• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 29
  • 18
  • 13
  • 12
  • 12
  • 12
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 330
  • 330
  • 141
  • 59
  • 54
  • 47
  • 45
  • 45
  • 43
  • 40
  • 37
  • 37
  • 35
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Flow measurements related to gas exchange applications

Laurantzon, Fredrik January 2012 (has links)
This thesis deals with flow measuring techniques applied to steady and pulsating gas flows relevant to gas exchange systems for internal combustion engines. Gas flows in such environments are complex, i.e. they are inhomogeneous, three-dimensional, unsteady, non-isothermal and exhibit significant density changes. While a variety of flow metering devices are available and have been devised for such flow conditions, the performance of these flow metersis to a large extent undocumented when a strongly pulsatile motion is superposed on the already complex flow field. Nonetheless, gas flow meters are commonly applied in such environments, e.g. in the measurement of the air flow to the engine or the amount of exhaust gas recirculation. The aim of the present thesis is therefore to understand and assess, and if possible to improve the performance of various flow meters under highly pulsatile conditions as well as demonstrating the use of a new type of flow meter for measurements of the pulsating mass flow upstream and downstream the turbine of a turbocharger. The thesis can be subdivided into three parts. The first one assesses the flow quality of a newly developed flow rig, designed for measurements of steady and pulsating air flow at flow rates and pulse frequencies typically found in the gas exchange system of cars and smaller trucks. Flow rates and pulsation frequencies achieved and measured range up to about 200 g/s and 80 Hz, respectively. The time-resolved mass flux and stagnation temperature under both steady and pulsating conditions were characterized by means of a combined hot/cold-wire probe which is part of a newly developed automated measurement module. This rig and measurement module were used to create a unique data base with well-defined boundary conditions to be used for the validation of numerical simulations, but in particular, to assess the performance of various flow meters. In the second part a novel vortex flow meter that can measure the timedependent flow rate using wavelet analysis has been invented, verified and extensively tested under various industrially relevant conditions. The newly developed technique was used to provide unique turbine maps under pulsatile conditions through time-resolved and simultaneous measurements of mass flow, temperature and pressure upstream and downstream the turbine. Results confirm that the quasi-steady assumption is invalid for the turbine considered as a whole. In the third and last part of the thesis, two basic fundamental questions that arose during the course of hot/cold-wire measurements in the aforementioned high speed flows have been addressed, namely to assess which temperature a cold-wire measures or to which a hot-wire is exposed to in high speed flows as well as whether the hot-wire measures the product of velocity and density or total density. Hot/cold-wire measurements in a nozzle have been performed to test various hypothesis and results show that the recovery temperature as well as the product of velocity and stagnation density are measured. / QC 20120510
132

Characterizing LED with Time-Resolved Photo-Luminescence and Optical Beam Induced Current Imaging

Wu, Shang-jie 17 February 2011 (has links)
With rapid development of light emitting device, the detection techniques of semiconductor are more and more important, which include time-resolved photoluminescence (TRPL) and optical beam induced current (OBIC) microscopy. In this thesis, we realize the carrier behaviors of active region with multiple quantum wells (MQWs) by these microscopies, and the samples are light emitting diodes (LEDs). However, PL intensity of LEDs increase but OBIC not due to external field compensates, on the other hand, reducing PL lifetime indicates the response time of device shorter with higher reverse bias.
133

Optically Stimulated Luminescence Studies On Natural Fluorites

Kusoglu Sarikaya, Cemre 01 February 2011 (has links) (PDF)
Optically Stimulated Luminescence (OSL) is the luminescence emitted from a previously irradiated insulator (or a wide band gap semiconductor) upon exposure to light. The OSL signal intensity is a function of the radiation dose absorbed by the sample and thus can be used as the basis of a radiation dosimetry method. In the literature, OSL studies on natural fluorites are rather limited. In order to promote the material for radiation dosimetry, OSL properties of natural fluorites of different origin were examined in this study. For this purpose, dose-response, reproducibility, thermal stability and fading of the OSL signals were analyzed. In order to find a relation between OSL and TL signals, TL signals and the effect of OSL measurements on TL signals were examined. Thermal activation energies of the light sensitive TL peaks and the OSL signals were also calculated using different methods and the results were compared. Also, absence of the thermal quenching was shown. Finally, TR-OSL signals were measured to have an opinion about the recombination centers. As a result of these studies, it is possible to conclude that natural fluorites show promising features to be used as an environmental dosimeter with regard to a suitable OSL signal, range of linearity, repeatability in response, as well as being readily available at a low cost.
134

Modeling time-resolved interaction force mode AFM imaging

Oral, Hasan Giray 06 April 2012 (has links)
Intermittent contact mode atomic force microscopy has been widely employed for simultaneous topography imaging and material characterization. The work in the literature includes both qualitative and quantitative methods. Regular AFM cantilevers are generally used in these methods, yet these cantilevers come with certain limitations. These limitations result from the very nature of cantilever probes. They are passive force sensors with insufficient damping. This prevents having active and complete control on tip-sample forces, causing sample damage and inaccurate topography measurement. Ideally, an AFM probe should offer high bandwidth to resolve interaction forces, active control capability for small interaction force and stable operation, and sufficient damping to avoid transient ringing which causes undesired forces on the sample. Force sensing integrated readout and active tip (FIRAT) probe offers these properties. A special imaging mode, time-resolved interaction force (TRIF) mode imaging can be performed using FIRAT probe for simultaneous topography and material property imaging. The accuracy of topography measurement of samples with variations in elastic and adhesive properties is investigated via numerical simulations and experiments. Results indicate that employing FIRAT probe's active tip control (ATC) capability during TRIF mode imaging provides significant level of control over the tip-sample forces. This improves the accuracy of topography measurement during simultaneous material property imaging, compared to conventional methods. Moreover, Active tip control (ATC) preserves constant contact time during force control for stable contact while preventing loss of material property information such as elasticity and adhesive forces.
135

Untersuchung der Entmischungskinetik an Silber-Natriumbromid-Einkristallen mit zeitaufgelöster inelastischer Neutronenstreuung / Characterisation of the mechanism of decomposition in silver-sodiumbromide single crystals with time-resolved inelastic neutron scattering

Elter, Patrick 06 November 2003 (has links)
No description available.
136

Vortices in turbulent curved pipe flow-rocking, rolling and pulsating motions

Kalpakli Vester, Athanasia January 2014 (has links)
This thesis is motivated by the necessity to understand the flow structure of turbulent flows in bends encountered in many technical applications such as heat exchangers, nuclear reactors and internal combustion engines. Flows in bends are characterised by strong secondary motions in terms of counter-rotating vortices (Dean cells) set up by a centrifugal instability. Specifically the thesis deals with turbulent flows in 90° curved pipes of circular cross-section with and without an additional motion, swirling or pulsatile, superposed on the primary flow.  The aim of the present thesis is to study these complex flows in detail by using time-resolved stereoscopic particle image velocimetry to obtain the three-dimensional velocity field, with complementary hot-wire anemometry and laser Doppler velocimetry measurements. In order to analyse the vortical flow field proper orthogonal decomposition (POD) is used. The so called ``swirl-switching'' is identified and it is shown that the vortices instantaneously, ``rock'' between three states, viz. a pair of symmetric vortices or a dominant clockwise or counter-clockwise Dean cell. The most energetic mode exhibits a single cell spanning the whole cross-section and ``rolling'' (counter-)clockwise in time. However, when a honeycomb is mounted at the inlet of the bend, the Dean vortices break down and there is strong indication that the ``swirl-switching'' is hindered. When a swirling motion is superimposed on the incoming flow, the Dean vortices show a tendency to merge into a single cell with increasing swirl intensity. POD analysis show vortices which closely resemble the Dean cells, indicating that these structures co-exist with the swirling motion. In highly pulsating turbulent flow at the exit of a curved pipe, the vortical pattern is diminished or even eliminated during the acceleration phase and then re-established during the deceleration. In order to investigate the effect of pulsations and curvature on the performance of a turbocharger turbine, highly pulsating turbulent flow through a sharp bend is fed into the turbine. Time-resolved pressure and mass-flow rate measurements show that the hysteresis loop in the pressure-ratio-mass-flow plane, may differ significantly between straight and curved inlets, however the mean operating point is only slightly affected. / <p>QC 20140523</p>
137

Tomographie optique diffuse : une approche résolue en temps pour les mesures en réflectance à courtes distances entre sources et détecteurs / Diffuse optical tomography : a time-resolved approach for reflectance measurements at short source-detector separation

Puszka, Agathe 05 December 2013 (has links)
La tomographie optique diffuse (TOD) est une technique d'imagerie médicale émergente utilisant la lumière proche infrarouge pour sonder les tissus biologiques. A partir de mesures non-invasives, cette technique permet d'obtenir les cartes en trois dimensions des coefficients d'absorption et de diffusion à l'intérieur des organes. Avec une approche multi-spectrale, la distribution spatiale des chromophores endogènes (hémoglobine, eau) peut aussi être obtenue. Pour certaines applications cliniques, il est souhaitable d'effectuer les mesures de TOD avec une sonde compacte qui regroupe tous les couples source-détecteur. Cependant, dans cette configuration, la sensibilité en profondeur est un défi majeur. Dans le cadre de cette thèse, nous proposons d'adresser ce challenge en utilisant des mesures résolues en temps. Une approche résolue en temps est développée pour optimiser la TOD dans le cas des mesures de réflectance à faibles distances source-détecteur. Cette approche inclut des aspects méthodologiques concernant le traitement des mesures résolues en temps par des algorithmes de TOD basés sur la transformée de Mellin-Laplace. Cette approche comporte aussi un volet instrumental qui consiste à optimiser la chaîne de détection sur deux points précis pour améliorer la détection et la localisation de contraste d'absorption en profondeur dans les milieux diffusants. Tout d'abord, l'impact de la réponse temporelle du détecteur est étudié avec des détecteurs de photons uniques disponibles dans le commerce (photomultiplicateurs classiques et hybrides). Dans un second temps, l'augmentation de la profondeur sondée avec de nouveaux détecteurs de photons uniques, les fast-gated single-photon avalanche diodes, est explorée au cours d'une collaboration avec le Politecnico de Milan. Pour finir, une étude illustre les performances de l'approche proposée en termes de résolution spatiale en profondeur pour différents arrangements des sources et détecteurs dans une sonde optique. Des sondes optiques dont la largeur est limitée à quelques centimètres ouvrent la voie à de nouvelles applications cliniques pour la TOD. Ces sondes peuvent accéder à des organes internes comme la prostate ou faciliter les examens médicaux sur des organes externes comme le sein ou le cerveau. / Diffuse optical tomography (DOT) is an emerging medical imaging technique using near-infrared light to probe biological tissues. This technique can retrieve three-dimensional maps of absorption and scattering coefficients inside organs from non-invasive measurements. With a multispectral approach, the spatial distribution of endogenous chromophores (hemoglobin, water) can even be obtained. For some clinical applications, it is desirable to carry out the measurements for DOT with a compact probe including all sources and detectors. However, the depth sensitivity is a real challenge in this configuration. We propose to tackle this challenge by using time-resolved measurements. A time-resolved approach is developed to perform DOT with reflectance measurements at short source-detector separation. This approach involves methodological aspects including the processing of time-resolved signals by DOT algorithms based on the Mellin-Laplace transform. Then, this approach consists in optimizing the detection chain on two aspects for enhancing the detection and localization of absorption contrast in depth in diffusive media. First, the impact of the temporal response of the detector is studied with commercially available single-photon detectors (classical and hybrid photomultipliers). Second, the enhancements in probed depth permitted with fast-gated single-photon avalanche diodes are explored in a joint work with the Politecnico di Milano. To finish, a study is carried out to illustrate the performance of the proposed approach with respect to spatial resolution in depth for different configurations of sources and detectors in the optical probe. Probes with a width limited to a few centimeters open the gate to multiple clinical interests. They could access intern organs like the prostate or facilitate the measurements on extern organs like the breast or the brain.
138

Method Development in Crystallization for Femtosecond Nanocrystallography

January 2014 (has links)
abstract: Membrane proteins are a vital part of cellular structure. They are directly involved in many important cellular functions, such as uptake, signaling, respiration, and photosynthesis, among others. Despite their importance, however, less than 500 unique membrane protein structures have been determined to date. This is due to several difficulties with macromolecular crystallography, primarily the difficulty of growing large, well-ordered protein crystals. Since the first proof of concept for femtosecond nanocrystallography showing that diffraction patterns can be collected on extremely small crystals, thus negating the need to grow larger crystals, there have been many exciting advancements in the field. The technique has been proven to show high spatial resolution, thus making it a viable method for structural biology. However, due to the ultrafast nature of the technique, which allows for a lack of radiation damage in imaging, even more interesting experiments are possible, and the first temporal and spatial images of an undamaged structure could be acquired. This concept was denoted as time-resolved femtosecond nanocrystallography. This dissertation presents on the first time-resolved data set of Photosystem II where structural changes can actually be seen without radiation damage. In order to accomplish this, new crystallization techniques had to be developed so that enough crystals could be made for the liquid jet to deliver a fully hydrated stream of crystals to the high-powered X-ray source. These changes are still in the preliminary stages due to the slightly lower resolution data obtained, but they are still a promising show of the power of this new technique. With further optimization of crystal growth methods and quality, injection technique, and continued development of data analysis software, it is only a matter of time before the ability to make movies of molecules in motion from X-ray diffraction snapshots in time exists. The work presented here is the first step in that process. / Dissertation/Thesis / Doctoral Dissertation Biochemistry 2014
139

Mechanical and biochemical stimulation of suspended cells in a microfluidic device probed with dual optical tweezers

Rezvani Boroujeni, Samaneh 17 November 2017 (has links)
No description available.
140

Communication moléculaire photo-ionique : les études ultrarapides de composés supramoléculaire

Batat, Pinar 24 October 2011 (has links)
Des molécules ou assemblages moléculaires organiques (dérivés d’hémicyanine ou du BODIPY) ont été étudiés en solution par des méthodes optiques complémentaires : absorption stationnaire et fluorescence, absorption transitoire et fluorescence résolue en temps (échelle femtoseconde et picoseconde). Ces méthodes ont permis de caractériser différents processus tels que le transfert de charge intramoléculaire, le transfert d'énergie et le transfert d'électron photoinduit. Elles ont ainsi permis de démontrer l’intérêt de certains chromophores de type AzaBODIPY émettant dans le proche IR, dans des applications d’imagerie et de thérapie photodynamique. La photostabilité et l’absorption à deux photons ont également été étudiées dans le cas d’autres dérivés du BODIPY pouvant être appliqués à la détection d’espèces ioniques. Dans le cas des hémicyanines, des dérivés amphiphiles dotés d’une couronne reconnaissant spécifiquement certains cations ont également été étudiés sous forme de films de Langmuir-Blodgett et en présence de différents cations, le but étant de former des membranes artificielles iono- et photosensibles. / Ultrafast femtosecond transient absorption measurements (30 fs FWHM pulses) and complementary picosecond spectroscopies (20 ps FWHM pulses, streak camera detection), as well as steady state absorption and fluorescence measurements, were used to study a range of molecules and molecular assemblies. Processes such as intramolecular charge transfer, electronic energy transfer and photoinduced electron transfer were characterized. Amphiphilic azacrown-containing hemicyanine dyes and resulting iono- and photosensitive artificial membranes were studied using Langmuir-Blodgett techniques in the presence of various cations. Among a range of other molecules studied, NIR emitting aza-BODIPY dyes were studied by time-resolved methods in order to investigate their suitability for Photodynamic Therapy applications and imaging. Differently functionalized BODIPY dyes were investigated with respect to photostability, two photon absorption and ion sensing.

Page generated in 0.0502 seconds