• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 11
  • 9
  • 8
  • 5
  • 2
  • 1
  • Tagged with
  • 85
  • 15
  • 13
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Sistemas estratificantes sobre álgebras hereditárias / Stratifying systems over hereditary algebras

Cadavid Salazar, Paula Andrea 14 November 2012 (has links)
O principal tema deste trabalho é o estudo dos sistemas estratificantes sobre álgebras hereditárias. Um dos principais problemas é a construção de sistemas estratificantes completos cujos elementos sejam todos módulos regulares, sendo este problema resolvido para álgebras hereditárias do tipo mansa e as álgebras de Kronecker generalizadas. Para as álgebras hereditárias de tipo mansa exibimos um limitante para o tamanho dos sistemas estratificantes formados só de módulos regulares e, usando tal limitante, concluímos que não é possível que tais sistemas estratificantes sejam completos. Para as álgebras de Kronecker e as álgebras de Kronecker generalizadas concluimos que nenhum sistema estratificante sobre esta álgebra pode ter elementos regulares e construímos todos os possíveis sistemas estratificantes completos sobre esta álgebra. Definimos o conceito de sequência especial de um módulo inclinante, estabelecemos que todo módulo inclinante tem uma sequência especial e estudamos quando uma sequência, de dois e três somandos diretos de um módulo inclinante, é uma sequência especial. / The main topic of this work is the study of stratifying systems over hereditary algebras. One of the main questions to be considered is the construction of complete stratifying systems whose elements are regular modules. We solve this problem for tame hereditary algebras and for the Kronecker generalized algebras. In the case of tame hereditary algebras, we obtain a bound for the size of the stratifying systems composed only by regular modules and, by using this bound, we conclude that such stratifying systems can not be complete. For the Kronecker and for Kronecker the generalized algebras we conclude that no stratifing system over this algebra can have regular elements. Next we construct all possible complete stratifying systems over this algebra. Furthermore, we define the notion of special sequence of a tilting module and we establish that all tilting modules have an special ordenation. Also we study when an sequence of two and three direct summands of an tilting module, is a special ordenation.
22

Sistemas estratificantes sobre álgebras hereditárias / Stratifying systems over hereditary algebras

Paula Andrea Cadavid Salazar 14 November 2012 (has links)
O principal tema deste trabalho é o estudo dos sistemas estratificantes sobre álgebras hereditárias. Um dos principais problemas é a construção de sistemas estratificantes completos cujos elementos sejam todos módulos regulares, sendo este problema resolvido para álgebras hereditárias do tipo mansa e as álgebras de Kronecker generalizadas. Para as álgebras hereditárias de tipo mansa exibimos um limitante para o tamanho dos sistemas estratificantes formados só de módulos regulares e, usando tal limitante, concluímos que não é possível que tais sistemas estratificantes sejam completos. Para as álgebras de Kronecker e as álgebras de Kronecker generalizadas concluimos que nenhum sistema estratificante sobre esta álgebra pode ter elementos regulares e construímos todos os possíveis sistemas estratificantes completos sobre esta álgebra. Definimos o conceito de sequência especial de um módulo inclinante, estabelecemos que todo módulo inclinante tem uma sequência especial e estudamos quando uma sequência, de dois e três somandos diretos de um módulo inclinante, é uma sequência especial. / The main topic of this work is the study of stratifying systems over hereditary algebras. One of the main questions to be considered is the construction of complete stratifying systems whose elements are regular modules. We solve this problem for tame hereditary algebras and for the Kronecker generalized algebras. In the case of tame hereditary algebras, we obtain a bound for the size of the stratifying systems composed only by regular modules and, by using this bound, we conclude that such stratifying systems can not be complete. For the Kronecker and for Kronecker the generalized algebras we conclude that no stratifing system over this algebra can have regular elements. Next we construct all possible complete stratifying systems over this algebra. Furthermore, we define the notion of special sequence of a tilting module and we establish that all tilting modules have an special ordenation. Also we study when an sequence of two and three direct summands of an tilting module, is a special ordenation.
23

Tilting trains : Enhanced benefits and strategies for less motion sickness

Persson, Rickard January 2011 (has links)
Carbody tilting is today a mature and inexpensive technology that allows higher train speeds in horizontal curves, thus shortening travel time. This doctoral thesis considers several subjects important for improving the competitiveness of tilting trains compared to non-tilting ones. A technology review is provided as an introduction to tilting trains and the thesis then focuses on enhancing the benefits and strategies for less motion sickness. A tilting train may run about 15% faster in curves than a non-tilting one but the corresponding simulated running time benefit on two Swedish lines is about 10%. The main reason for the difference is that speeds are set on other grounds than cant deficiency at straight track, stations, bridges, etc. The possibility to further enhance tilting trains’ running speed is studied under identified speed limitations due to vehicle-track interaction such as crosswind requirements at high speed curving. About 9% running time may be gained on the Stockholm–Gothenburg (457 km) mainline in Sweden if cant deficiency, top speed, and tractive performance are improved compared with existing tilting trains. Non-tilting high-speed trains are not an option on this line due to the large number of 1,000 m curves. Tilting trains run a greater risk of causing motion sickness than non-tilting trains. Roll velocity and vertical acceleration are the two motion components that show the largest increase, but the amplitudes are lower than those used in laboratory tests that caused motion sickness. Scientists have tried to find models that can describe motion sickness based on one or more motion quantities. The vertical acceleration model shows the highest correlation to motion sickness on trains with active tilt. However, vertical acceleration has a strong correlation to several other motions, which precludes vertical acceleration being pointed out as the principal cause of motion sickness in tilting trains. Further enhanced speeds tend to increase carbody motions even more, which may result in a higher risk of motion sickness. However, means to counteract the increased risk of motion sickness are identified in the present work that can be combined for best effect. Improved tilt control can prevent unnecessary fluctuations in motion sickness related quantities perceived by the passengers. The improved tilt control can also manage the new proposed tilt algorithms for less risk of motion sickness, which constitute one of the main achievements in the present study. Local speed restrictions are another means of avoiding increased peak levels of motion sickness when increasing the overall speed. The improved tilt control and the proposed tilt algorithms have proven to be effective in on-track tests involving more than 100 test subjects. The new tilt algorithms gave carbody motions closer to non-tilting trains. Rather unexpectedly, however, the test case with the largest decrease in tilt gave a greater risk of motion sickness than the two test cases with less reduction in tilt. It is likely that even better results can be achieved by further optimization of the tilt algorithms; the non-linear relation between motions and motion sickness is of particular interest for further study. / QC 20110429
24

A Nonlinear Transient Approach for Morton Synchronous Rotordynamic Instability and Catcher Bearing Life Predictions

Lee, Jung Gu 2012 May 1900 (has links)
This dissertation deals with three research topics; i) the catcher bearings life prediction method, ii) the Morton effect, and iii) the two dimensional modified Reynolds equation. Firstly, catcher bearings (CB) are an essential component for rotating machine with active magnetic bearings (AMBs) suspensions. The CB's role is to protect the magnetic bearing and other close clearance component in the event of an AMB failure. The contact load, the Hertzian stress, and the sub/surface shear stress between rotor, races, and balls are calculated, using a nonlinear ball bearing model with thermal growth, during the rotor drop event. Fatigue life of the CB in terms of the number of drop occurrences prior to failure is calculated by applying the Rainflow Counting Algorithm to the sub/surface shear stress-time history. Numerical simulations including high fidelity bearing models and a Timoshenko beam finite element rotor model show that CB life is dramatically reduced when high-speed backward whirl occurs. Secondly, the theoretical models and simulation results about the synchronous thermal instability phenomenon known as Morton Effect is presented in this dissertation. A transient analysis of the rotor supported by tilting pad journal bearing is performed to obtain asymmetric temperature distribution of the journal by solving variable viscosity Reynolds equation, energy equation, heat conduction equation, and equations of motion for rotor. The tilting pad bearing is fully nonlinear model. In addition, thermal mode approach and staggered integration scheme are utilized in order to reduce computation time. The simulation results indicate that the temperature of the journal varies sinusoidally along the circumferential direction and linearly across the diameter, and the vibration envelope increased and decreased, which considers as a limit cycle that is stable oscillation of the envelope of the amplitude of synchronous vibration. Thirdly, the Reynolds equation plays an important role to predict pressure distribution in the fluid film for the fluid film bearing analysis. One of the assumptions on the Reynolds equation is that the viscosity is independent of pressure. This assumption is still valid for most fluid film bearing applications, in which the maximum pressure is less than 1 GPa. In elastohydrodynamic lubrication (EHL) which the lubricant is subjected to extremely high pressure, however, the pressure independent viscosity assumption should be reconsidered. With considering pressure-dependent viscosity, the 2D modified Reynolds equation is derived in this study. The solutions of 2D modified Reynolds equation is compared with that of the classical Reynolds equation for the plain journal bearing and ball bearing cases. The pressure distribution obtained from modified equation is slightly higher pressures than the classical Reynolds equations. / PDF file replaced 10-21-2012 at the request of the Thesis Office.
25

Measurements Versus Predictions for the Static and Dynamic Characteristics of a Four-pad Rocker-pivot, Tilting-pad Journal Bearing

Tschoepe, David 1987- 14 March 2013 (has links)
Measured and predicted static and dynamic characteristics are provided for a four-pad, rocker-pivot, tilting-pad journal bearing in the load-on-pad and load-between-pad orientations. The bearing has the following characteristics: 4 pads, .57 pad pivot offset, 0.6 L/D ratio, 60.33 mm (2.375in) pad axial length, 0.08255 mm (0.00325 in) radial clearance in the load-on-pad orientation, and 0.1189 mm (0.00468 in) radial clearance in the load-between-pad orientation. Tests were conducted on a floating test bearing design with unit loads ranging from 0 to 2903 kPa (421.1 psi) and speeds from 6.8 to 13.2 krpm. For all rotor speeds, hot-clearance measurements were taken to show the reduction in bearing clearance due to thermal expansion of the shaft and pads during testing. As the testing conditions get hotter, the rotor, pads, and bearing expand, decreasing radial bearing clearance. Hot-clearance measurements showed a 16-25% decrease in clearance compared to a clearance measurement at room temperature. For all test conditions, dynamic tests were performed over a range of excitation frequencies to obtain complex dynamic stiffness coefficients as a function of frequency. The direct real dynamic stiffness coefficients were then fitted with a quadratic function with respect to frequency. From the curve fit, the frequency dependence was captured by including a virtual-mass matrix [M] to produce a frequency independent [K][C][M] model. The direct dynamic stiffness coefficients for the load-on-pad orientation showed significant orthotropy, while the load-between-pad did not. The load-between-pad showed slight orthotropy as load increased. Experimental cross-coupled stiffness coefficients were measured in both load orientations, but were of the same sign and significantly less than direct stiffness coefficients. In both orientations the imaginary part of the measured dynamic stiffness increased linearly with increasing frequency, allowing for frequency independent direct damping coefficients. Rotordynamic coefficients presented were compared to predictions from two different Reynolds-based models. Both models showed the importance of taking into account pivot flexibility and different pad geometries (due to the reduction in bearing clearance during testing) in predicting rotordynamic coefficients. If either of these two inputs were incorrect, then predictions for the bearings impedance coefficients were very inaccurate. The main difference between prediction codes is that one of the codes incorporates pad flexibility in predicting the impedance coefficients for a tilting-pad journal bearing. To look at the effects that pad flexibility has on predicting the impedance coefficients, a series of predictions were created by changing the magnitude of the pad's bending stiffness. Increasing the bending stiffness used in predictions by a factor of 10 typically caused a 3-11% increase in predicted Kxx and Kyy, and a 10-24% increase in predicted Cxx and Cyy. In all cases, increasing the calculated bending stiffness from ten to a hundred times the calculated value caused slight if any change in Kxx, Kyy, Cxx, and Cyy. For a flexible pad an increase in bending stiffness can have a large effect on predictions; however, for a more rigid pad an increase in pad bending stiffness will have a much lesser effect. Results showed that the pad's structural bending stiffness can be an important factor in predicting impedance coefficients. Even though the pads tested in this thesis are extremely stiff, changes are still seen in predictions when the magnitude of the pad?s bending stiffness is increased, especially in Cxx, and Cyy. The code without pad flexibility predicted Kxx and Kyy much more accurately than the code with pad flexibility. The code with pad flexibility predicts Cxx more accurately, while the code without pad flexibility predicted Cyy more accurately. Regardless of prediction Code used, the Kxx and Kyy were over-predicted at low loads, but predicted more accurately as load increased. Cxx, and Cyy were modeled very well in the load-on-pad orientation, while slightly overpredicted in the load-between-pad orientation. For solid pads, like the ones tested here, both codes do a decent job at predicting impedance coefficients
26

Measurement of rotordynamic coefficients for a high-speed flexure pivot tilting-pad bearing(load between pad) configuration

Al-Ghasem, Adnan Mahmoud 29 August 2005 (has links)
This thesis presents the dynamic and static forced performance of a flexure-pivot tilting-pad bearing load between pad (LBP) configuration for different rotor speeds and bearing unit loadings. The bearing has the following design parameters: 4 pads with pad arc angle 72o and 50% pivot offset, pad axial length 0.0762 m (3 in), pad radial clearance 0.254 mm (0.010 in), bearing radial clearance 0.1905 mm (0.0075 in), preload 0.25 and shaft nominal diameter of 0.11684 m (4.600 in). The dynamic coefficients and the static performance parameters of the FPB have been compared with the theoretical predictions using the isothermal analysis from the rotordynamic software suite XLTRC2-XLTFPBrg. The bearing shows a small attitude angle, about 10o, which indicates small crosscoupling stiffnesses. The pad temperatures increase in the circumferential direction of rotation with speed and load. The pads maximum temperature was measured near the trailing edge. The dependency of the stiffness and damping coefficients on the excitation frequency has been studied. The frequency dependency in the dynamic coefficients was removed by introducing an added mass coefficient to the bearing model. The direct added mass coefficients were around 32 kg. The direct stiffness and damping coefficients increase with load, while increasing and decreasing with rotor speed, respectively. A small whirl frequency ratio (WFR) was found of about 0.15, and it decreases with load and increases with speed. A comparison between the dynamic stiffnesses using a Reynolds equation and the bulk-flow Navier-Stokes models with the experimental dynamic stiffnesses shows that the Reynolds model (even for laminar flows) is not adequate, and that the bulk-flow model should be used for rotordynamic coefficients prediction. The bulk-flow model in general predicts well the static performance parameters and the direct dynamic coefficients, and underpredicts the cross-coupled coefficients (overpredicts the stability).
27

Tilting trains : Technology, benefits and motion sickness

Persson, Rickard January 2008 (has links)
<p>Carbody tilting is today a mature and inexpensive technology allowing higher speeds in curves and thus reduced travel time. The technology is accepted by most train operators, but a limited set of issues still holding back the full potential of tilting trains. The present study identifies and report on these issues in the first of two parts in this thesis. The second part is dedicated to analysis of some of the identified issues. The first part contains Chapters 2 to 5 and the second Chapters 6 to 12 where also the conclusions of the present study are given.</p><p>Chapters 2 and 3 are related to the tilting train and the interaction between track and vehicle. Cross-wind stability is identified as critical for high-speed tilting trains. Limitation of the permissible speed in curves at high speed may be needed, reducing the benefit of tilting trains at very high speed. Track shift forces can also be safety critical for tilting vehicles at high speed. An improved track standard must be considered for high speed curving.</p><p>Chapters 4 and 5 cover motion sickness knowledge, which may be important for the competitiveness of tilting trains. However, reduced risk of motion sickness may be contradictory to comfort in a traditional sense, one aspect can not be considered without also considering the other. One pure motion is not the likely cause to the motion sickness experienced in motion trains. A combination of motions is much more provocative and much more likely the cause. It is also likely that head rotations contribute as these may be performed at much higher motion amplitudes than performed by the train.</p><p>Chapter 6 deals with services suitable for tilting trains. An analysis shows relations between cant deficiency, top speed, tractive performance and running times for a tilting train. About 9% running time may be gained on the Swedish line Stockholm – Gothenburg (457 km) if cant deficiency, top speed and tractive performance are improved compared with existing tilting trains. One interesting conclusion is that a non-tilting very high-speed train (280 km/h) will have longer running times than a tilting train with today’s maximum speed and tractive power. This statement is independent of top speed and tractive power of the non-tilting vehicle.</p><p>Chapters 7 to 9 describe motion sickness tests made on-track within the EU-funded research project<i> Fast And Comfortable Trains (FACT).</i> An analysis is made showing correlation between vertical acceleration and motion sickness. However, vertical acceleration could not be pointed out as the cause to motion sickness as the correlation between vertical acceleration and several other motions are strong.</p><p>Chapter 10 reports on design of track geometry. Guidelines for design of track cant are given optimising the counteracting requirements on comfort in non-tilting trains and risk of motion sickness in tilting trains. The guidelines are finally compared with the applied track cant on the Swedish line Stockholm – Gothenburg. Also transition curves and vertical track geometry are shortly discussed.</p><p>Chapters 11 and 12 discusses the analysis, draws conclusions on the findings and gives proposals of further research within the present area.</p>
28

Measured and Predicted Rotor-Pad Transfer Functions for a Rocker-Pivot Tilting-Pad Journal Bearing

Wilkes, Jason Christopher 2011 December 1900 (has links)
Many researchers have compared predicted stiffness and damping coefficients for tilting-pad journal bearings (TPJBs) to measurements. Most have found that direct damping is consistently overpredicted. The thrust of this research is to explain the difference between measured and predicted stiffness and damping coefficients for TPJBs, and to provide some confidence to designers that TPJB dynamic coefficients can be accurately predicted. Most analytical models for TPJBs are based on the assumption that explicit dependence on pad motion can be eliminated by assuming harmonic rotor motion such that the amplitude and phase of pad motions resulting from radial and transverse rotor motions are predicted by rotor-pad transfer functions. In short, these transfer functions specify the amplitude and phase of pad motion (angular, radial, translational, etc.) in response to an input rotor motion. A new pad perturbation model is developed including the effects of angular, radial, and circumferential pad motion and changes in pad clearance due to pad bending compliance. Though all of these pad variables have previously been included in different analyses, there are no publications containing perturbations of all four variables. In addition, previous researchers have only perturbed the journal, while both the bearing and journal motions are perturbed in the present analysis, and the applicability of comparing rotor-perturbed bearing impedance predictions to impedances measured on a bearing-perturbed test rig is discussed. This perturbation model was implemented in a Reynolds-based TPJB code to predict the frequency-dependent bearing impedances and rotor-pad transfer functions. Direct measurements of pad motion during test excitation were recorded to produce measured transfer functions between rotor and pad motion, and a comparison between these measurements and predictions is given. Motion probes were added to the loaded pad (having the static load vector directed through its pivot) of a 5-pad TPJB to obtain accurate measurement of pad radial and tangential motion, as well as tilt, yaw, and pitch. Strain gages were attached to the side of the loaded pad to measure static and dynamic bending strains, which were then used to determine static and dynamic changes in pad curvature (pad clearance). Good agreement was found between the amplitude of the measured and predicted transfer functions concerning radial and transverse pad motions throughout the range of speeds and loads tested, while pad tilt was moderately underpredicted. For the bearing investigated, radial pad motions resulting from pivot compliance were as large as 60% of the radial component of shaft motion when operating at 4400 rpm under heavily loaded conditions. Hence, if a dynamic load applied to the shaft resulted in a shaft displacement of 25 microns (1 mil), the pad would displace radially 15 microns (0.6 mils), and the fluid film height would only decrease by 10 microns (0.4 mils). The consequence of this pad motion is that fluid film stiffness and damping forces produced by relative rotor-pad motions are significantly reduced, resulting in a bearing having significantly less direct stiffness and damping than predicted. A similar effect occurs when shaft motions produce significant changes in pad clearance due to pad compliance. For the pad tested here, the measurements show that predicting TPJB stiffness and damping coefficients without accounting for pad and pivot compliance will produce large errors, and is not advised. Transverse pad motion was predicted and observed. Based on phase measurements, this motion is lightly damped, and appears to be caused by pivot deflection instead of slipping. Despite observing a lightly damped phase change, an increase in magnitude at this natural frequency was not observed. Predicted direct stiffness and damping for unit loads from 0-3200 kPa (0-450 psi) fit through 1.5× running speed are within 18% of measurements at 4400 rpm, while predictions at 10200 rpm are within 10% of measurements. This is a significant improvement on the accuracy of predictions cited in literature. Comparisons between predictions from the developed bearing model neglecting pad, pivot, and pad and pivot flexibility show that predicted direct stiffness and damping coefficients for a model having a rigid pad and pivot are overestimated, respectively, by 202% and 811% at low speeds and large loads, by 176% and 513% at high speeds and high loads, and by 51% and 182% at high speeds and light loads. While the reader is likely questioning the degree to which these predictions are overestimated in regard to previous comparisons, these predictions are based on measured operating bearing clearances, which are 20-30% smaller than the cold bearing clearances that previous comparisons were based on. The effect of employing a full bearing model (retaining all of the pad degrees of freedom) versus a reduced bearing model (where only journal degrees of freedom are retained) in a stability calculation for a realistic rotor-bearing system is assessed. For the bearing tested, the bearing coefficients reduced at the frequency of the unstable eigenvalue (subsynchronously reduced) predicted a destabilizing cross-coupled stiffness coefficient at the onset of instability within 1% of the full model, while synchronously reduced coefficients for the lightly loaded bearing required 25% more destabilizing cross-coupled stiffness than the full model to cause system instability. This overestimation of stability is due to an increase in predicted direct damping at the synchronous frequency over the subsynchronously reduced value. This increase in direct damping with excitation frequency was also seen in highly loaded test data at frequencies below approximately 2×running speed, after which direct damping decreased with increasing excitation frequency. This effect was more pronounced in predictions, occurring at all load and speed combinations. The same stability calculation was performed using measured stiffness and damping coefficients at synchronous and subsynchronous frequencies at 10200 rpm. It was found that both the synchronously measured stiffness and damping and predictions using the full bearing model were more conservative than the model using subsynchronously measured stiffness and damping. This outcome contrasts with the comparison between models using synchronously and subsynchronously reduced impedance predictions, which showed the subsynchronously reduced model to be the most conservative. This contrast results from a predicted increase in damping with increasing excitation frequency at all speeds and loads, while this increase in damping with increasing excitation frequency was only measured at the most heavily loaded conditions.
29

Development Of Masonry House Wall Strengthening Techniques Against Earthquakes Using Scrap Tires

Golalmis, Mustafa - 01 July 2005 (has links) (PDF)
About half of the building stock in Turkey is masonry type and one fourth of the building stock is one-storey brick type masonry buildings. Especially the rural masonry houses are commonly constructed by their own residents without any engineering knowledge. Traditional masonry houses usually have heavy roofs which generate large lateral forces on walls during earthquakes. Readily available retrofitting techniques are mostly complicated and costly making it not feasible for uneducated poor residents to strengthen their own houses. The aim of this thesis is to develop a new alternative strengthening technique using scrap tires that is economic and easy to apply on the walls of one-story masonry houses. In order to investigate the usage of scrap tires for masonry wall post-tensioning, forty three scrap tire rings (STRs) from nine different brands and nine rim-rings direct tension experiments were conducted. The average tensile load capacities of STRs and rim-rings were found as 132.6 kN and 53 kN, respectively. Six strip walls (i.e., four brick- and two briquette-walls) strengthened by applying post-tensioning loads with STCs and hybrid system were tested in out-of-plane bending direction. The out-of-plane capacity of the brick and briquette walls increased up to about 9 times and 5 times with respect to their nominal capacities, respectively. Finally, two-full scale traditional masonries were tested by the tilting table. The capacity of strengthened house increased 75% with respect to the unstrengthened one. The results obtained form the conducted tests are highly promising and suggest that the method can be used as a low-cost and simple strengthening technique for seismically deficient single storey, masonry type houses.
30

Elementos de suporte do comando de valvulas avaliado por modelo de diferenças finitas

Mastaler, Alexandre 20 December 2004 (has links)
Orientador: Katia Maria Lucchesi Cavalca / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-04T03:12:40Z (GMT). No. of bitstreams: 1 Mastaler_Alexandre_M.pdf: 8070977 bytes, checksum: 67729451cedeb65f0b15eb1a17a3fead (MD5) Previous issue date: 2004 / Resumo: O comando de válvulas é um sistema utilizado em motores à combustão, que tem como função controlar a abertura e fechamento de válvulas de circulação dos gases envolvidos na combustão. Ele é composto por diversos subsistemas; Um desses subsistemas é o contato balancim/pivô, onde o comando aciona o balancim para que esse acione a válvula e utilize o pivô como elemento de suporte. O conhecimento desse subsistema é importante para a avaliação de desgastes e ruídos provenientes desse contato, assim como, avaliações do atrito para otimização geral do comando. Para que haja a redução de desgaste, o pivô deve girar em relação ao balancim, mas existem certas aplicações em que o giro do pivô não é possível. Baseando-se na equação de Reynolds, o filme de óleo ao redor do pivô será avaliado e calculado com relação à distribuição de pressão. Com o conhecimento da distribuição de pressão, poderemos saber quais as forças envolvidas no subsistema. Considerando-se o atrito e os momentos gerados pelo balancim no pivô, chegamos às condições de equilíbrio do sistema. Com essas avaliações observaremos as condições que permitam a rotação do pivô em relação ao balancim / Abstract: The Valve Train System used in combustion engines have the ability to command the opening and closure of gas circulation valves control that takes part in combustion. It is formed by many sub-systems. One of these systems is the finger follower/pivot contact, where the command starts the finger follower for valve starts and uses the pivot as a support element. The knowledge of this sub-system is important to ware and noise evaluation that came ftom this contact, as well as, ftiction evaluation for the command general optimization. To reduce wear, the pivot must turn in finger follower relation, but in some applications the pivot tum is not possible. The oil film around the pivot is ca1culated in relation of its pressure distribution as Reynolds Equation. Through the knowledge of pressure distribution, the forces in the sub-system are known. Considering the ftiction and the moments generated by the balancing in the pivot, we carne to balance conditions in the system. With these evaluations we noticed the condition that allows the pivot rotation in relation to the balancing / Mestrado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica

Page generated in 0.0643 seconds