Spelling suggestions: "subject:"iip"" "subject:"imip""
171 |
Development and Optimization of Scanning nano-Raman SpectroscopyMehtani, Disha 05 October 2006 (has links)
No description available.
|
172 |
Scratch Behavior of PolystyreneVaradi Jasline, Deepthi Das 23 December 2009 (has links)
No description available.
|
173 |
Advanced Scanning Probe Techniques for the Study of Polymer SurfacesAgapov, Rebecca L. 04 December 2012 (has links)
No description available.
|
174 |
Study of tip clearance flowsFournis, Camille January 2018 (has links)
The tip leakage vortex is responsible for the generation of stagnation pressure losses inside the compressor along with the outbreak of rotating stall and surge. The current paper analytically proved that a part of the losses is proportional to the vortex circulation squared. The evolution of this circulation has been investigated as part of a parametric study which tested several clearance heights. The work consists in adopting a simplified single blade configuration to study the physics of the flow by means of wind tunnel experiments and numerical calculations. Upon visualising the main features of the flow, a model based on the study of jet in crossflows was implemented to describe the tip clearance flow for small gap sizes. For big gaps, the flow is assumed to behave as an isolated wing tip vortex which circulation is easily computed by the so called lifting line theory. The main vortical structures highlighted by the topology of the flow justified the use of the model of a jet in crossflow for small gap sizes. This model was challenged by experimental and numerical data and proved to well predict the evolution of the clearance vortex circulation for an increasing clearance height although some numerical results remain further away from the model. / Gapvirveln är ansvarig för lufttryckförluster i motorn av ett flygplan och kan orsaka utbrottet av kompressorstall och pumpning. Artikeln bevisade matematiskt att en del av de här förlusterna är proportionell mot gapvirvelncirkulationen upphöjd. Utvecklingen av den där cirkulationen undersöktes med hjälp av en parametrisk studie som provkörde flera gapstorlekar. Arbetet bestå av att adoptera en förenklad enda blad konfiguration för att studera flödes fysik med vindtunnel experiment och flödesberäkningar. Efter att man analyserar flödes viktigaste egenskaper genomfördes en modell baserad på studien av en jet i ett korsflöde. Den här modellen används för att beskriva flödet för små gapstorlekar. För stora gap antar man att flödet beter sig som en vingspetsvirvel som cirkulationen kan beräknas utan svårighet med hjälp av lyftledningsteorin. Flödes topologi visualiserades tack vare numeriska beräkningar och legitimerade användningen av modellen av en jet i ett korsflöde för små gapstorlekar. Teoretiska, experimentella och numeriska resultat jämfördes och bevisade att modellen väl förutsäger utvecklingen av gapvirvelncirkulationen mot gapstorlek även om några numeriska resultat är långt från modellen.
|
175 |
Vibration Health Monitoring of GearsScherer, Markus Josef 01 June 2012 (has links) (PDF)
Monitoring the health of vibrating gears is important to ensure proper operation especially in potentially life-threatening structures, such as helicopters, nuclear power plants, and uninterruptible power supply transitions in hospitals. The most common monitoring technique is casing mounted accelerometers to measure vibration. In contrast, during the last few years acoustic monitoring techniques have also provided a few diagnostic methods for gear failure. Current diagnostic methods to indicate improper gear behavior use either existing vibration data, recorded from defective gear systems, or modern dynamic models predicting gear failure behavior.
This thesis uses dynamic models to indicate, predict, and diagnose healthy and unhealthy gear systems. Influence of Tip Relief on contact forces are introduced for a decent understanding of gear dynamics followed by evaluation of common gear failure mechanisms. Two software systems were used to model gear failure: Adams®, a vibration based software that uses a rigid-elastic model for multi-body dynamics, and LSDYNA ®, a transient dynamic finite element solver, capable of solving acoustic problems with the boundary element method.
Results describe tooth loads along the line of contact with respect to different Tip Reliefs and contact ratios. Gear failure is examined using a Fast Fourier Transformation to characterize patterns that can be used to diagnose unhealthy gear systems. Agreement of experimental results validates theoretical predictions of analytical and numerical solutions of gear failure especially of tooth breakage.
|
176 |
Finite Element Modeling of Icd Lead Silicone Soft-TipsLepe, Jose J 01 May 2010 (has links) (PDF)
Although highly underutilized by the medical device industry, Finite Element Analysis (FEA) in the development of new technologies is gaining popularity as regulatory bodies such as the Food and Drug Administration (FDA) begin to require additional proof of safety through scientific methods. Non-linear FEA allows engineers to realistically simulate the mechanical behavior of implants as seen in the in-vitro, or in some cases, the in-vivo configurations. The work presented in this report investigates how computational methods can be used to simulate the interaction of a St. Jude Medical silicone soft-tip as it passes through a Peel-Away Sheath (i.e. introducer). In this analysis the soft-tips were modeled as axisymmetric with hyperelastic material properties assigned to the soft-tips. An Ogden, second order hyperelastic material model was used to describe the non-linear stress-strain behavior of silicone soft-tips. The finite element program, ABAQUS/Standard was used to simulate the soft-tip/introducer interactions. The reaction forces obtained through these simulations represent the force required to push a lead through an introducer, and were then compared to experimental data.
|
177 |
The Role of Constraints and Vehicle Concepts in Transport Design: A Comparison of Cantilever and Strut-Braced Wing Airplane ConceptsKo, Yan-Yee Andy 15 May 2000 (has links)
The purpose of this study is to examine the multidisciplinary design optimization (MDO) of a strut-braced wing (SBW) aircraft compared to similarly designed cantilever wing aircraft. In this study, four different configurations are examined: cantilever wing aircraft, fuselage mounted engine SBW, wing mounted engine SBW, and wingtip mounted engine SBW. The cantilever wing design is used as a baseline for comparison. Two mission profiles were used. The first called for a 7380 nmi range with a 305 passenger load based on a typical Boeing 777 mission. The second profile was supplied by Lockheed Martin Aeronautical Systems (LMAS) and has a 7500 nmi range with a 325 passenger load. Both profiles have a 0.85 cruise Mach number and a 500 nmi reserve range.
Several significant refinements and improvements have been made to the previously developed MDO code for this study. Improvements included using ADIFOR (Automatic Differentiation for FORTRAN) to explicitly compute gradients in the design code. Another major change to the MDO code is the improvement of the optimization architecture to allow for a more robust optimization process.
During the Virginia Tech SBW study, Lockheed Martin Aeronautical Systems (LMAS) was tasked by NASA Langley to evaluate the results of previous SBW studies. During this time, the original weight equations which were obtained from NASA Langley's Flight Optimization System (FLOPS) was replaced by LMAS proprietary equations. A detailed study on the impact of the equations from LMAS on the four designs was done, comparing them to the designs that used the FLOPS equations. Results showed that there was little difference in the designs obtained using the new equations.
An investigation of the effect of the design constraints on the different configurations was performed. It was found that in all the design configurations, the aircraft range proved to be the most crucial constraint in the design. However, results showed that all three SBW designs were less sensitive to constraints than the cantilever wing aircraft.
Finally, a double-deck fuselage concept was considered. A double deck fuselage configuration would result in a greater wing/strut intersection angle which would, in turn, reduce interference drag at that section. Due to the lack of available data on double deck fuselage aircraft, a detailed study of passenger and cargo layout was done. Optimized design showed that there was a small improvement in takeoff gross weight and fuel weight over the single-deck fuselage SBW results when compared with a similarly designed cantilever wing aircraft. / Master of Science
|
178 |
Multidisciplinary Design Optimization of a Strut-Braced Wing AircraftGrasmeyer, Joel M. III 07 May 1998 (has links)
The objective of this study is to use Multidisciplinary Design Optimization (MDO) to investigate the use of truss-braced wing concepts in concert with other advanced technologies to obtain a significant improvement in the performance of transonic transport aircraft. The truss topology introduces several opportunities. A higher aspect ratio and decreased wing thickness can be achieved without an increase in wing weight relative to a cantilever wing. The reduction in thickness allows the wing sweep to be reduced without incurring a transonic wave drag penalty. The reduced wing sweep allows a larger percentage of the wing area to achieve natural laminar flow. Additionally, tip-mounted engines can be used to reduce the induced drag. The MDO approach helps the designer achieve the best technology integration by making optimum trades between competing physical effects in the design space.
To perform this study, a suite of approximate analysis tools was assembled into a complete, conceptual-level MDO code. A typical mission profile of the Boeing 777-200IGW was chosen as the design mission profile. This transport carries 305 passengers in mixed class seating at a cruise Mach number of 0.85 over a range of 7,380 nmi.
Several single-strut configurations were optimized for minimum takeoff gross weight, using eighteen design variables and seven constraints. The best single-strut configuration shows a 15% savings in takeoff gross weight, 29% savings in fuel weight, 28% increase in L/D, and a 41% increase in seat-miles per gallon relative to a comparable cantilever wing configuration.
In addition to the MDO work, we have proposed some innovative, unconventional arch-braced and ellipse-braced concepts. A plastic solid model of one of the novel configurations was created using the I-DEAS solid modeling software and rapid prototyping hardware. / Master of Science
|
179 |
Methods for Validation of a Turbomachinery Rotor Blade Tip Timing SystemPickering, Todd Michael 21 April 2014 (has links)
This research developed two innovative test methods that were used to experimentally evaluate the performance of a novel blade tip timing (BTT) system from Prime Photonics, LC. The research focused on creating known blade tip offsets and tip vibrations so that the results from a BTT system can be validated. The topic of validation is important to the BTT field as the results between many commercial systems still are not consistent. While the system that was tested is still in development and final validation is not complete, the blade tip offset and vibration frequency validation results show that this BTT system will be a valuable addition to turbomachinery research and development programs once completed.
For the first test method custom rotors were created with specified blade tip offsets. For the blade tip offset alternate measurement, the rotors were optically scanned and analyzed in CAD software with a tip location uncertainty of 0.1 mm. The BTT system agreed with the scanned results to within 0.13 mm. Tests were also conducted to ensure that the BTT system identified and indexed the blades properly.
The second developed test method used an instrumented piezoelectric blade to create known dynamic deflections. The active vibration rotor was able to create measureable deflection over a range of frequencies centered on the first bending mode of the blade. The results for the 110 Hz, 150 Hz, 180 Hz first bending resonance, 200 Hz, and 1036 Hz second bending resonance cases are presented. A strain gage and piezoelectric sensor were attached to the active blade during the dynamic deflection tests to provide an alternate method for determining blade vibration frequency. The BTT system correctly identified the active blade excitation frequencies as well as a 120 Hz frequency from the drive motor.
This thesis also explored applying BTT methods and testing to more realistic blade geometry and vibration. Blade vibrations are usually classified by their frequency relative to the rotation speed. Synchronous vibrations are integer multiples of the rotational speed and are often excited by struts or vanes fixed to the engine case. For this reason, special probe placement algorithms were explored that use sine curve fitting to optimize the probe placement. Knowing how the blade will vibrate at operation before testing is critical as well. In preparation for future research, ANSYS Mechanical was used to predict the first three modes of a PT6A-28 first stage rotor blade at 1,966, 5,539, and 7,144 Hz. These frequencies were validated to within 4% using scanning laser vibrometry. The simulation was repeated at speed to produce a Campbell Diagram to highlight synchronous excitation crossings. / Master of Science
|
180 |
A Study of Reaction Sites in AC Electro-Slag Remelting / Reaction Sites in AC Electro-Slag RemeltingGhosh, Debabrata 09 1900 (has links)
<p> The dominant slag-metal reaction site in AC electro-slag
remelting (ESR) has been directly determined by estimating the rate of
sulphur transfer at the electrode tip/slag and metal pool/slag interfaces.
In this investigation, negligible sulphur transfer has been
assumed at the droplet/slag interface, and the basis for such assumption
is discussed. Using a 5.825" diameter mould and CaF2-CaO slags,
it has been established that the electrode tip/slag interface is the
dominant reaction site. Calculations indicate that the pool sulphur
is close to equilibrium with the slag. The importance of all six
reaction sites in AC ESR are discussed. The results indicate the
importance of the slag/atmosphere interface, especially when using slags
of low lime content. Conventonal overall sulphur balances have
been carried out and the results are in agreement with the rates
obtained at the different interfaces, thus indicating internal consistency
of the results. </p> / Thesis / Master of Engineering (MEngr)
|
Page generated in 0.0453 seconds