• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 13
  • 5
  • Tagged with
  • 50
  • 50
  • 50
  • 13
  • 13
  • 13
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Evaluation of a Patient-Specific, Low-Cost, 3-Dimensional–Printed Transesophageal Echocardiography Human Heart Phantom

Meineri, Massimiliano 02 November 2021 (has links)
Simulation based education has been shown to increase the task-specific capability of medical trainees. Transesophageal echocardiography training greatly benefits from the use of simulators. They allow real time scanning of a beating heart and generation of ultrasound images side by side with anatomically accurate virtual model. These simulators are costly and have many limitations. 3D printing technologies have enabled the creation of bespoke phantoms capable of being used as task-trainers. This study aims to compare the ease of use and accuracy of a low-cost patient-specific, Computer-tomography based, 3D printed, echogenic TEE phantom compared to a commercially available echocardiography training mannequin. We hypothesized that a low-cost, 3D printed custom-made, cardiac phantom has comparable image quality, accuracy and usability as existing commercially available echocardiographic phantoms. After Institutional Ethic Research Board approval, we recruited ten American Board – Certified cardiac anesthesiologists and conducted a blinded comparative study divided into two stages. Stage one consisted of image assessment. A set of basic TEE views obtained from the 3D printed and commercial phantom were presented to the participants on a computer screen in random order. For each image, participants will be asked to identify the view, identify the quality of the image on a 1-5 Likert scale compared to the corresponding human view and guess with which phantom it was acquired (1 not at all realistic to patients view and 5 realistic to patients view). Stage two, participants will be asked to use the 3D printed and the commercially available phantom to obtain basic TEE views. In a maximum of 30 minutes. Each view was recorded and assessed for accuracy by two certified echocardiographers. Time needed to acquire each basic view and number of correct views was recorded. Overall usability of the phantoms was assessed through a questionnaire. For all continuous variables, we will calculate mean, median and standard deviation. We use Wilcoxon Signed-Rank test to assess significant differences in the rating of each phantom. All ten participants completed all part of the study. All participants could recognize all of the standard views. The average Likert scale was 3.2 for the 3D printed and 2.9 for the commercial Phantom with no significant difference. The average time to obtain views was 24.5 and 30 sec for the 3D printed and the commercial phantoms respectively statistically significantly in favor of the 3D printed phantom. The qualitative user assessment for ease to obtain the views, probe manipulation, image quality and overall experience were in great favor of the 3D printed phantom. Our Study suggest that the quality of TEE images obtained on the 3D printed phantom are not significantly different from those obtained on the commercial Phantom. The ease of use and time required to complete a basic TEE exam were in favor of the 3D Printed phantom.:Table of Content 1. Bibliographic Description 3 2. Introduction 4 2.1. Perioperative transesophageal echocardiography 4 2.2. Transesophageal echocardiography training 5 2.3. Transesophageal echocardiography simulation 6 2.4. 3D Heart Printing 13 2.5. 3D Segmentation 16 2.6. Development of the study phantom 17 2.7. Study Rationale 18 3. Publication 22 4. Summary 30 5. References 33 6. Appendices 37 6.1. Darstellung des eigenes Beitrags 38 6.2. Erklärung über die eigenständige Abfassung der Arbeit 39 6.3. Lebenslauf 40 6.4. Publikationen und Vorträge 44 6.5. Danksagung 61
32

A technical and economical evaluation of RP technology for RTM tooling

Dippenaar, D. J. 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: This project investigates the use of Rapid Prototyping (RP), with specific focus on Three Dimensional Printing (3DP), in the manufacture of complex shaped advanced composite parts, using variants of the Resin Transfer Moulding (RTM) method of composite manufacture. This study developed design guidelines, cost models and a process chain by studying data obtained by making example parts, from literature and consultation with industry. Advanced composite materials offer some of the best low weight and high specific strength properties for the solution of design problems. A major disadvantage of these processes, however, is the low production rates possible and the need of costly moulds. The 3DP technologies combined with the RTM composite process was found to enable a lowering of costs and increase in productivity if smaller batch sizes are considered. The most meaningful area of application for RP techniques seems to be for smaller and more complex components. The geometrical freedom allowed by RP technologies allowed the manufacture of parts which are challenging to manufacture by conventional technology such as CNC machining. Example part case studies were completed for a simple part utilising the one sided mould Resin Infusion RTM variant as well as for a complex part utilising the closed mould Vacuum Assisted Resin Transfer Moulding (VARTM) process variant. During these two case studies it was clear that proper part infusion with resin is critical for the manufacture of good quality composite parts free of voids and dry spots. It is possible to improve the resin infusion by correct placement of resin inlet and outlet ports as well as resin channels incorporated in the mould. Correct placement of these features for the case studies was obtained through simulations done with RTM-Worx software. Results also indicated that another useful application of RP technology to RTM is the manufacture of disposable cores for parts with thick cross sections. Resin channels were included on the surface of these cores to improve the mould filling with resin and consequently part quality. An early cost estimation model, based on the work of Veldsman (1995), was developed for the combined RP and RTM manufacturing process. This model may help designers to eliminate expensive design features and enables a quick cost comparison with competing processes. Drawbacks of applying RP techniques to RTM include the limited lifetime of moulds produced with 3DP and the size and accuracy limitations of the RP t echnology. / AFRIKAANSE OPSOMMING: Hierdie projek handel oor die toepassing van die drie-dimensionele druk metode van Snel-Prototipering (Rapid Prototyping) op die vervaardiging van komplekse gevorderde saamgestelde materiaal komponente met die Hars-Inspuit Giet (Resin Transfer Moulding) metode. Die projek behels die opstel van ontwerpsriglyne, koste-modelle en ’n proses-ketting deur data te bestudeer wat bekom is deur middel van die vervaardiging van eksperimentele parte, literatuurstudie asook raadpleging met individue in die industrie. Gevorderde saamgestelde materiale verskaf van die beste sterk, dog ligte oplossings vir sekere ontwerpsprobleme. ’n Ernstige nadeel van hierdie materiale is egter die stadige produksietempo moontlik en die vereiste van duur gietstukke. Die Snel- Prototipering metodes, gekombineerd met ’n saamgestelde materiaal vervaardigingsproses, maak laer kostes met beter produktiwiteit moontlik indien ontwerpers die part grootte- en akkuraatheidsbeperkings in ag neem. Die mees betekenisvolle area van toepassing blyk kleiner en meer komplekse komponente te wees. Die vryheid in geometrie wat moontlik gemaak word deur die Snel- Prototipering tegnologie laat die vervaardiging toe van parte wat uitdagend is om te vervaardig met konvensionele tegnologie soos CNC masjinering. ’n Gevallestudie is voltooi vir ’n eenvoudige part vervaardig met die enkelkant gietstuk vakuum-infusie weergawe van die Hars-Inspuit Giet metode asook vir ’n komplekse part wat vervaardig is met die geslote gietstuk Vakuum Hars-Inspuit Giet weergawe van die basiese metode. Dit het tydens die twee gevallestudies duidelik geword dat deeglike hars infusie van kritieke belang is vir die vervaardiging van goeie kwaliteit parte sonder enige droë kolle of lugruimtes. Dit is moontlik om die hars infusie te verbeter deur hars inlate en uitlate asook hars kanale in die korrekte posisies te plaas. Die korrekte posisies vir hierdie komponente is verkry deur middel van ’n reeks simulasies met die RTM-Worx sagteware. Resultate dui ook daarop dat Snel-Prototipering tegnologie handig te pas kom by die vervaardiging van verbruikbare kerne vir saamgestelde materiaal parte met groter diktes. Hars kanale kan maklik op die kerne se oppervlak geskep word om die hars verspreiding en gevolglik part kwaliteit te verbeter. ’n Vroeë kostevoorspellings model, gebaseer op werk voltooi deur Veldsman (1995), is saamgestel vir die gekombineerde Snel-Prototipering en Hars-Inspuit Giet proses. Hierdie model kan gebruik word om duur ontwerpsbesonderhede op parte te elimineer en om ’n vinnige koste vergelyking met ander vervaardigingsprosesse te toon. Nadele van die toepassing van Snel-Prototipering tegnieke op Hars-Inspuit Giet sluit die beperkte gietstuk-leeftyd en beperkte akkuraatheid in.
33

Desenvolvimento e fabricação de uma mini-impressora 3D para cerâmicas / Development and manufacturing of mini 3D printer machine for ceramics

Garcia, Luis Hilário Tobler 14 January 2011 (has links)
O trabalho trata do estudo do processo de impressão tridimensional e desenvolvimento de uma impressora para a produção de corpos-de-prova cerâmicos. A técnica de impressão tridimensional pertence ao grupo de prototipagem rápida e consiste na obtenção de um corpo sólido a partir de um modelo digital de três dimensões, através do fatiamento do modelo tridimensional e da impressão seqüencial de suas respectivas fatias. Durante o processo de impressão, deposita-se um ligante sobre camadas sucessivas de pó e em cada camada, o ligante consolida o pó no formato bidimensional da fatia, que por fim soma-se as outras fatias subseqüentes, consolidando assim o formato tridimensional do modelo. Os equipamentos convencionais de impressão 3D utilizam pós a base de gesso e acrílico, onde o ligante, a base de água, fornece a primeira adesão química; posteriormente é infiltrada uma resina para fornecer uma ligação com o pó de acrílico. Na impressão de cerâmica a base de alumina ou zircônia, o desenvolvimento de ligantes tem de ser realizado visando à adesão química e orgânica combinadas antes da sinterização. Neste projeto, uma mini impressora 3D para corpos de prova foi desenvolvida e com ela foram produzidos corpos de geometria simples e seção constante, cujo projeto, custo, manutenção simplificada e econômica possibilita também o emprego de materiais agressivos nos ligantes, com risco de danificação de componentes, a exemplo de ácido fosfórico, porém com baixo custo de recuperação. Foram analisados diversos tipos pelo dimensionamento de seus aglomerados, fluidez e densidade. Obteve-se pó a base de gesso por R$15,00 o kilograma. Corpos de prova foram analisados com relação à resistência mecânica por flexão de três pontos, densidade, porosidade aparente e imagens por microscopia ótica e microscopia eletrônica de varredura (MEV). Um protótipo de uma mini-impressora foi idealizado, projetado e fabricado, soluções originais e econômicas foram propostas e na sua validação alguns conceitos necessitam de melhorias, ainda assim foram obtidos resultados promissores. Foi desenvolvida uma formulação de pó baseado em gesso que teve o custo de aproximadamente 5% do produto importado. / The work studies the three-dimensional printing process and the development of a 3D printer to produce ceramic specimen. The 3D printing technique belongs to the rapid prototype group and consists in obtaining a solid body from a three-dimensions digital model, through the slicing of the three-dimensional model and the sequential printing of their respective slices. During the printing process, a binder is deposited upon successive powder layers, and in each layer, the binder consolidates the powder into the bi-dimensional shape of the slice, which ultimately adds to the other slices that followed, consolidating the three-dimensional shape model. The conventional 3D printing equipments uses powder based in gypsum and acrylic, where the water-based binder, provides the first chemical bind; subsequently is infiltrated a resin to provide a binding with the acrylic powder. In the ceramic printing based on alumina or zirconia, the development of binders must be accomplished looking for a organic and chemical bind before sintering. In this project, a mini 3D printer for ceramic specimens was developed and built, with it were be produced bodies of simple geometry and constant section, which design, cost and simplified maintenance and cost also enable the use of aggressive materials in binders, with the risk of components damage, such as phosphoric acid, but with low cost to recovery. Were analyzed several types of powders by the sizing of its clusters, fluidity and density. Were obtained gypsum powder for $ 7.00 a kilogram. The specimen were analyzed in relation to the mechanical strength by three-point bending, density, apparent porosity and images by optical microscopy and scanning electron microscopy (SEM). A prototype of a mini 3D printer was designed, engineered and manufactured, unique and economical solutions have been proposed and in its validation some concepts need of improvement, yet promising results were obtained. It was developed a powder formulation based on gypsum that has cost about 5% of the imported product.
34

Additive Manufacturing Methodology and System for Fabrication of Porous Structures with Functionally Graded Properties

Vlasea, Mihaela January 2014 (has links)
The focus of this dissertation is on the development of an additive manufacturing system and methodology for fabricating structures with functionally graded porous internal properties and complex three-dimensional external characteristics. For this purpose, a multi-scale three-dimensional printing system was developed, with capabilities and fabrication methodologies refined in the context of, but not limited to, manufacturing of porous bone substitutes. Porous bone implants are functionally graded structures, where internally, the design requires a gradient in porosity and mechanical properties matching the functional transition between cortical and cancellous bone regions. Geometrically, the three-dimensional shape of the design must adhere to the anatomical shape of the bone tissue being replaced. In this work, control over functionally graded porous properties was achieved by integrating specialized modules in a custom-made additive manufacturing system and studying their effect on fabricated constructs. Heterogeneous porous properties were controlled by: (i) using a micro-syringe deposition module capable of embedding sacrificial elements with a controlled feature size within the structure, (ii) controlling the amount of binder dispersed onto the powder substrate using a piezoelectric printhead, (iii) controlling the powder type or size in real-time, and/or (iv) selecting the print layer stacking orientation within the part. Characterization methods included differential scanning calorimetry (DSC)-thermo gravimetric analysis (TGA) to establish the thermal decomposition of sacrificial elements, X-ray diffraction (XRD) and dispersive X-ray spectroscopy (EDAX) to investigate the chemical composition and crystallinity, scanning electron microscopy (SEM) and optical microscopy to investigate the physical and structural properties, uniaxial mechanical loading to establish compressive strength characteristics, and porosity measurements to determine the bulk properties of the material. These studies showed that the developed system was successful in manufacturing embedded interconnected features in the range of 100-500 $ \mu m $, with a significant impact on structural properties resulting in bulk porosities in the range of 30-55% and compressive strength between 2-50 MPa. In this work, control over the the three-dimensional shape of the construct was established iteratively, by using a silhouette extraction image processing technique to determine the appropriate anisotropic compensation factors necessary to offset the effects of shrinkage in complex-shaped parts during thermal annealing. Overall shape deviations in the range of +/- 5-7 % were achieved in the second iteration for a femoral condyle implant in a sheep model. The newly developed multi-scale 3DP system and associated fabrication methodology was concluded to have great potential in manufacturing structures with functionally graded properties and complex shape characteristics.
35

Design and development of a layer-based additive manufacturing process for the realization of metal parts of designed mesostructure

Williams, Christopher Bryant 15 January 2008 (has links)
Low-density cellular materials, metallic bodies with gaseous voids, are a unique class of materials that are characterized by their high strength, low mass, good energy absorption characteristics, and good thermal and acoustic insulation properties. In an effort to take advantage of this entire suite of positive mechanical traits, designers are tailoring the cellular mesostructure for multiple design objectives. Unfortunately, existing cellular material manufacturing technologies limit the design space as they are limited to certain part mesostructure, material type, and macrostructure. The opportunity that exists to improve the design of existing products, and the ability to reap the benefits of cellular materials in new applications is the driving force behind this research. As such, the primary research goal of this work is to design, embody, and analyze a manufacturing process that provides a designer the ability to specify the material type, material composition, void morphology, and mesostructure topology for any conceivable part geometry. The accomplishment of this goal is achieved in three phases of research: Design Following a systematic design process and a rigorous selection exercise, a layer-based additive manufacturing process is designed that is capable of meeting the unique requirements of fabricating cellular material geometry. Specifically, metal parts of designed mesostructure are fabricated via three-dimensional printing of metal oxide ceramic powder followed by post-processing in a reducing atmosphere. Embodiment The primary research hypothesis is verified through the use of the designed manufacturing process chain to successfully realize metal parts of designed mesostructure. Modeling & Evaluation The designed manufacturing process is modeled in this final research phase so as to increase understanding of experimental results and to establish a foundation for future analytical modeling research. In addition to an analysis of the physics of primitive creation and an investigation of failure modes during the layered fabrication of thin trusses, build time and cost models are presented in order to verify claims of the process s economic benefits. The main contribution of this research is the embodiment of a novel manner for realizing metal parts of designed mesostructure.
36

Desenvolvimento e fabricação de uma mini-impressora 3D para cerâmicas / Development and manufacturing of mini 3D printer machine for ceramics

Luis Hilário Tobler Garcia 14 January 2011 (has links)
O trabalho trata do estudo do processo de impressão tridimensional e desenvolvimento de uma impressora para a produção de corpos-de-prova cerâmicos. A técnica de impressão tridimensional pertence ao grupo de prototipagem rápida e consiste na obtenção de um corpo sólido a partir de um modelo digital de três dimensões, através do fatiamento do modelo tridimensional e da impressão seqüencial de suas respectivas fatias. Durante o processo de impressão, deposita-se um ligante sobre camadas sucessivas de pó e em cada camada, o ligante consolida o pó no formato bidimensional da fatia, que por fim soma-se as outras fatias subseqüentes, consolidando assim o formato tridimensional do modelo. Os equipamentos convencionais de impressão 3D utilizam pós a base de gesso e acrílico, onde o ligante, a base de água, fornece a primeira adesão química; posteriormente é infiltrada uma resina para fornecer uma ligação com o pó de acrílico. Na impressão de cerâmica a base de alumina ou zircônia, o desenvolvimento de ligantes tem de ser realizado visando à adesão química e orgânica combinadas antes da sinterização. Neste projeto, uma mini impressora 3D para corpos de prova foi desenvolvida e com ela foram produzidos corpos de geometria simples e seção constante, cujo projeto, custo, manutenção simplificada e econômica possibilita também o emprego de materiais agressivos nos ligantes, com risco de danificação de componentes, a exemplo de ácido fosfórico, porém com baixo custo de recuperação. Foram analisados diversos tipos pelo dimensionamento de seus aglomerados, fluidez e densidade. Obteve-se pó a base de gesso por R$15,00 o kilograma. Corpos de prova foram analisados com relação à resistência mecânica por flexão de três pontos, densidade, porosidade aparente e imagens por microscopia ótica e microscopia eletrônica de varredura (MEV). Um protótipo de uma mini-impressora foi idealizado, projetado e fabricado, soluções originais e econômicas foram propostas e na sua validação alguns conceitos necessitam de melhorias, ainda assim foram obtidos resultados promissores. Foi desenvolvida uma formulação de pó baseado em gesso que teve o custo de aproximadamente 5% do produto importado. / The work studies the three-dimensional printing process and the development of a 3D printer to produce ceramic specimen. The 3D printing technique belongs to the rapid prototype group and consists in obtaining a solid body from a three-dimensions digital model, through the slicing of the three-dimensional model and the sequential printing of their respective slices. During the printing process, a binder is deposited upon successive powder layers, and in each layer, the binder consolidates the powder into the bi-dimensional shape of the slice, which ultimately adds to the other slices that followed, consolidating the three-dimensional shape model. The conventional 3D printing equipments uses powder based in gypsum and acrylic, where the water-based binder, provides the first chemical bind; subsequently is infiltrated a resin to provide a binding with the acrylic powder. In the ceramic printing based on alumina or zirconia, the development of binders must be accomplished looking for a organic and chemical bind before sintering. In this project, a mini 3D printer for ceramic specimens was developed and built, with it were be produced bodies of simple geometry and constant section, which design, cost and simplified maintenance and cost also enable the use of aggressive materials in binders, with the risk of components damage, such as phosphoric acid, but with low cost to recovery. Were analyzed several types of powders by the sizing of its clusters, fluidity and density. Were obtained gypsum powder for $ 7.00 a kilogram. The specimen were analyzed in relation to the mechanical strength by three-point bending, density, apparent porosity and images by optical microscopy and scanning electron microscopy (SEM). A prototype of a mini 3D printer was designed, engineered and manufactured, unique and economical solutions have been proposed and in its validation some concepts need of improvement, yet promising results were obtained. It was developed a powder formulation based on gypsum that has cost about 5% of the imported product.
37

Análise comparativa da acurácia de modelos impressos, obtidos a partir de escaneamento intra-oral / Comparative analysis of the accuracy of printed casts, obtained from intraoral scanning

Igai, Fernando 28 November 2018 (has links)
A confecção de trabalhos protéticos em um fluxo digital é possível a partir do escaneamento intra-oral e confecção da Prótese via CAD/CAM. A tecnologia atual de impressão 3D permite a obtenção de um modelo impresso, para a realização de determinados procedimentos. Entretanto, é necessário analisar e comparar estes modelos com os modelos de gesso, uma vez que existe uma diferença significativa na forma de obtenção, assim como, nos custos de cada tipo de modelo. O presente estudo teve como objetivo realizar uma análise da acurácia entre modelos impressos, obtidos por meio de escaneamento intra-oral e impressão 3D, e modelos de gesso obtidos pelo método de moldagem convencional. Foi utilizado um manequim odontológico como modelo mestre e foram confeccionados dez modelos de gesso (n= 10), pela técnica de moldagem da dupla impressão com silicone de adição. Foram utilizados dois tipos de escâneres intra-orais e dois tipos de impressoras 3D, que formaram quatro grupos experimentais com dez modelos por grupo (n= 10). Os modelos físicos de gesso e impressos foram comparados com o modelo mestre por meio de análises de medições lineares em seis sítios de medições, com o uso de uma máquina de medição por imagem (Quick Scope, Mitutoyo®). A análise dos modelos impressos incluiu as possíveis interações entre os fatores principais tipo de impressora, tipo de escâner e sítios de medições. Os resultados mostraram que em relação ao modelo mestre, no geral, as discrepâncias dos modelos de gesso foram menores que as discrepâncias dos modelos impressos. A análise das interações dos fatores principais indicou que o tipo de impressora exerceu a maior influência na acurácia dos modelos impressos, seguido do fator sítio de medição e tipo de escâner. Pôde-se concluir que os modelos de gesso apresentaram uma acurácia superior quando comparados com os modelos impressos. O acabamento superficial dos modelos impressos exerceu influência na sua acurácia. / The preparation of prosthetic restoration in a digital flow is possible using intraoral scanning and confection of the prosthesis via CAD/CAM. The current 3D printing technology allows the making of a printed cast, for performing certain laboratory procedures. However, it is necessary to analyze and compare these casts with the gypsum casts, since there is a significant difference in the form of obtaining, as well as, in the costs of each type of cast. The objective of the present study was to perform a comparative study of the accuracy of printed casts, obtained through intraoral scanning and 3D printing, and gypsum casts, obtained through the conventional impression. A dental mannequin was used as the master model and ten gypsum casts (n=10) were obtained, using double impression technique with polyvinyl siloxane. Two types of intraoral scanners and two types of 3D printers were used, which formed four experimental groups with ten models per group (n=10). The real gypsum and printed casts were compared to the master model by linear measurements in six sites, using an image-measuring machine (Quick Scope, Mitutoyo®). The analysis of the printed models included possible interactions between the factors type of printer, type of scanner and measurement sites. The results showed that, in relation to the master model, in general, the discrepancies of the gypsum casts were smaller than the discrepancies of the printed casts. The interactions of the factors analysis indicated that the type of printer exerted the greatest influence on the accuracy of the printed casts, followed by the site measurement and type of scanner. It was conclude that the gypsum casts presented superior accuracy when compared to the printed casts. The surface finish of the printed casts exerted influence in its accuracy.
38

Projeto conceitual de órtese estabilizadora para o ombro / Concept and development of shoulder stabilizer orthose

Assad, Danielle Aline Barata 26 March 2018 (has links)
A subluxação do ombro é a complicação musculoesquelética mais comum das afecções do Sistema Nervoso Central e Periférico, que leva a diminuição do movimento, da função e aumento de dor. Um dos recursos auxiliares utilizados é a órtese que visa corrigir a deformidade, diminuir a dor e proporcionar a função. Este trabalho objetiva projetar e desenvolver o conceito de uma órtese personalizada estabilizadora de ombro. A metodologia de desenvolvimento de projeto de produto esta dividida em três fases: informacional, conceitual e projeto preliminar. Na fase informacional foi realizada pesquisa bibliográfica, de patentes e de mercado e foram entrevistados 30 prováveis usuários; coletados os dados antropométricos, força muscular manual e goniometria. Na fase conceitual, baseado na fase informacional e a partir da Metodologia TRIZ (Teoria da Resolução de Problemas Inventivos) foi proposto um desenho original de órtese híbrida, personalizada e manufaturada em tridimensional, usando estruturas rígidas e faixas de tração, que estabilizem o ombro, diminua a dor e permita a função. A fase do projeto preliminar foi composta por escaneamento tridimensional e uso de softwares que transformam uma imagem digitalizada em formato STL®. Foram realizadas sucessivas evoluções do projeto com geração de desenhos e peças prototipadas que foi avaliada por um usuário. Na fase informacional, a pesquisa de patentes e de mercado mostrou que há uma predominância dos modelos de órtese estabilizadora de ombro com material flexível onde o principal meio de tração é dado por faixas na diagonal e transversal ao tronco, tendendo a posicionar o ombro em rotação interna. Enquanto os usuários relataram expectativa de uma órtese que corrija o posicionamento, tenha melhor conforto térmico e tátil, menos cheiro e de fácil limpeza. O conceito desenvolvido foi: órtese personalizada, fácil de higienizar e de por/tirar, resistente, articulada, leve, em plástico ABS (acrilonitrila, butadieno e estireno) impressão tridimensional, com veste nos dois braços, com faixas de tração rígidas fixadas à cintura, visando à correção da subluxação do ombro com conforto, menor dor além de permitir função. O teste com usuário corroborou com o conceito, pois o protótipo preliminar apresentou bom acoplamento ao tronco, tração satisfatória e possibilidade de realizar um maior número de atividades diárias com menos dor e sensação de cansaço. / The shoulder subluxation is the most common musculoskeletal complication of Central and Peripheral Nervous System disorders, which leads to a decrease in movement, function and increase in pain. One of the resources used to help with this issue is the orthosis that aims to correct the deformity, decrease the pain and provide function. This work aims to design and develop the concept of a personalized shoulder stabilizing orthosis. The methodology used on the product design is divided into three phases: informational, conceptual and preliminary design. In the informational phase, bibliographic, patent and market research were carried out and 30 potential users were interviewed; anthropometric data, manual muscle strength and goniometry were collected. In the conceptual phase, based on the informational data and using TRIZ Methodology (Theory of Inventive Problem Solving), an original concept design of a hybrid orthosis, personalized and manufactured three-dimensional, using rigid structures and traction bands, was proposed to stabilize the shoulder, reduce pain and allow function. The preliminary design phase consisted of tridimensional scanning and the use of software that transformed a scanned image into STL®. Successive evaluations of the project were carried out with generation of designs and prototyped parts - which the user has evaluated. During the informational phase, the patent and market research demonstrated a predominance of the stabilizing orthosis models using flexible material where the main form of traction was given by diagonal and transverse bands to the trunk, tending to position the shoulder in internal rotation. Users have reported the expectation that this orthosis could correct the shoulder positioning and that it has a better thermal and tactile comfort, less smell and easier to clean. The concept developed was: a personalized orthosis, easy to sanitize and to put on/take off, resistant, articulated, lightweight, in ABS (Acrylonitrile butadiene styrene), three-dimensional printing, with a vest in both arms, rigid traction bands fixed to the waist, aiming to correct the shoulder subluxation with comfort, less pain while allowing function. The user test corroborated with the concept, as the preliminary prototype presented good trunk coupling, satisfactory traction and the possibility to perform a greater number of daily activities with less pain and less fatigue caused by limb weight.
39

A smart wireless integrated module (SWIM) on organic substrates using inkjet printing technology

Palacios, Sebastian R. 22 May 2014 (has links)
This thesis investigates inkjet printing of fully-integrated modules fabricated on organic substrates as a system-level solution for ultra-low-cost and eco-friendly mass production of wireless sensor modules. Prototypes are designed and implemented in both traditional FR-4 substrate and organic substrate. The prototype on organic substrate is referred to as a Smart Wireless Integrated Module (SWIM). Parallels are drawn between FR-4 manufacturing and inkjet printing technology, and recommendations are discussed to enable the potential of inkjet printing technology. Finally, this thesis presents novel applications of SWIM technology in the area of wearable and implantable electronics. Chapter 1 serves as an introduction to inkjet printing technology on organic substrates, wireless sensor networks (WSNs), and the requirements for low-power consumption, low-cost, and eco-friendly technology. Chapter 2 discusses the design of SWIM and its implementation using traditional manufacturing techniques on FR-4 substrate. Chapter 3 presents a benchmark prototype of SWIM on paper substrate. Challenges in the manufacturing process are addressed, and solutions are proposed which suggest future areas of research in inkjet printing technology. Chapter 4 presents novel applications of SWIM technology in the areas of implantable and wearable electronics. Chapter 5 concludes the thesis by discussing the importance of this work in creating a bridge between current inkjet printing technology and its future.
40

Effect Of Natural Polysaccharides On The Integrity And Texture Of Sugar Based Matrices In Three Dimensional Printing

Baydemir, Tuncay 01 January 2003 (has links) (PDF)
Three dimensional printing (3DP) is one of the most important solid freeform fabrication (SFF) methods that can produce any material with desired 3D shape by using suitable powder-binder formulations. It differs from the standard molding operations in that it can produce a complicated shapes by a software driven instrument in a laminated fashion and the cost is lower. This method can be applied in a very wide area including drug release operations, biomaterial production especially for bone fixation, prototype production for all purposes, wound dressing etc. It can also be used in obtaining edible objects by using natural polysaccharides with water based binders. In this study, it is aimed to understand the gelling behaviour of some of the gelling materials, which are alginates, pectins and carageenans, and effect of various factors on the production of confectionary objects by means of 3DP process. Effect of multivalent cations, especially Ca2+ ion, on the gelling behaviour of these materials are investigated. The egg-box structure obtained between the polymer segments increases the water holding capacity of the materials and much more chewy structures can be obtained. The molecular changes are followed by Fourier Transform infrared spectroscopy (FTIR). In 3DP applications, the composition of powder and binder, pH, temperature, relative humidity (RH) and machine parameters are important factors affecting the texture of the final object. The texture of the produced specimens is examined by using a texture analyzer and maximum force values are given as g/cm at failure. Alginate and carrageenans are found to be more effective in obtaining chewy textures with Ca2+ ion content in sugar based matrices and optimization of machine parameters are performed to obtain a higher resolution on the specimens.

Page generated in 0.1484 seconds