeast strains were evaluated for their ability to produce the phenolic substance, resveratrol. This compound has been implicated in beneficial aspects relating to human health, including positive effects on atherosclerosis and platelet aggregation as a direct result of its antioxidant and anti-inflammatory activities. Recombinant yeast strains were constructed that expressed genes coding for coenzyme A ligase and resveratrol synthase. These strains were shown to be able to produce the phenolic compound resveratrol from the precursors present in the yeast as well as from the products introduced with the transformation. The resveratrol was complexed with an added glucose moiety. These results are extremely positive, considering the possibility of manipulating wine yeasts to produce resveratrol during the wine fermentation, thereby adding to the health aspects of both red and white wine. This is the first report of the production of this compound by the introduction of genes necessary for its biosynthesis in a foreign host. This study has confirmed the importance of PGIPs and resveratrol in the effort to enhance disease resistance in plants through genetic transformation technology. It has also shown that the health benefits of resveratrol could be exploited more optimally in the wine industry, by producing wine yeasts with the ability to synthesise this important antioxidant.
117

Functional analysis of a lignin biosynthetic gene in transgenic tobacco

Mbewana, Sandiswa 03 1900 (has links)
Thesis (MScAgric (Viticulture and Oenology. Wine Biotechnology))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Necrotrophic fungi infect many economically important crop plants. This results in great losses in the agricultural sector world-wide. Understanding the nature by which plants respond to pathogens is imperative for genetically enhancing disease resistance in plants. Research tools have significantly contributed to our understanding of how the plant responds to pathogen attack, identifying an array of defence mechanisms used by plants upon attack. Many fungal pathogens secrete endopolygalacturonases (endoPGs) when infecting plants. These hydrolytic enzymes are inhibited by polygalacturonase-inhibiting proteins (PGIPs) associated with plant cell walls. PGIPs are well characterised and their current known functions are all linked to endoPG inhibition and the subsequent upregulation of plant defence pathways. Work on grapevine PGIPs have shown that apart from being efficient antifungal proteins, leading to protection of the plant against Botrytis cinerea when overexpressed, PGIPs might also have additional functions linked to cell wall strengthening. This working hypothesis formed the motivation of this study where a cinnamyl alcohol dehydrogenase (CAD) (1.1.1.195) gene was targeted for functional analysis in tobacco (Nicotiana tabacum). Some previous work and genetic resources obtained is relevant to this study, specifically previously characterized transgenic tobacco lines overexpressing the Vitis vinifera pgip1 (Vvpgip1) gene. These lines have confirmed PGIP-specific resistance phenotypes against B. cinerea, as well as increased levels of CAD transcripts in healthy plants. Moreover, preliminary evaluations indicated increased lignin levels as well as differential expression of several other cell wall genes in these overexpressing lines (in the absence of infections). In this study we generated a transgenic tobacco population, overexpressing the native CAD14 gene, via Agrobacterium transformations. The transgene was overexpressed with the Cauliflower Mosaic Virus promoter (CaMV 35Sp). The CAD transgenic population was analyzed for transgene integration and expression and showed active transcription, even from leaves that normally don’t express CAD to high levels. These lines, together with the untransformed control, and a representative transgenic VvPGIP1 tobacco line previously characterized with elevated expression of CAD were used for all further analyses, specifically CAD activity assays of stems and leaves, as well as whole plant infections with B. cinerea. CAD enzyme activity assays were performed on healthy uninfected plant lines, without inducing native CAD expression or resistance phenotypes (i.e. without Botrytis infection). CAD activity was detected in leaves and stems, but a statistically sound separation between the CAD population and the untransformed control was only observed in the stems. The CAD assays also confirmed previous results that indicated that CAD transcription was upregulated in the PGIP line in the absence of infection. Overall, in all plant lines the stems exhibited 10-fold higher levels of CAD activity than the leaves, but the transgenic VvPGIP1 line showed a further 2-3-fold increase in CAD activity in the stems, when compared to the untransformed control and the majority of the CAD overexpressing lines. Disease assessment by whole plant infections with B. cinerea of the CAD transgenic plants revealed reduced disease susceptibility towards this pathogen. A reduction in disease susceptibility of 20 – 40% (based on lesion sizes) was observed for a homologous group of transgenic lines that was statistically clearly separated from the untransformed control plants following infection with Botrytis over an 11-day-period. The VvPGIP1 transgenic line displayed the strongest resistance phenotype, with reduction in susceptibility of 47%. The reduction in plant tissue maceration and lesion expansion was most pronounced in the VvPGIP1 line compared to the CAD transgenic plants, while the CAD transgenic plants showed more reduction than the untransformed control. In combination, the data confirms that CAD upregulation could lead to resistance phenotypes. Relating this data back to the previously observed upregulation of CAD in the VvPGIP1-overexpressing lines, the findings from this study corroborates that increased CAD activity contributes to the observed resistance phenotypes, possibility by strengthening the cell wall. In conclusion, this study yielded a characterized transgenic population overexpressing the CAD14 gene; this overexpression contributed to increased RNA transcription compared to the untransformed control plant, increased CAD activity (most notably in the stems) and a disease resistance phenotype against Botrytis. These findings corroborates the current working hypothesis in our group that PGIPs might have a role in preparing the plant cell for attack by contributing to specific cell wall changes. The exact mechanisms are still currently unknown and under investigation. The transgenic lines generated in this study will be invaluable in the subsequent analyses where these various phenotypes will be subjected to profiling and accurate cell wall analyses. / AFRIKAANSE OPSOMMING: Nekrotrofiese swamme infekteer en beskadig verskeie ekonomies belangrike gewasse. Dit lei wêreldwyd tot groot verliese vir die landbousektor. Dit is noodsaaklik om te verstaan hoe plante reageer teenoor patogene, sodat die siekteweerstand van plante verbeter kan word. Navorsingshulpbronne het beduidend bygedra tot die kennis van plantreaksies tydens patogeniese aanvalle, en het sodoende ‘n reeks van weerstandmeganismes, wat die plant inspan tydens ‘n aanval, geïdentifiseer. Verskeie patogeniese swamme skei endopoligalakturonases (endoPGs) af tydens plantinfeksie. Hierdie hidrolitiese ensieme word geïnhibeer deur poligalakturonase-inhiberende proteïene (PGIPs) wat met die plantselwand geassosieerd is. PGIPs is goed gekarakteriseerd en al hulle huidiglik bekende funksies is gekoppel aan endoPG inhibisie en die daaropvolgende opregulering van plant weerstandspaaie. Navorsing op wingerd PGIPs het gewys dat, afgesien van die feit dat PGIPs goeie antifungiese proteïene is wat lei tot beskerming van die plant teen Botrytis cinerea wanneer dit ooruitgedruk word, PGIPs ook moontlik addisionele funksies verrig wat verwant is aan selwandversterking. Hierdie werkshipotese vorm die motivering vir hierdie studie waarin ‘n sinnamiel alkohol dehidrogenase (SAD) (1.1.1.195) geen geteiken is vir funksionele analise in tabak (Nicotiana tabacum). Vorige navorsing en genetiese hulpbronne daardeur verkry is belangrik vir hierdie studie, spesifiek die gekarakteriseerde transgeniese tabaklyne wat die Vitis vinifera pgip1 (Vvpgip1) geen ooruitdruk. Hierdie lyne besit bevestigde PGIP-spesifieke weerstandsfenotipes teen B. cinerea, sowel as hoër vlakke van SAD transkripte in gesonde plante. Voorlopige analises het ook aangedui dat hierdie ooruitdrukkende lyne hoër lignien vlakke het, asook differensiële uitdrukking van verskeie ander selwandgene (in die afwesigheid van infeksie). In hierdie studie is ‘n transgeniese tabakpopulasie gegenereer wat die natuurlike tabak SAD14 geen ooruitdruk, deur middel van Agrobacterium transformasie. Die transgeen is ooruitgedruk deur die Blomkool Mosaïek Virus promoter (CaMV 35Sp). Die SAD transgeniese populasie is geanaliseer vir transgeen integrasie en uitdrukking en het aktiewe transkriptering getoon, selfs in blare waar daar normaalweg nie hoë vlakke van SAD uitgedruk word nie. Hierdie lyne, die ongetransformeerde wilde-tipe kontrole sowel as ’n verteenwoordigende transgeniese VvPGIP1 tabaklyn wat vooraf gekarakteriseerd was met hoë SAD uitdrukking, is gebruik vir alle verdere analises, spesifiek SAD aktiwiteitstoetse in stingels en blare, asook heelplantinfeksies met B. cinerea. Aktiwiteitsanalises van die SAD ensiem is gedoen op gesonde ongeinfekteerde plantlyne, sonder om natuurlike tabak SAD uitdrukking of weerstandsfenotipes te induseer (dus sonder Botrytis infeksie). SAD aktiwiteit is waargeneem in beide die blare en stingels, maar ‘n statisties betekenisvolle skeiding is slegs gevind tussen die SAD populasie en die ongetransformeerde kontrole in die stingels. Die SAD toetse het ook vorige resultate bevestig wat aangedui het dat SAD transkripsie opgereguleer word in die PGIP lyn in die afwesigheid van infeksie. Die stingels het oor die algemeen ‘n 10-voudige vermeerdering in SAD aktiwiteitsvlakke getoon in vergelyking met die blare, maar die transgeniese VvPGIP1 lyn het ‘n verdere 2-3-voudige verhoging in SAD aktiwiteit gehad in die stingels ,in vergelyking met die ongetransformeerde kontrole en die meerderheid van die SADooruitdrukkende lyne. Siekteweerstand ondersoeke deur middel van heelplantinfeksies met B. cinerea van die SAD transgeniese plante, het verminderde vatbaarheid aangedui ten opsigte van hierdie patogeen. ‘n Afname in siekte-vatbaarheid van 20 – 40% (gebaseer op wondgroottes) is waargeneem vir ‘n homoloë groep transgeniese lyne wat statisties betekenisvol geskei kon word van die ongetransformeerde kontrole plante na infeksie met Botrytis in ‘n infeksietoets wat 11 dae geduur het. Die VvPGIP1 transgeniese lyn het die mees weerstandbiedende fenotipe gehad, met ‘n afname in siekte-vatbaarheid van 47%. Die afname in plantweefselafbreking en wondgrootte was die duidelikste in die VvPGIP1 lyn in vergelyking met die SAD transgeniese plante, terwyl die SAD transgeniese plante ‘n groter afname aangedui het as die ongetransformeerde kontrole. In kombinasie het die data bevestig dat SAD opregulasie kan lei tot weerstandbiedende fenotipes. Hierdie data, in vergelyking met die vorige bevinding van opregulasie van SAD in die VvPGIP1-ooruitdrukkende lyne, bevestig dat hoër SAD aktiwiteit bydra tot die waargenome weerstandbiedende fenotipes, moontlik deur versterking van die plantselwand. Ter afsluiting, hierdie studie het ‘n gekarakteriseerde transgeniese populasie wat die SAD14 geen ooruitdruk gelewer; hierdie ooruitdrukking het bygedra tot hoër RNA transkripsie in vergelyking met die kontrole, verhoogde SAD aktiwiteit (veral in die stingels) en siekteweerstandbiedende fenotipes teenoor Botrytis. Hierdie bevindinge ondersteun die huidige werkshipotese in ons groep dat PGIPs moontlik ‘n rol speel in die voorbereiding van die plantsel teen infeksie deur spesifieke selwandveranderinge te veroorsaak. Die spesifieke meganismes is steeds onbekend en word verder ondersoek. Die transgeniese lyne wat tydens hierdie studie gegenereer is, sal baie belangrik wees in opvolgende analises waar hierdie verskillende fenotipes gebruik kan word om die profiel van selwandkomponente, maar ook die akkurate selwandsamestelling te bestudeer.
118

Die geografiese invloede op die wynboubedryf in die Suid-westelike distrikte van die Kaapprovinsie

Theron, H. F. January 1932 (has links)
Thesis (MScAgric)--Stellenbosch University, 1932. / No Abstract Available

Page generated in 0.088 seconds