Spelling suggestions: "subject:"inleakage"" "subject:"miroleakage""
11 |
Aerodynamic and acoustic analysis of the tip-leakage flow past a single ailfoil / Analyse aérodynamique et acoustique de l’écoulement de jeu d’un profil isoléLi, Bo 07 December 2016 (has links)
L'écoulement de jeu est un phénomène très important dans les turbomachines. Il provient du mouvement relatif entre la pale et la paroi d'extrémité, et la différence de pression à travers la pale. L'écoulement de jeu est extrêmement complexe pour sa nature tridimensionnelle et instable, et son existence conduit à de nombreux effets défavorables, par exemple, les pertes de performance aérodynamique et les émissions de bruit. C'est pourquoi l'écoulement de jeu a motivé de nombreuses recherches expérimentales et numériques. Afin d'améliorer la compréhension du écoulement de jeu et le bruit de large bande associé, une campagne de recherche a été menée au LMFA. En ce qui concerne l'écoulement de jeu, cette campagne de recherche comprend une expérience avec des technologies de mesure avancées, un calcul zonal LES et une série de calculs RANS / URANS. L'expérience et les simulations considèrent une configuration simple de l'écoulement de jeu à un faible nombre de Mach. Les résultats expérimentaux et numériques sont analysés de façon systématique et approfondie dans la présente étude. Enfin, des efforts sont déployés pour la modélisation et la prédiction du bruit à large bande avec des résultats expérimentaux et numériques. On observe dans l'expérience un système à multiple-tourbillon, avec une tourbillon de jeu intense. Les différentes analyses sur les caractéristiques d'écoulement montrent un bon accord entre l'expérience et le ZLES dans la région du écoulement de jeu. L'approche zonale (RANS-LES) s'avère être un outil puissant pour fournir une description détaillée du écoulement de jeu, avec un coût de calcul limité. Cependant, les calculs RANS et URANS surestiment globalement la diffusion de la tourbillon. En outre, l'oscillation du tourbillon de jeu est étudiée en utilisant des champs instantanés de PIV et l'amplitude d'oscillation est évaluée. La réponse dynamique de la tourbillon de jeu est également étudiée avec URANS aux fréquences choisies. Deux modèles de prédiction du bruit en champ lointain, correspondant à deux sources acoustiques différentes, sont reformulés et mis en oeuvre avec les données de champ proche des simulations numériques. Ces prédictions sont comparées aux mesures à champ lointain. En utilisant les données ZLES, le modèle de l’écoulement de jeu sur-estime le bruit généré dans la région de jeu. Le modèle de bruit de bord de fuite est implémenté avec les données ZLES et les données RANS et fournit une très bonne prédiction dans une large bande de fréquence. / The tip-leakage flow is a common flow feature in turbomachines. It originates from the relative motion between the blade tip and the end-wall, and the pressure difference across the blade. The tip-leakage flow is extremely complex for its three-dimensional unsteady nature, and its existence leads to many unfavourable effects, such as aerodynamic performance losses and noise emissions. These issues have motivated extensive experimental and numerical researches from both aerodynamic and aeroacoustic points of view. In order to improve the understanding of the tip-leakage flow and its associated broadband noise, a research campaign has been carried out at LMFA. Regarding the tip-leakage flow, this research campaign includes an experiment with advanced measurement technologies, a zonal LES computation and a series of RANS/URANS computations. Both the experiment and the simulations consider a single-airfoil configuration at low Mach number. Experimental and numerical results are analysed systematically and thoroughly in the current study. Finally, efforts are put on the broadband noise modelling and prediction based on the experimental and numerical results. A multi-vortex system with an intense tip-leakage vortex is observed in the experiment. The various analyses of the flow characteristics show a good agreement between the experiment and the ZLES in the blade tip region. The zonal (RANS-LES) approach proves itself to be a powerful tool to provide a detailed description of the tip-leakage flow, with a limited computational cost. However, the RANS and URANS computations globally over-estimate the diffusion of the tip-leakage vortex. Furthermore, the random oscillation of the tip-leakage vortex is investigated using PIV instantaneous flow fields and the wandering amplitude is evaluated. The dynamic response of the tip-leakage vortex is also studied with URANS at selected frequencies. Two far-field noise prediction models, corresponding to two different acoustic sources, are reformulated and implemented with the near-field data from the numerical simulations. These predictions are compared to the far-field measurements. Using the ZLES data as input, the blade-tip self-noise model is found to over-estimate the noise generated in the blade-tip region. The trailing-edge noise model is implemented with the time-averaged ZLES and the RANS near-field data, and yields a very good prediction within a broad range of frequency.
|
12 |
Analysis of Turbine Rotor Tip Clearance Losses and Parametric Optimization of ShroudBanks, William V., III January 2019 (has links)
No description available.
|
13 |
Near Wall Behavior of Vortical Flow around the Tip of an Axial Pump Rotor BladeTian, Qing 08 January 2007 (has links)
This dissertation presents the results from an experimental study of three-dimensional turbulent tip gap flow in a linear cascade wind tunnel with 3.3% chord tip clearance with and without moving endwall simulation. Experimental measurements have been completed in Virginia Tech low speed linear cascade wind tunnel. A 24" access laser-Doppler velocimeter (LDV) system was developed to make simultaneous three-velocity-component measurements. The overall size of the probe is 24"à 37"à 24"and measurement spatial resolution is about 100 μm. With 24" optical access distance, the LDV probe allows measurements to be taken from the side of the linear cascade tunnel instead of through the bottom of the tunnel floor. The probe has been tested in a zero-pressure gradient two-dimensional turbulent boundary layer.
Experimental measurements (oil flow visualization, pressure measurement, and LDV measurement) for the stationary wall captured the major flow structures of the tip leakage flow in the linear compressor cascade, such as tip leakage vortex, tip leakage vortex separation and tip separation vortex. Large velocity gradients in the tip leakage vortex separation, tip leakage vortex, and tip separation vortex regions generate large production of the Reynolds stresses and turbulent kinetic energy. One of the most interesting features of the tip leakage flow is the bimodal velocity probability histograms of the v component due to the unsteady motion of the flow in the interaction region between the tip leakage vortex and tip leakage jet. The tip separation vortex, tip leakage vortex separation, and tip leakage vortex contain most of turbulent kinetic energy and generate the highest dissipation rate.
Relative motion of the endwall significantly affects the tip gap flow structures, especially in the near wall region. Compared to the stationary wall case, velocity gradients in the near wall region for the moving wall case are much smaller and lower velocity gradients in the near wall region cause the low production of Reynolds stresses and turbulent kinetic energy. Similar to the stationary wall case, high Reynolds stresses and turbulent kinetic energy values are mainly located in the vicinity of the tip leakage vortex and tip separation vortex region. The bimodal velocity probability histograms of the v component are also found at the same locations. The tip separation vortex with most of the turbulent kinetic energy generates the highest dissipation rate. The dissipation rate in the tip leakage vortex region is reduced with the decrease of turbulent kinetic energy under the moving wall effect. / Ph. D.
|
14 |
Some Features of Tip Gap Flow Fields of a Linear Compressor CascadeTian, Qing 16 January 2004 (has links)
This thesis presents some results from an experimental study of three-dimensional turbulent tip gap flows in the linear cascade wind tunnel, for two different tip gap clearances (t/c=1.65% and 3.3%). The experiments focus on near-wall flow field measurements for the stationary wall and moving wall, and static pressure measurement on the low end-wall for the stationary wall case. The representative flows were pressure driven, three-dimensional turbulent boundary layers in the linear cascade tunnel for the stationary wall case, and the combination of the pressure driven and shear driven flow for the moving wall case.
Several experimental techniques are used in the studies: a three-orthogonal-velocity-component fiber-optic laser Doppler anemometer (3D-LDA) system, surface oil flow visualization, and a scanivalve system for static pressure measurement through pressure ports on the end-wall. From the details of the oil flow visualization pattern on the end-wall, some features of the passage flow, cross flow, and the tip leakage vortex in this cascade flow were captured. Oil flow visualization on the blade surface reveals the reattachment of the tip leakage vortex on the blade surface. The static pressure results on the lower end-wall and mid-span of the blade show huge pressure drop on the lower end-wall from the pressure side to the suction side of the blade and from mid-span to the lower end wall. The end-wall skin friction velocity is calculated from near-wall LDA data and pressure gradient data using the near-wall momentum equation.
The statistics of Reynolds stresses and triple products in two-dimensional turbulent boundary layer and three-dimensional turbulent boundary layer was examined using a velocity fluctuation octant analysis in three different coordinates (the wall collateral coordinates, the mid tip gap coordinates, and the local mean flow angle coordinates). The velocity fluctuation octant analysis for the two-dimensional turbulent boundary layer reveals that ejections of the low speed streaks outward from the wall and the sweeps of high speed streaks inward toward the wall are the dominant coherent motions. The octant analysis for the three-dimensional turbulent boundary layer in the tip gap shows that the dominant octant events are partially different from those in the two-dimensional turbulent boundary layer, but ejection and sweep motions are still the dominant coherent motions. For the three-dimensional turbulent boundary layer in the moving wall flow, the near-wall shear flow reinforces the sweep motion to the moving wall and weakens the out-ward ejection motion in the shear flow dominant region. Between the passage flow and the shear flow, is the interaction region of the high speed streaks and the low speed streaks. This is the first time that the coherent structure of the three-dimensional turbulent boundary in the linear cascade tip gap has been studied. / Master of Science
|
15 |
3-D Unsteady Simulation of a Modern High Pressure Turbine Stage: Analysis of Heat Transfer and FlowShyam, Vikram January 2009 (has links)
No description available.
|
16 |
Comparative Analysis of Serrated Trailing Edge Designs on Idealized Aircraft Engine Fan Blades for Noise ReductionGeiger, Derek Henry 26 January 2005 (has links)
The effects of serrated trailing edge designs, designed for noise reduction, on the flow-field downstream of an idealized aircraft engine fan blade row were investigated in detail. The measurements were performed in the Virginia Tech low speed linear cascade tunnel on one set of baseline GE-Rotor-B blades and four sets of GE-Rotor-B blades with serrated trailing edges. The four serrated blade sets consisted of two different serration sizes (1.27 cm and 2.54 cm) and for each different serration size a second set of blades with added trailing edge camber. The cascade row consisted of 8 GE-Rotor-B blades and 7-passages with adjustable tip gap settings. It had an inlet angle of 65.1º, stagger angle of 56.9º and a turning angle of 11.8º. The tunnel was operated with a tip gap setting of 1.65% chord, with a Reynolds number based on the chord of 390,000.
Blade loading measurements performed on each set of blades showed that it was slightly dependent on the serration shape. As the serration size was increased the blade loading decreased, but adding droop increased the blade loading.
The Pitot-static cross-sections showed that flow-fields near the upper and lower endwalls cascade tunnel were similar with the baseline or the serrated blade downstream of the blade row. In the wake region, the individual trailing edge serrations tips and valleys could be seen. As the wake convected downstream, the individual tips and valleys became less visible and the wake was more uniform in profile. The tip leakage vortex was only minimally affected by the trailing edge serrations. This conclusion was further reinforced by the three-component hot-wire cross-sectional measurements that were performed from the lower endwall to the mid-span of the blade. These showed that the mean streamwise velocity, turbulence kinetic energy and turbulence kinetic energy production in the tip leakage region were nearly the same for all four serrated blades as well as the baseline. The vorticity in this region was a more dependent on the serration shape and as a result increased with serration size compared to the baseline.
Mid-span measurements performed with the three-component hot-wire showed the spreading rate of the wake and the decay rate of the wake centerline velocity deficit increased with serration size compared to the baseline case. Drooping of the trailing edge only minimally improved the spreading and decay rates. This improvement in these rates was predicted to reduce the tonal noise at the leading edge of the downstream stator vane because the periodic fluctuation associated with the sweeping of the rotor blade wakes across it, was due to the pitchwise variation in the mean streamwise velocity. The wakes were further compared to the mean velocity and turbulence profiles of plane wakes, which the baseline and the smallest serration size agreed the best. As the serration size was increased and drooping was added, the wakes became less like plane wakes. Spectral plots at the wake centerline in all three velocity directions showed some evidence of coherent motion in the wake as a result of vortex shedding. / Master of Science
|
17 |
Analyse des mécanismes d'action des traitements de carter dans les compresseurs axiauxLegras, Guillaume 11 April 2011 (has links)
Ce travail de thèse, mené dans le cadre d’une convention CIFRE entre Snecma, le CERFACS et le LMFA, s’inscrit dans un contexte d’amélioration des performances et d’extension de la plage de fonctionnement des compresseurs de type axial équipant les turboréacteurs. L’une des principales difficultés rencontrée dans cette démarche concerne la maîtrise des écoulements dans la zone de jeu en tête des aubes rotors et qui peuvent entraîner une perte de stabilité du système (pompage et décollement tournant).Une solution technologique prometteuse pour améliorer la stabilité est le traitement de carter qui consiste en un dispositif passif complexe de fentes implantées au carter au droit des rotors. En vue d’en améliorer sa conception, les travaux de thèse visent plus particulièrement à approfondir la compréhension des mécanismes d’action grâce à une approche numérique CFD avec le code elsA développé par l’ONERA et le CERFACS, en modélisation stationnaire et instationnaire. Ces travaux s’articulent autour de trois axes principaux. Le premier a eu pour objectif de développer un outil numérique d’aide à la compréhension des mécanismes d’action des traitements de carter et de diagnostic de leur efficacité. Le principe de l’outil, qui est une extension du modèle initialement proposé par Shabbir et Adamczyk, repose sur une évaluation des contributions des termes des équations de Navier-Stokes stationnaires et instationnaires sur un volume de contrôle pris dans l’écoulement. Dans le cas pratique, cela revient à quantifier les efforts appliqués sur le fluide. Le second axe traite de l’analyse des mécanismes d’action des traitements de carter axisymétriques dans deux compresseurs axiaux : l’un subsonique à carter cylindrique (CREATE) et l’autre transsonique à carter conique (NASA Rotor 37). Les enseignements de cette étude indiquent que ce type de géométrie est marqué par son effet d’aspiration de fluide dans la veine. Ce mécanisme est d’autant plus amplifié par un phénomène d’interaction complexe des fentes avec l’écoulement de jeu et la proximité de l’intrados de l’aube adjacente. Cette partie s’est également attardé à la réponse des rainures à un phénomène instationnaire de type sillage de roue amont. Les résultats ont montré que les fentes amortissent les fluctuations de gradient de pression adverse. Le troisième axe porte sur l’analyse des mécanismes des traitements de carter non-axisymétriques à travers l’étude numérique d’un cas test transsonique à carter cylindrique (CBUUA). Le mécanisme d’action améliorant la stabilité de la machine tient en la capacité des fentes à limiter la migration dans la direction circonférentielle du vortex de jeu. Les résultats montrent que ce type de géométrie est caractérisé par son effet de réinjection d’air qui vient ré-énergétiser l’écoulement proche carter. / This thesis work, conducted as part of a CIFRE agreement between Snecma, CERFACS and LMFA, deals with the context of improving performance and extending the operating range of axial compressors fitted turbojets. One of the main difficulties in this approach is the flow control in the rotor tip region, which can cause the loss of the system stability (surge and rotating stall). A promising technology known to bring substantial stability is the casing treatment. This passive control device consists of slots of complex geometry within the rotor casing. In order to improve its design, the thesis aimed specifically at improving the understanding of their mechanisms through a numerical approach using the CFD code elsA developed by ONERA and CERFACS, with steady and unsteady approaches. This work focused on three main axes. The first concerns the development of a numerical tool to support the understanding of casing treatment mechanisms and the diagnosis of their efficiency. The principle of the tool, which is an extension of the model originally proposed by Shabbir and Adamczyk, is based on an assessment of the contributions of the terms of the steady and unsteady Navier-Stokes equations on a control volume taken in the flow. In practice, this permits to quantify the forces applied to the fluid. The second axis deals with the analysis of the flow mechanisms induced by axisymetric casing treatments in two axial compressors : one subsonic with a cylindrical casing (CREATE) and the other transonic with a conical casing (NASA Rotor 37). The findings of this study indicate that this type of geometry is characterized by its bleeding effect. This mechanism is further amplified by a complex phenomenon of interaction between grooves, tip leakage vortex and the proximity to the pressure side of the adjacent blade. This part has also dwelt on the groove’s response to unsteady upstream stator wakes. The results showed that the slots are able to damp fluctuations of adverse pressure gradient. The third area concerns the analysis of the flow mechanisms induced by non-axisymmetric casing treatment through the numerical study of a transonic compressor with cylindrical casing (CBUUA). The mechanism leading to an enhancement of the stability results in slots ability to limit the migration in the circumferential direction of the tip leakage vortex. The results show that this type of geometry is characterized by its effect of re-injection of fluid that comes re-energize the near casing flow.
|
18 |
Influence on tip leakage flow in a compressor cascade with plasma actuationWang, Haotian January 2019 (has links)
As one of the key components of aero engines, compressor is required to endure higher pressure, possess higher efficiency and wider operating range. Intensive studies have been made on tip leakage flow and researchers find that by reasonably organizing tip leakage flow, aero engines are more likely to achieve better performance and reliability. Conventional flow controlling methods like casing treatment and micro jet could substantially modify tip leakage flow, unfortunately with a price of additional loss, not to mention the difficulty in manufacturing such structure. Whereas plasma actuation flow control method uses plasma actuators, such equipment is easy to build, responses fast and has a wide excitation bandwidth. This method has become a new trend in internal flow active control field. In this research, a phenomenological model is adopted to simulate DBD plasma actuation in the flow field inside a compressor cascade. The aim is to find out how plasma actuation will influence tip leakage flow. Meanwhile possible means to improve plasma actuation performance are discussed. First of all, numerical simulation of flow inside a compressor cascade without plasma actuation is conducted to validate accuracy of the numerical methodology adopted and then determine one numerical approach that satisfies specific needs sufficiently. Meanwhile, influence of casing movement on tip leakage flow as well as possible mechanism of tip leakage vortex core generation is investigated in detail. The results indicate: 1. Generating position of tip leakage vortex moves towards leading edge with increasing moving speed of shroud. 2. As shroud moving speed increases, trajectory of tip leakage vortex moves away from suction side of blade and closely towards shroud. 3. Casing movement tends to transform tip leakage vortex from circular to oval shape due to circumferential shearing. 4. Casing movement has little influence on total pressure field concerning absolute pressure value. While total pressure loss does reduce slightly with increasing moving speed of shroud. 5.Vorticity transport from tip clearance into passage may be contributing significantly to generation of tip leakage vortex inner core. Secondly, a simplified model of DBD plasma actuation based on literature [1] is derived and applied through UDF function of commercial software Fluent into the flow field. Different actuation positions, voltages and frequencies are applied in simulation and compared. After that casing movement is included. Main conclusions are as follow: 6. Plasma actuation shows significant suppressing effect on tip leakage vortex on both size, trajectory and strength. 7. The suppressing effect on tip leakage vortex grows stronger as actuator moves towards leading edge. 8. Increasing actuation voltage results in stronger suppressing effect on tip leakage vortex. 9. Plasma actuation can effectively improve total pressure loss situation near shroud region with increasing actuation power. 10. Increasing actuation frequency results in stronger suppressing effect on tip leakage vortex as well. Additionally, frequency performs slightly better than voltage. 11. Casing movement tends to weaken suppressing effect of tip leakage vortex by plasma actuation. More actuation power is needed to achieve sufficient suppressing effect in real compressors. / Som en av de viktigaste komponenterna i flygmotorer krävs det att kompressorn utsätts för högre tryck, har högre effektivitet och större driftsintervall. Intensiva studier har gjorts om skovlarnas toppspel läckageflöde och man anser att det är mer sannolikt att flygmotorer uppnår bättre prestanda och tillförlitlighet genom att på ett rimligt sätt reglera läckageflödet i toppspelet. Konventionella metoder för reglering av flödet, som behandling av “casing” och mikrojet, skulle kunna ändra läckageflödet avsevärt, men medför tyvärr ytterligare förlust, för att inte tala om svårigheten att tillverka en sådan struktur. Samtidig flödeskontroll med hjälp av plasma aktuatorer som är relativt lätta att bygga, reagerar snabbt och har en bred excitationsbandvid. Denna metod har blivit en ny trend inom det interna flödesaktiva kontrollområdet. I denna forskning antas en modell för att simulera plasmaaktivering av DBD i flödesfältet i en kompressorskaskad. Man försöker ta reda på hur plasmaaktivering påverkar läckageflödet. Möjliga sätt att förbättra effekten av plasmaaktivering diskuteras. För det första genomförs numerisk simulering av flödet i en kompressorskaskad utan plasmaaktivering för att validera noggrannheten i den numeriska metoden. Därefter undersöks i detalj vilken inverkan den relativa rörelsen av ”casing” har på läckageflödet genom toppspelet och mekanismen för toppspelsvirvel analyseras. Resultaten visar: 1. Startposition för läckagevirveln rör sig mot skovelns framkant när man introducerar och ökar den relativa hastigheten för ”casing”. 2. I takt med att den relativa hastigheten ökar, kretsbanan för läckage virveln rör sig bort från skovelns sugsida och närmare mot ”casing”. 3. Den relativa rörelsen tenderar att omvandla virveln från cirkulär till oval form på grund av skjuvkrafter. 4. Den relativa rörelsen av ”casing” påverkar inte det totala tryckfältet när det gäller det absoluta tryckvärdet. Samtidigt som den totala tryckförlusten minskar något med ökad hastighet. 5. Virveltransport från toppspelet till huvudkanalen kan på ett betydande sätt bidra till att skapa virvelns inre kärna. I senare delen av arbetet utvecklas och tillämpas en förenklad modell för plasmaaktivering av DBD baserad på litteratur [1], genom att använda UDF‐funktionen i kommersiell CFD programvara Fluent. Olika aktuatorläge, spänningar och frekvenser prövas i simuleringen och jämförs. De viktigaste slutsatserna är följande: 6. Aktuering av plasma visar en betydande dämpningseffekt på läckagevirveln i toppspelet både va det gäller dess storlek, bana och styrka. 7. Den dämpande effekten på läckagevirveln blir starkare när aktuator monteras närmare skovelns framkant. 8. Ökad aktuatorspänning leder till en starkare dämpande effekt på läckagevirveln. 9. Ökad aktuatorfrekvens leder till starkare dämpningseffekt på läckagevortex också.mDessutom fungerar frekvensen något bättre än spänningen. 10. Den relativa rörelsen av ”casing” försvagar effekten av plasmaaktuering. För att uppnå tillräcklig dämpningseffekt i riktiga kompressorer krävs mer effekt till aktuatorn.
|
19 |
Measurements of the Tip-gap Turbulent Flow Structure in a Low-speed Compressor CascadeTang, Genglin 18 May 2004 (has links)
This dissertation presents results from a thorough study of the tip-gap turbulent flow structure in a low-speed linear compressor cascade wind tunnel at Virginia Tech that includes a moving belt system to simulate the relative motion between the tip and the casing. The endwall pressure measurements and the surface oil flow visualizations were made on a stationary endwall to obtain the flow features and to determine the measurement profiles of interest. A custom-made miniature 3-orthogonal-velocity-component fiber-optic laser-Doppler velocimetry (LDV) system was used to measure all three components of velocity within a 50 mm spherical measurement volume within the gap between the endwall and the blade tip, mainly for the stationary wall with 1.65% and 3.30% tip gaps as well as some initial experiments for the moving wall.
Since all of the vorticity in a flow originates from the surfaces under the action of strong pressure gradient, it was very important to measure the nearest-wall flow on the endwall and around the blade tip. The surface skin friction velocity was measured by using viscous sublayer velocity profiles, which verified the presence of an intense lateral shear layer that was observed from surface oil flow visualizations. All second- and third-order turbulence quantities were measured to provide detailed data for any parallel CFD efforts.
The most complete data sets were acquired for 1.65% and 3.30% tip gap/chord ratios in a low-speed linear compressor cascade. This study found that tip gap flows are complex pressure-driven, unsteady three-dimensional turbulent flows. The crossflow velocity normal to the blade chord is nearly uniform in the mid tip-gap and changes substantially from the pressure to suction side. The crossflow velocity relies on the local tip pressure loading that is different from the mid-span pressure loading because of tip leakage vortex influence. The tip gap flow is highly skewed three-dimensional flow throughout the full gap. Normalized circulation within the tip gap is independent of the gap size. The tip gap flow interacts with the primary flow, separates from the endwall, and rolls up on the suction side to form the tip leakage vortex. The tip leakage vortex is unsteady from the observation of the TKE transport vector and oil flow visualizations. The reattachment of tip separation vortex on the pressure side strongly depends on the blade thickness-to-gap height ratio after the origin of tip leakage vortex but is weakly related to it before the origin of tip leakage vortex for a moderate tip gap. Other than the nearest endwall and blade tip regions, the TKE does not vary much in tip gap. The tip leakage vortex produces high turbulence intensities. The tip gap flow correlations of streamwise and wall normal velocity fluctuations decrease significantly from the leading edge to the trailing edge of the blade due to flow skewing. The tip gap flow is a strongly anisotropic turbulent flow. Rapid distortion ideas can not apply to it. A turbulence model based on stress transport equations and experimental data is necessary to reflect the tip gap flow physics. For the moving endwall, relative motion skews the inner region flow and is decorrelated with the outer layer flow. Hence, the TKE and correlations of streamwise and wall normal velocity fluctuations decrease. / Ph. D.
|
20 |
Measurement, Simulation, and 1D-Modeling of Turbocharger Radial Turbines at Design and Extreme Off-Design ConditionsInhestern, Lukas Benjamin 02 May 2019 (has links)
[ES] Para lograr una correspondencia óptima entre el turbocompresor y el motor de combustión interna en un amplio rango del mapa de operación del motor, su compleja interacción se analiza comúnmente por medio de modelos transitorios unidimensionales. El flujo pulsante de los gases de escape del motor causa altas variaciones de caudal, presión total y temperatura total en la entrada de la turbina. Esto lleva a la turbina del turbocompresor hacia condiciones extremadamente fuera de diseño. Por lo tanto, se requieren amplios mapas de operación de turbina como entrada para estos modelos unidimensionales. La medida de los mapas de turbinas suele estar restringida por el choque y el bombeo del compresor.
En esta tesis, el compresor del turbocompresor se convirtió en una turbina centrífuga para ayudar a la rotación del eje cuando la turbina produce o incluso consume baja potencia. Para aumentar la potencia de salida de la rueda del compresor, se colocó una IGV aguas arriba de la entrada del compresor. Para reducir el esfuerzo de adiabatización de la significativa transferencia de calor interna en estas condiciones de operación, se desarrolló una correlación simple que solo depende de las medidas de temperatura de fluidos.
Con los datos obtenidos fuera del diseño, se validó una configuración de CFD para el logro de resultados convergentes en condiciones extremadamente fuera del diseño. Para reducir la problemática de los elevados ángulos de flujo en la salida de la turbina, cuando se opera con bajos caudales másicos, el conducto de salida se extendió y se tuvo que colocar un conducto cónico justo antes de la salida del dominio. Por medio de los resultados de CFD bien validados, se analizaron los efectos tridimensionales del flujo. Operando en condiciones fuera del diseño, el remolino de salida, y por lo tanto, el gradiente de presión estática es tan alto que el flujo colapsa y se produce un flujo reverso. Esta reversión del flujo regresa al interior del rotor y se mezcla nuevamente con el flujo principal. Por un lado, este efecto produce pérdidas de presión y un par localmente negativo en el rodete. Por otro lado, el flujo revertido aumenta localmente el flujo de masa y restringe la sección de flujo cerca de la carcasa. Por lo tanto, la carga del alabe y la producción de torsión local aumentan cerca del espacio por encima del alabe. Aunque se notó un cambio claro en la gráfica de la carga de la etapa en función del coeficiente de flujo tan pronto como ocurre el flujo reverso, no se puede notar un impacto claro en la eficiencia. El análisis adicional del flujo de fuga de la punta en un amplio rango mostró la importancia del flujo impulsado por fricción y el flujo de fuga inducido por incidencia en una condición fuera del diseño. En general, se observó que las pérdidas por fugas en la punta se volvieron más importantes a medida que la turbina opera lejos del punto de diseño.
Finalmente, los efectos observados fueron modelados unidimensionalmente. Se desarrolló un modelo de pérdida de fugas en la punta que es capaz de reproducir las tendencias encontradas y muestra una buena capacidad de extrapolación. Los resultados fueron validados con los datos tridimensionales de CFD. A continuación, fue posible desarrollar un método novedoso para la caracterización del flujo de fuga de la punta, que puede modelar el momento y las velocidades del flujo de fuga de la punta para diferentes alturas de separación de la punta en condiciones de diseño y fuera del diseño. Siguiendo con lo anterior, se desarrolló un modelo de extrapolación unidimensional completo para mapas de eficiencia de turbinas adiabáticas. Aprovechando el modelo de fuga de puntas recientemente desarrollado y otros hallazgos de la campaña CFD, se logró una buena calidad de extrapolación en términos de velocidad, relación cinemática de BSR y apertura de VGT. La alta calidad de los resultados se estableció mediante la comparac / [CA] Per aconseguir una correspondència òptima entre el turbocompressor i el motor de combustió interna en una amplia zona del mapa d'operació del motor, la seva complexa interacció s'analitza comunament per mitjà de models transitoris unidimensionals. El flux polsant dels gasos d'escapament del motor causa altes variacions de cabal, pressió total i temperatura total a l'entrada de la turbina. Això porta a la turbina del turbocompressor cap a condicions extremadament fora de disseny. Per tant, es requereixen amplis mapes d'operació de turbina com a entrada per a aquests models unidimensionals. La mesura dels mapes de turbines sol estar restringida pel choke i el surge del compressor.
En aquesta tesi, el compressor del turbocompressor va esdevenir una turbina centrífuga per ajudar a la rotació de l'eix quan la turbina produeix o fins i tot consumeix baixa potència. Per augmentar la potència de sortida de la roda del compressor, es va col·locar una IGV aigües amunt de l'entrada del compressor. Per reduir l'esforç de adiabatización de la significativa transferència de calor interna en aquestes condicions d'operació, es va desenvolupar una correlació simple que només depèn de les mesures de temperatura del fluids.
Amb les dades obtingudes fora del disseny, es va validar una configuració de CFD per a l'assoliment de resultats convergents en condicions extremadament fora del disseny. Per reduir la problemàtica dels elevats angles de flux a la sortida de la turbina, quan s'opera amb baixos cabals màssics, el conducte de sortida es va estendre i es va haver de posar un conducte cònic just abans de la sortida del domini. Per mitjà dels resultats de CFD ben validats, es van analitzar els efectes tridimensionals del flux. Operant en condicions fora del disseny, el remolí de sortida, i per tant, el gradient de pressió estàtica és tan alt que el flux col·lapsa i es produeix un flux revers. Aquesta reversió del flux torna a l'interior del rotor i es barreja novament amb el flux principal. D'una banda, aquest efecte produeix pèrdues de pressió i un parell localment negatiu en el rodet. D'altra banda, el flux revertit augmenta localment el flux de massa i restringeix la secció de flux prop del carcassa. Per tant, la càrrega del alabi i la producció de torsió local augmenten prop de l'espai per sobre damunt del alabi. Encara que es va notar un canvi clar en la gràfica de la càrrega de l'etapa en funció del coeficient de flux quan succeeix el flux revers, no es pot notar un impacte clar en l'eficiència. L'anàlisi addicional del flux de fugida de la punta en un ampli rang va mostrar la importància del flux impulsat per fricció i el flux de fugida induït per incidència en una condició fora del disseny. En general, es va observar que les pèrdues per fuites a la punta es van tornar més importants quan la turbina opera lluny del punt de disseny.
Finalment, els efectes observats van ser modelats unidimensionalment. Es va desenvolupar un model de pèrdua de fuites a la punta que és capaç de reproduir les tendències trobades i mostra una bona capacitat d'extrapolació. Els resultats van ser validats amb les dades tridimensionals de CFD. A continuació, va ser possible desenvolupar un mètode innovador per a la caracterització del flux de fugida de la punta, que pot modelar el moment i les velocitats del flux de fugida de la punta per diferents alçades de separació de la punta en condicions de disseny i fora de l' disseny. Finalment, es va desenvolupar un model d'extrapolació unidimensional complet per a mapes d'eficiència de turbines adiabàtiques. Fent ús del model de fugida de puntes recentment desenvolupat i altres troballes de la campanya CFD, es va aconseguir una bona qualitat de extrapolació en termes de velocitat, relació cinemàtica de BSR i obertura de VGT. L'alta qualitat dels resultats es va establir mitjançant la comparació amb la gran quantitat de dades mesurades en primer lloc. / [EN] To achieve an optimal matching between the turbocharger and internal combustion engine over a wide range of the engine operation map, their complex interaction is commonly analyzed by means of transient one-dimensional modeling. The pulsating flow of the engine exhaust gases causes high variations of turbine inlet mass flow, total pressure, and total temperature. This pushes the turbocharger turbine operation towards extreme off-design conditions. Hence, wide turbine operation maps are required as input for the one-dimensional models. The measurement of turbine maps is typically restricted by compressor choke and surge. At the same time, only minor geometrical changes are required to maintain the important thermal characteristics of the turbocharger.
In this thesis the turbocharger compressor was converted into a centrifugal turbine to assist the axis rotation when the turbine produces or even consumes low power. For enhancing the power output from the compressor wheel, an IGV was placed upstream of the compressor inlet. To reduce the effort for adiabatizing, a simple correlation only dependent on fluid temperature measurements was developed. Further test monitoring strategies were documented that can assist the measurement of off-design conditions.
With the obtained off-design data a CFD setup for the achievement of convergent results in extreme off-design conditions was validated. To reduce the problem of high swirl angles in the turbine outlet when operating with low mass flows, the outlet duct was extended and a tapered duct had to be attached just before the domain outlet. By means of the well validated CFD results, three-dimensional flow effects were analyzed. Operating in high off-design conditions the outlet swirl and thus, the static pressure gradient was so high that the flow collapses and a reverse flow develops. This reverse flow reenters the rotor and mixes again with the main flow. On one hand this effect produces pressure losses and locally negative torque at the hub. However, on the other hand the reentering flow increases the mass flow locally and restricts the flow section close to the hub. Hence, blade loading and local torque production are increased close to the shroud. Although a clear change in the stage loading vs. flow coefficient plot was noticed as soon as the reverse flow occurs, no clear impact on the efficiency can be seen. Further analysis of tip leakage flow over a wide range showed the importance of friction driven flow and incidence induced leakage flow in off-design condition. In general, greater tip leakage losses were observed as further the turbine operates away from the design point. Furthermore, it was stated that a commonly used correlation for the characterization of tip leakage flow is not capable of reproducing either qualitative trends nor quantities when the tip gap height or the operating point is varied.
Finally, the observed effects were modeled in one-dimensional form. A tip leakage loss model that is capable of reproducing the found trends and shows good extrapolation capability was developed. Results were validated using three-dimensional CFD data. As a result, it was possible to develop a novel method for tip leakage flow characterization, which can model tip leakage flow momentum and velocities for varying tip gap heights in design and off-design conditions. Following, a complete one-dimensional extrapolation model for adiabatic turbine efficiency maps was developed. Taking advantage of the newly developed tip leakage model and other findings from the CFD campaign, good extrapolation quality in terms of speed, blade-to-jet speed ratio and VGT opening was achieved. High accuracy of the results was stated by the comparison with the initially measured wide range data. / Inhestern, LB. (2019). Measurement, Simulation, and 1D-Modeling of Turbocharger Radial Turbines at Design and Extreme Off-Design Conditions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/119989
|
Page generated in 0.0457 seconds