• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 159
  • 75
  • Tagged with
  • 234
  • 234
  • 129
  • 105
  • 84
  • 81
  • 54
  • 54
  • 39
  • 36
  • 36
  • 30
  • 27
  • 27
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

CFT-tool : ferramenta configurável para aplicação de técnicas de detecção de falhas em processadores por software / CFT-tool: configurable tool to application of faults detection techniques in processors by software

Chielle, Eduardo January 2012 (has links)
Este trabalho apresenta uma ferramenta configurável, denominada de CFT-tool, capaz de aplicar automaticamente técnicas de detecção de erros em software com o objetivo de proteger processadores com diferentes arquiteturas e organizações contra falhas transientes no hardware. As técnicas baseadas em redundância e comparação são aplicadas pela CFT-tool no código assembly de um programa desprotegido, compilado para a arquitetura alvo. A ferramenta desenvolvida foi validada utilizando dois processadores distintos: miniMIPS e LEON3. O processador miniMIPS foi utilizado para verificar a eficiência, em termos de taxa de detecção de erros, tempo de execução e ocupação de memória, das técnicas de detecção em software aplicadas pela CFT-tool, comparando os resultados obtidos com os presentes na literatura. O processador LEON3 foi selecionado por ser amplamente utilizado em aplicações espaciais e por ser baseado em uma arquitetura diferente da arquitetura do processador miniMIPS. Com o processador LEON3 é verificada a configurabilidade da CFT-tool, isto é, a capacidade dela de aplicar técnicas de detecção em software em um código compilado para um diferente processador, o mantendo funcional e sendo capaz de detectar erros. A CFT-tool pode ser utilizada para proteger programas para outras arquiteturas e organizações através da modificação dos arquivos de configuração da ferramenta. A configuração das técnicas é definida segundo as especificações da aplicação, recursos do processador e seleções do usuário. Programas foram protegidos e falhas foram injetadas em nível lógico em ambos os processadores. Para o processador miniMIPS, as taxas de detecção de erros, os tempos de execução e as ocupações de memórias dos programas protegidos se mostraram compatíveis com os resultados presentes na literatura. Resultados semelhantes foram encontrados para o processador LEON3. Diferenças entre os resultados ocorrem devido às características da arquitetura. A ferramenta CFT-tool por ser configurável pode proteger o código na integralidade ou selecionar partes do código e registradores que serão redundantes e protegidos. A vantagem de proteger parte do código é reduzir o custo final em termos de tempo de processamento e ocupação de memória. Uma análise do impacto da seleção seletiva de registradores na taxa de detecção de erros é apresentada. E diretivas de alcançar um comprometimento ótimo entre quantidade de registradores protegidos, taxa de detecção de erros e custo são discutidas. / This work presents a configurable tool, called CFT-tool, capable of automatically applying software-based error detection techniques aiming to protect processors with different architectures and organizations against transient faults in the hardware. The techniques are based on redundancy and comparison. They are applied by CFT-tool in the assembly code of an unprotected program, compiled to the target architecture. The developed tool was validated using two distinct processors: miniMIPS and LEON3. The miniMIPS processor has been utilized to verify the efficiency of the software-based techniques applied by CFT-tool in the assembly code of unprotected programs in terms of error detection rate, runtime and memory occupation, comparing the obtained results with those presented in the literature. The LEON3 processor was selected because it is largely adopted in space applications and because it is based on a different architecture that miniMIPS processor. The configurability of the CFT-tool is verified with the LEON3 processor, that is, the capability of the tool at applying software-based detection techniques in a code compiled to a different processor, maintaining it functional and capable of detecting errors. The CFT-tool can be utilized to protect programs compiled to other architectures and organizations by modifying the configuration files of the tool. The configuration of the techniques is defined by the specifications of the application, processor resources and selections of the user. Programs were protected and faults were injected in logical level in both processors. When using the miniMIPS processor, the error detection rates, runtimes and memory occupations of the protected programs are comparable to the results presents in the literature. Similar results are reached with the LEON3 processor. Differences between the results are due to architecture features. The CFT-tool can be configurable to protect the entire code or to select portions of the code or registers that will be redundant and protected. The advantage of protecting portions of the code is to reduce the final cost in terms of runtime and memory occupation. An analysis of the impact of selective selection of registers in the error detection rate is also presented. And policies to reach an optimum committal between amount of protected registers, error detection rate and cost are discussed.
102

Extensão do suporte para simulação de defeitos em algoritmos distribuídos utilizando o Neko / Extension to support failures in distributed algorithm simulation using Neko

Rodrigues, Luiz Antonio January 2006 (has links)
O estudo e desenvolvimento de sistemas distribuídos é uma tarefa que demanda grande esforço e recursos. Por este motivo, a pesquisa em sistemas deste tipo pode ser auxiliada com o uso de simuladores, bem como por meio da emulação. A vantagem de se usar simuladores é que eles permitem obter resultados bastante satisfatórios sem causar impactos indesejados no mundo real e, conseqüentemente, evitando desperdícios de recursos. Além disto, testes em larga escala podem ser controlados e reproduzidos. Neste sentido, vem sendo desenvolvido desde 2000 um framework para simulação de algoritmos distribuídos denominado Neko. Por meio deste framework, algoritmos podem ser simulados em uma única máquina ou executados em uma rede real utilizando-se o mesmo código nos dois casos. Entretanto, através de um estudo realizado sobre os modelos de defeitos mais utilizados na literatura, verificou-se que o Neko é ainda bastante restrito nesta área. A única classe de defeito abordada, lá referida como colapso, permite apenas o bloqueio temporário de mensagens do processo. Assim, foram definidos mecanismos para a simulação das seguintes classes de defeitos: omissão de mensagens, colapso de processo, e alguns defeitos de rede tais como quebra de enlace, perda de mensagens e particionamento. A implementação foi feita em Java e as alterações necessárias no Neko estão documentadas no texto. Para dar suporte aos mecanismos de simulação de defeitos, foram feitas alterações no código fonte de algumas classes do framework, o que exige que a versão original seja alterada para utilizar as soluções. No entanto, qualquer aplicação desenvolvida anteriormente para a versão original poderá ser executada normalmente independente das modificações efetuadas. Para testar e validar as propostas e soluções desenvolvidas foram utilizados estudos de caso. Por fim, para facilitar o uso do Neko foi gerado um documento contendo informações sobre instalação, configuração e principais mecanismos disponíveis no simulador, incluindo o suporte a simulação de defeitos desenvolvido neste trabalho. / The study and development of distributed systems is a task that demands great effort and resources. For this reason, the research in systems of this type can be assisted by the use of simulators, as well as by means of the emulation. The advantage of using simulators is that, in general, they allow to get acceptable results without causing harming impacts in the real world and, consequently, preventing wastefulness of resources. Moreover, tests on a large scale can be controlled and reproduced. In this way, since 2000, a framework for the simulation of distributed algorithms called Neko has been developed. By means of this framework, algorithms can be simulated in a single machine or executed in a real network, using the same code in both cases. However, studying the most known and used failure models developed having in mind distributed systems, we realized that the support offered by Neko for failure simulation was too restrictive. The only developed failure class, originally named crash, allowed only a temporary blocking of process’ messages. Thus, mechanisms for the simulation of the following failure classes were defined in the present work: omission of messages, crash of processes, and some network failures such as link crash, message drop and partitioning. The implementation was developed in Java and the necessary modifications in Neko are registered in this text. To give support to the mechanisms for failure simulation, some changes were carried out in the source code of some classes of the framework, what means that the original version should be modified to use the proposed solutions. However, all legacy applications, developed for the original Neko version, keep whole compatibility and can be executed without being affected by the new changes. In this research, some case studies were used to test and validate the new failure classes. Finally, with the aim to facilitate the use of Neko, a document about the simulator, with information on how to install, to configure, the main available mechanisms and also on the developed support for failure simulation, was produced.
103

Implementação de um mecanismo de recuperação por retorno para a ferramenta ourgrid / Implementation of a rollback recovery mechanism for ourGrid toolkit

Silva, Hélio Antônio Miranda da January 2007 (has links)
A computação em grid (ou computação em grade) emergiu como uma área de pesquisa importante por permitir o compartilhamento de recursos computacionais geograficamente distribuídos entre vários usuários. Contudo, a heterogeneidade e a dinâmica do comportamento dos recursos em ambientes de grid tornam complexos o desenvolvimento e a execução de aplicações. OurGrid é uma plataforma de software que procura contornar estas dificuldades: além de permitir a execução de aplicações distribuídas em ambientes de computação em grid, oferece e gerencia um esquema de troca de favores entre usuários. Neste esquema, instituições (ou usuários) que possuam recursos ociosos podem oferecê-los a outros que deles necessitem. Quanto mais um domínio oferecer recursos ao grid, mais será favorecido quando precisar, ou seja, terá prioridade mais alta quando requisitar máquinas ao grid. O software MyGrid é o principal componente do OurGrid. É através dele que o usuário interage com o grid, submetendo e gerenciando suas aplicações. No modelo de execução do MyGrid, as tarefas são lançadas por um nó central que coordena todo o escalonamento de tarefas que serão executadas no grid. Este nó apresenta uma fragilidade caracterizada na literatura como "ponto único de falhas", pois seu colapso faz com que os resultados do processamento corrente sejam perdidos. Isto pode significar horas ou, até mesmo, dias de processamento perdido, dependendo das aplicações. Visando suprir esta deficiência, este trabalho descreve o funcionamento e a implementação de um mecanismo de checkpointing (ou salvamento de estado), usado como base para a recuperação por retorno, que permite ao sistema voltar a um estado consistente, minimizando a perda de dados, após uma falha no nó central do MyGrid. Assim, ele salva, de forma estável, o estado da aplicação (estruturas de dados e informações de controle imprescindíveis) capaz de restaurar o sistema após o colapso, oferecendo uma alternativa à sua característica de ponto único de falhas. Os checkpoints são obtidos e salvos a cada mudança de estado do escalonador de tarefas do nó central. A eficiência do mecanismo de recuperação é comprovada através de experimentos que exercitam este mecanismo em cenários com diferentes características, visando validar e avaliar o impacto real no desempenho do MyGrid. / The grid computing has emerged as an important research area because it allows sharing geographically distributed computing resources among several users. However, resources in a grid are highly heterogeneous and dynamic, turning complex the development and the execution of applications. OurGrid is a software platform that intends to reduce these difficulties. Besides allowing the execution of distributed applications in grid environments, it offers and gives support to an exchange of favors between users. In this way, institutions (or users) that have idle resources can offer them to other users. The more resources a domain offers to the grid, the more it will be favored when in need. It will have higher priority when requesting machines to grid. MyGrid software is the main component of OurGrid: it constitutes the interface for user interaction as well as application submission and management. In the execution model of MyGrid, tasks are launched by a central node (home-machine), which manages the scheduling of tasks to be executed in the grid. This node constitutes a "single point of failure", because its crash causes the loss of results of the previous processing. Depending on the particular applications, this loss can be the result of hours or days of processing time. This dissertation aims to reduce the consequences of this problem offering an alternative to the single point of failure: here is proposed and implemented a checkpointing mechanism, used as basis for the rollback recovery. Checkpoints are taken synchronously with the state changes of the scheduler on the central node. After a failure affecting the home-machine of MyGrid, the system recovers information on the state of the application (data structures and essential control information) and results of previous computation, saved in stable storage, minimizing the loss of data. The efficiency of the recovery mechanism and its impact over MyGrid are evaluated through experiments that exercise this mechanism in scenarios with different characteristics.
104

Dealing with radiation induced long duration transient faults in future technologies / Lidando com falhas transitórias de longa duração provocadas por radiação em tecnologias futuras

Lisboa, Carlos Arthur Lang January 2009 (has links)
Com a evolução da tecnologia, dispositivos menores e mais rápidos ficam disponíveis para a fabricação de circuitos que, embora sejam mais eficientes, são mais sensíveis aos efeitos da radiação. A alta densidade, ao reduzir a distância entre dispositivos vizinhos, torna possível a ocorrência de múltiplas perturbações como resultado da colisão de uma única partícula. A alta velocidade, ao reduzir os ciclos de relógio dos circuitos, faz com que os pulsos transientes durem mais do que um ciclo. Todos estes fatos impedem o uso de diversas técnicas de mitigação existentes, baseadas em redundância temporal, e tornam necessário o desenvolvimento de técnicas inovadoras para fazer frente a este novo e desafiador cenário. Esta tese inicia com a análise da evolução da duração de pulsos transitórios nas diferentes tecnologias que dá suporte à previsão de que transitórios de longa duração (TLDs) irão afetar sistemas fabricados usando tecnologias futuras e mostra que diversas técnicas de mitigação baseadas em redundância temporal existentes não serão capazes de lidar com os TLDs devido à enorme sobrecarga que elas imporiam ao desempenho. Ao mesmo tempo, as técnicas baseadas em redundância temporal, embora sejam capazes de lidar com TLDs, ainda impõem penalidades muito elevadas em termos de área e energia, o que as torna inadequadas para uso em algumas áreas de aplicação, como as de sistemas portáteis e embarcados. Como uma alternativa para enfrentar estes desafios impostos aos projetistas pelas tecnologias futuras, é proposto o desenvolvimento de técnicas de mitigação com baixa sobrecarga, atuando em níveis de abstração distintos. Exemplos de novas técnicas de baixo custo atuando nos níveis de circuito, algoritmo e arquitetura são apresentados e avaliados. Atuando em nível de algoritmo, uma alternativa de baixo custo para verificação de multiplicação de matrizes é proposta e avaliada, mostrando-se que ela oferece uma boa solução para este problema específico, com uma enorme redução no custo de recomputação quando um erro em um elemento da matriz produto é detectado. Para generalizar esta idéia, o uso de invariantes de software na detecção de erros transitórios durante a execução é sugerido como outra técnica de baixo custo, e é mostrado que esta oferece alta capacidade de detecção de falhas, sendo, portanto, uma boa candidata para uso de maneira complementar com outras técnicas no desenvolvimento de software tolerante a falhas transitórias. Como exemplo de uma técnica em nível de arquitetura, é proposta e avaliada uma melhoria da clássica técnica de lockstep com checkpoint e rollback, mostrando uma redução significativa no número de operações de escrita necessárias para um checkpoint. Finalmente, como um exemplo de técnica de baixo custo baseada em redundância espacial, é proposto e avaliado o uso de código de Hamming na proteção de lógica combinacional, um problema ainda em aberto no projeto de sistemas usando tecnologias futuras. / As the technology evolves, faster and smaller devices are available for manufacturing circuits that, while more efficient, are more sensitive to the effects of radiation. The high transistor density, reducing the distance between neighbor devices, makes possible the occurrence of multiple upsets caused by a single particle hit. The achievable high speed, reducing the clock cycles of circuits, leads to transient pulses lasting longer than one cycle. All those facts preclude the use of several existing soft error mitigation techniques based on temporal redundancy, and require the development of innovative fault tolerant techniques to cope with this challenging new scenario. This thesis starts with the analysis of the transient width scaling across technologies, a fact that supports the prediction that long duration transients (LDTs) will affect systems manufactured using future technologies, and shows that several existing mitigation techniques based on temporal redundancy will not be able to cope with LDTs, due to the huge performance overhead that they would impose. At the same time, space redundancy based techniques, despite being able to deal with LDTs, still impose very high area and power penalties, making them inadequate for use in some application areas, such as portable and embedded systems. As an alternative to face those challenges imposed to designers by future technologies, the development of low overhead mitigation techniques, working at different abstraction levels, is proposed. Examples of new low cost techniques working at the circuit, algorithm, and architecture levels are presented and evaluated. Working at the algorithm level, a low cost verification algorithm for matrix multiplication is proposed and evaluated, showing that it provides a good solution for this specific problem, with dramatic reduction in the cost of recomputation when an error in one of the product matrix elements is detected. In order to generalize this idea, the use of software invariants to detect soft errors at runtime is suggested as a low cost technique, and shown to provide high fault detection capability, being a good candidate for use in a complementary fashion in the development of software tolerant to transient faults. As an example of architecture level technique, the improvement of the classic lockstep with checkpoint and rollback technique is proposed and evaluated, showing significant reduction in the number of write operations required for checkpoints. Finally, as an example of low cost space redundancy technique at circuit level, the use of Hamming coding to protect combinational logic, an open issue in the design of systems using future technologies, is proposed and evaluated through its application to a set of arithmetic and benchmark circuits.
105

Motf : meta-objetos para tolerância a falhas / Moft-metaobjects for fault-tolerance

Lisboa, Maria Lucia Blanck January 1995 (has links)
As técnicas de programação e os mecanismos de linguagens de programação destinados ao desenvolvimento de aplicações de alta confiabilidade são agrupadas sob a denominação de tolerância a falhas em software. A área de tolerância a falhas abrange uma serie de técnicas com funcionalidades e aplicabilidade bem definidas, permitindo que seja considerada um domínio próprio - o domínio de tolerância a falhas. O conteúdo de informação desse domínio não é auto-suficiente, uma vez que atua sobre outros domínios. Seu objetivo é garantir as funcionalidades das aplicações desenvolvidas em outros domínios. Ao conjugar o domínio de tolerância a falhas a um outro domínio, ou seja, ao domínio de uma aplicação, o primeiro passa a se responsável pelos requisitos não-funcionais da aplicação. Os requisitos não funcionais de uma aplicação, a exemplo de confiabilidade e segurança, são cruciais em muitas aplicações e exigem métodos e conhecimentos que são distintos do domínio da aplicação. O modelo de orientação a objetos incentiva o desenvolvimento de aplicações através da composição de objetos, cada qual com a sua estrutura e comportamento específicos. Cada particular composição de objetos forma um conjunto que deve observar um comportamento que atenda aos requisitos da aplicação, de forma confiável. Com o objetivo de aumentar a confiabilidade da aplicação e de minimizar o efeito de possíveis falhas do sistema, são propostos objetos tolerantes a falhas. Objetos tolerantes a falhas são objetos responsáveis por serviços críticos da aplicação e que possuem mecanismos que garantem a confiabilidade e disponibilidade destes serviços. Comportamentos tolerantes a falhas de objetos são obtidos por redundância de componentes, incluindo replicacão e diversidade. O gerenciamento da redundância é executado de forma independente do domínio da aplicação e exercido em um meta-nível, através de técnicas de reflexão computacional. A adoção de reflexão computacional no modelo de orientação a objetos permite organizar as atividades de tolerância a falhas sem interferir no aspecto estrutural dos objetos do domínio da aplicação. Os controles que devem ser exercidos pelos meta-objetos sobre os objetos da aplicação são realizados em um meta-nível, de forma a separar as funcionalidades especificas da aplicação daquelas pertinentes ao domínio de tolerância a falhas. Estes meta-objetos, são organizados na forma de um framework, denominado MOTF - Meta-objetos para Tolerância a Falhas. O projeto de MOTF é um framework que apóia o desenvolvimento de aplicações tolerantes a falhas, compreendendo múltiplas classes que definem as funcionalidades exigidas por diversas técnicas de tolerância a falhas. Adota uma arquitetura reflexiva, na qual o meta-nível é dedicado as atividades de detecção e recuperação de erros através da monitoração de objetos da aplicação, localizados no nível base. Características de tolerância a falhas podem ser adicionadas a objetos considerados críticos pela aplicação, assim distribuindo, e não centralizando, a propriedade de tolerar falhas entre objetos da aplicação. Incorporando os princípios de reflexão computacional ao modelo de orientação a objetos dois benefícios principais se salientam: promover a reutilização de objetos tolerantes a falhas e garantir a invulnerabilidade do objeto do domínio da aplicação, ao separar as ações pertinentes ao domínio da aplicação das específicas do sistema tolerante a falhas. / Software fault-tolerance encompasses all techniques and programming languages' mechanisms intended to support the development of high reliability software. We can consider the faulttolerance area a proper domain of knowledge composed by well-defined techniques used to guarantee the reliability of applications related to other domains. Therefore, the fault-tolerance domain acts over other domains. When the fault-tolerance domain is merged into an application domain it becomes responsible for the non-functional requirements of the application. Among those requirements, reliability and safety are crucial ones and they use methods and concerns not related to the application domain. The object-oriented approach to software development allows a software to be decomposed into a set of components - the objects. Each object has its own structure and behavior. The view of a system as composed by interacting objects can be quite convenient in expressing different degrees of fault tolerance. We can distinguish between critical and non-critical objects and we may even distinguish between critical and non-critical operations within a single object. The objective of this research is the exploitation of object-oriented approach to increase reliability and decrease the effects of failures based on the provision of fault-tolerant objects. Fault-tolerant objects are abstractions of high reliability components and are designed to support several fault-tolerance strategies. Furthermore, computational reflection is adopted to organize faulttolerant activities at a meta-level and to provide transparent interfacing among fault-tolerant and non-fault-tolerant objects. A fault-tolerant object can be defined as an object that represents a single interface to redundant services and whose behavior is controlled by a metaobject. Possible behaviors of fault-tolerant objects include replication or diversity and the associated metaobject adds a specific fault-tolerant behavior to its referent object without interfering in its internal structure. MOTF - Metaobjects for Fault Tolerance is a framework intended to support the development of fault-tolerant applications. This framework consists of reusable meta-level classes. Each meta-level class implements a fault-tolerant service, and metaobjects are used as monitoring agents of fault-tolerant objects. The reflective object-oriented architecture promotes reusability and hides the programming of fault-tolerant mechanisms from the application.
106

Detecção e proteção de blocos básicos suscetíveis através da análise sistemática de single bit-flip / Detection and protection of susceptible basic blocks through systematic bit-flip analysis

Rodrigues, Diego Gonçalves January 2015 (has links)
Partículas radioativas, ao atingirem o hardware dos sistemas computacionais, podem resultar em comportamentos inesperados durante a execução de um software. Tais comportamentos inesperados podem persistir por toda a vida útil do sistema ou podem ter uma duração limitada. Nesse último caso, temos o que chamamos de falhas transientes. Falhas transientes podem fazer com que as instruções do programa executem em uma sequência incorreta, o que chamamos de erros de fluxo de controle (Control-flow errors - CFEs). Estudos mostram que entre 33% e 77% das falhas transientes que afetam o hardware se manifestam como erros de fluxo de controle, dependendo do tipo do processador. Se o sistema não realizar nenhuma verificação em tempo de execução, um erro de fluxo de controle pode não ser detectado, o que pode resultar em uma execução incorreta do programa. Sistemas projetados para aplicações de baixo custo voltados para sistemas embarcados, onde os custos e desempenho são os fatores principais, utilizam técnicas baseadas em software para aumentar a confiabilidade do sistema. As técnicas baseadas em software para detecção de CFEs são conhecidas como signature monitoring ou signature checking. Essas técnicas introduzem código extra em todos os blocos básicos do programa com a finalidade de detectar os CFEs. Esse código extra implica em overhead, que pode ter uma grande variação dependendo da técnica utilizada. Na tentativa de minimizar o overhead imposto pelas técnicas de detecção de CFEs, neste trabalho foi desenvolvida a técnica de detecção e proteção de blocos básicos suscetíveis através da análise sistemática de single bit-flip. O objetivo da técnica é detectar os blocos básicos suscetíveis do programa através da análise sistemática de single bit-flip e proteger apenas esses blocos básicos. A técnica foi avaliada em termos de sua taxa de cobertura de falhas e desempenho. Para avaliar a taxa de cobertura falhas foram realizadas várias campanhas de injeção de falhas nos programas da suíte de benchmarks Mibench. A avaliação de desempenho foi feita com base na quantidade de instruções de máquina executadas pelos benchmarks, comparando quantidade de instruções antes e depois da utilização da técnica detecção e proteção de blocos básicos suscetíveis. Os resultados dos experimentos mostram que é possível reduzir em até 27,93% a quantidade de blocos básicos protegidos e ao mesmo tempo manter uma alta taxa de cobertura de falhas. Porém, em termos de desempenho, o ganho não ficou na mesma proporção da quantidade de blocos básicos não protegidos, ficando abaixo do esperado. / Radioactive particles hitting the hardware of computer systems may result in unexpected behavior during software execution. Such unexpected behavior may persist for the lifetime of the system or may have a limited duration. In the latter case, we have what is called a transient fault. Transient faults may cause the program instructions to execute in an incorrect sequence. This incorrect sequence is called a control flow error (CFE). Research show that between 33% to 77% of transient faults manifest themselves as CFEs, depending on the type of the processor. If the system does not perform any verification at runtime, a control flow error may be not detected, which can result in incorrect program execution. Systems projected to low-cost embedded applications, where cost and performance are the main factors, use software based techniques to improve system reliability. Software based techniques to detect CFEs are known as signature monitoring or signature checking. These techniques insert extra code in each basic block of the program in order to detect CFEs. This extra code add an undesirable overhead in the program, which can have large variation depending on the technique used. In the attempt to minimize the overhead added by CFEs detection techniques, this work developed a technique of detection and protection of susceptible basic blocks through systematic bit-flip analysis. The purpose of this technique is to detect the susceptible basic blocks of the program through the systematic bit-flip analysis and to protect only these basic blocks. The technique was evaluated based on its fault coverage rate and performance. To evaluate the fault coverage rate a fault injection campaing was performed in the programs of the Mibench benchmark suite. The performance evaluation was based in the number of instruction executed by each benchmark, comparing the number of instructions before and after the use of the proposed technique. The experimental results show that is possible to reduce up to 27,93% the amount of protected basic blocks, while keeping a high faults coverage hate. However, in terms of performance, the gain was not in the same proportion, being lower than expected.
107

Timing vulnerability factor analysis in master-slave D flip-flops / Análise do fator de vulnerabilidade temporal em flip-flops mestre-escravo do tipo D

Zimpeck, Alexandra Lackmann January 2016 (has links)
O dimensionamento da tecnologia trouxe consequências indesejáveis para manter a taxa de crescimento exponencial e levanta questões importantes relacionadas com a confiabilidade e robustez dos sistemas eletrônicos. Atualmente, microprocessadores modernos de superpipeline normalmente contêm milhões de dispositivos com cargas nos nós cada vez menores. Esse fator faz com que os circuitos sejam mais sensíveis a variabilidade ambiental e aumenta a probabilidade de um erro transiente acontecer. Erros transientes em circuitos sequenciais ocorrem quando uma única partícula energizada deposita carga suficiente perto de uma região sensível. Flip-Flops mestreescravo são os circuitos sequencias mais utilizados em projeto VLSI para armazenamento de dados. Se um bit-flip ocorrer dentro deles, eles perdem a informação prévia armazenada e podem causar um funcionamento incorreto do sistema. A fim de proporcionar sistemas mais confiáveis que possam lidar com os efeitos da radiação, este trabalho analisa o Fator de Vulnerabilidade Temporal (Timing Vulnerability Factor - TVF) em algumas topologias de flip-flops mestre-escravo em estágios de pipeline sob diferentes condições de operação. A janela de tempo efetivo que o bit-flip ainda pode ser capturado pelo próximo estágio é definido com janela de vulnerabilidade (WOV). O TVF corresponde ao tempo que o flip-flop é vulnerável a erros transientes induzidos pela radiação de acordo com a WOV e a frequência de operação. A primeira etapa deste trabalho determina a dependência entre o TVF com a propagação de falhas até o próximo estágio através de uma lógica combinacional com diferentes atrasos de propagação e com diferentes modelos de tecnologia, incluindo também as versões de alto desempenho e baixo consumo. Todas as simulações foram feitas sob as condições normais pré-definidas nos arquivos de tecnologia. Como a variabilidade se manifesta com o aumento ou diminuição das especificações iniciais, onde o principal problema é a incerteza sobre o valor armazenado em circuitos sequenciais, a segunda etapa deste trabalho consiste em avaliar o impacto que os efeitos da variabilidade ambiental causam no TVF. Algumas simulações foram refeitas considerando variações na tensão de alimentação e na temperatura em diferentes topologias e configurações de flip-flops mestre-escravo. Para encontrar os melhores resultados, é necessário tentar diminuir os valores de TVF, pois isso significa que eles serão menos vulneráveis a bit-flips. Atrasos de propagação entre dois circuitos sequenciais e frequências de operação mais altas ajudam a reduzir o TVF. Além disso, estas informações podem ser facilmente integradas em ferramentas de EDA para ajudar a identificar os flip-flops mestre-escravo mais vulneráveis antes de mitigar ou substituí-los por aqueles tolerantes a radiação. / Technology scaling has brought undesirable issues to maintain the exponential growth rate and it raises important topics related to reliability and robustness of electronic systems. Currently, modern super pipelined microprocessors typically contain many millions of devices with ever decreasing load capacitances. This factor makes circuits more sensitive to environmental variations and it is increased the probability to induce a soft error. Soft errors in sequential circuits occur when a single energetic particle deposits enough charge near a sensitive node. Master-slave flip-flops are the most adopted sequential elements to work as registers in pipeline and finite state machines. If a bit-flip happens inside them, they lose the previous stored information and may cause an incorrect system operation. To provide reliable systems that can cope with radiation effects, this work analysis the Timing Vulnerability Factor (TVF) of some master-slave D flip-flops topologies in pipeline stages under different operating conditions. The effective time window, which the bit-flip can still be captured by the next stage, is defined as Window of Vulnerability (WOV). TVF corresponds to the time that a flip-flop is vulnerable to radiation-induced soft errors according to WOV and clock frequency. In the first step of this work, it is determined the dependence between the TVF with the fault propagation to the next stage through a combinational logic with different propagation delays and with different nanometer technological models, including also high performance and low power versions. All these simulations were made under the pre-defined nominal conditions in technology files. The variability manifests with an increase or decreases to initial specification, where the main problem is the uncertainty about the value stored in sequential. In this way, the second step of this work evaluates the impact that environmental variability effect causes in TVF. Some simulations were redone considering supply voltage and temperature variations in different master-slave D flip-flop topologies configurations. To achieve better results, it is necessary to try to decrease the TVF values to reduce the vulnerability to bit-flips. The propagation delay between two sequential elements and higher clock frequencies collaborates to reduce TVF values. Moreover, all the information can be easily integrated into Electronic Design Automation (EDA) tools to help identifying the most vulnerable master-slave flip-flops before mitigating or replacing them by radiation hardened ones.
108

Sistema embarcado para a manutenção inteligente de atuadores elétricos / Embedded systems for intelligent maintenance of electrical actuators

Bosa, Jefferson Luiz January 2009 (has links)
O elevado custo de manutenção nos ambientes industriais motivou pesquisas de novas técnicas para melhorar as ações de reparos. Com a evolução tecnológica, principalmente da eletrônica, que proporcionou o uso de sistemas embarcados para melhorar as atividades de manutenção, estas agregaram inteligência e evoluíram para uma manutenção pró-ativa. Através de ferramentas de processamento de sinais, inteligência artificial e tolerância a falhas, surgiram novas abordagens para os sistemas de monitoramento a serviço da equipe de manutenção. Os ditos sistemas de manutenção inteligente, cuja tarefa é realizar testes em funcionamento (on-line) nos equipamentos industriais, promovem novos modelos de confiabilidade e disponibilidade. Tais sistemas são baseados nos conceitos de tolerância a falhas, e visam detectar, diagnosticar e predizer a ocorrência de falhas. Deste modo, fornece-se aos engenheiros de manutenção a informação antecipada do estado de comportamento do equipamento antes mesmo deste manifestar uma falha, reduzindo custos, aumentando a vida útil e tornando previsível o reparo. Para o desenvolvimento do sistema de manutenção inteligente objeto deste trabalho, foram estudadas técnicas de inteligência artificial (redes neurais artificiais), técnicas de projeto de sistemas embarcados e de prototipação em plataformas de hardware. No presente trabalho, a rede neural Mapas Auto-Organizáveis foi adotada como ferramenta base para detecção e diagnóstico de falhas. Esta foi prototipada numa plataforma de sistema embarcado baseada na tecnologia FPGA (Field Programmable Gate Array). Como estudo de caso, uma válvula elétrica utilizada em dutos para transporte de petróleo foi definida como aplicação alvo dos experimentos. Através de um modelo matemático, um conjunto de dados representativo do comportamento da válvula foi simulado e utilizado como entrada do sistema proposto. Estes dados visam o treinamento da rede neural e visam fornecer casos de teste para experimentação no sistema. Os experimentos executados em software validaram o uso da rede neural como técnica para detecção e diagnóstico de falhas em válvulas elétricas. Por fim, também realizou-se experimentos a fim de validar o projeto do sistema embarcado, comparando-se os resultado obtidos com este aos resultados obtidos a partir de testes em software. Os resultados revelam a escolha correta do uso da rede neural e o correto projeto do sistema embarcado para desempenhar as tarefas de detecção e diagnóstico de falhas em válvulas elétricas. / The high costs of maintenance in industrial environments have motivated research for new techniques to improve repair activities. The technological progress, especially in the electronics field, has provided for the use of embedded systems to improve repair, by adding intelligence to the system and turning the maintenance a proactive activity. Through tools like signal processing, artificial intelligence and fault-tolerance, new approaches to monitoring systems have emerged to serve the maintenance staff, leading to new models of reliability and availability. The main goal of these systems, also called intelligent maintenance systems, is to perform in-operation (on-line) test of industrial equipments. These systems are built based on fault-tolerance concepts, and used for the detection, the diagnosis and the prognosis of faults. They provide the maintenance engineers with information on the equipment behavior, prior to the occurrence of failures, reducing maintenance costs, increasing the system lifetime and making it possible to schedule repairing stops. To develop the intelligent maintenance system addressed in this dissertation, artificial intelligence (neural networks), embedded systems design and hardware prototyping techniques were studied. In this work, the neural network Self-Organizing Maps (SOM) was defined as the basic tool for the detection and the diagnosis of faults. The SOM was prototyped in an embedded system platform based on the FPGA technology (Field Programmable Gate Array). As a case study, the experiments were performed on an electric valve used in a pipe network for oil transportation. Through a mathematical model, a data set representative of the valve behavior was obtained and used as input to the proposed maintenance system. These data were used for neural network training and also provided test cases for system monitoring. The experiments were performed in software to validate the chosen neural network as the technique for the detection and diagnosis of faults in the electrical valve. Finally, experiments to validate the embedded system design were also performed, so as to compare the obtained results to those resulting from the software tests. The results show the correct choice of the neural network and the correct embedded systems design to perform the activities for the detection and diagnosis of faults in the electrical valve.
109

Ferramentas para simulação de falhas transientes / Transient fault simulation toolkit

Bartra, Walter Enrique Calienes January 2011 (has links)
Atualmente, a simulação de falhas é um estágio importante em qualquer desenvolvimento de Circuitos Integrados. A predição de falhas comportamentais em qualquer estagio do processo é essencial para garantir que o chip desenvolvido seja bem implementado. Vários problemas podem ser conferidos e solucionados enquanto se executa a simulação. As falhas transientes mais conhecidas são os Single-Event-Upset (SEU), as quais acontecem nos circuitos de memória, e as Single-Event Transient (SET), que acontecem em circuitos de lógica combinacional. A análise do comportamento do circuito sob falhas é fundamental para a escolha de técnicas de proteção e medição da susceptibilidade aos diferentes tipos de falhas. Neste trabalho, apresenta-se uma ferramenta para simular os efeitos que acontecem quando uma fonte de falha é inserida num circuito digital, especialmente falhas SEU. Além disso, é desenvolvido o método TMR que pode verificar a existência de uma falha e inibir que esta se propague pelo circuito todo. Foram desenvolvidos módulos para simulação de circuitos analógicos como o Oscilador Controlado por Voltagem (VCO) permitindo a visualização dos efeitos de falhas nestes circuitos. A ferramenta LabVIEWr da National Instruments é usada para criar o conjunto de Instrumentos Virtuais (VIs) para simular os SEUs. Esta é também usada pela simulação de SETs. Foram feitos várias simulações com as ferramentas desenvolvidas para validar sua funcionalidade os quais mostram resultados semelhantes aos descritos na literatura. As ferramentas desenvolvidas para simulação de falhas transientes em portas lógicas inserem falhas SET de forma automática sem análise prévia do sinal de saída. Usando as ferramentas de Lógica Booleana é possível obter resultados para fazer estudos estatísticos dos erros acontecidos e determinar tendências no comportamento das técnicas de Redundância Modular Triplo (TMR) e TMR com redundância no tempo. O modelo desenvolvido para a análise de falhas do VCO apresenta uma melhor semelhança com o resultado real que com o simulado com ferramentas comerciais. / Nowadays, the fault simulation is an important step in any IC design. Predicting the behavioral faults of any process step is essential to ensure that the design is well implemented. During the simulation various problems can be detected and corrected. The transient faults are the most well known Single-Event-Upset (SEU), which affect memory circuits, and Single-Event Transient (SET), which affect combinational logic circuits. The analyses of the circuit under faults is crucial to the choice of protection techniques and measurement of susceptibility to different types of failures. In this work a tool to simulate the effects that occur when a source of fault is inserted in a digital circuit, especially SEU faults is presented. In addition to modeling a fault, it is developed a Triple Modular Redundancy (TMR) method capable of verifying the existence of a fault preventing it from spreading through the whole circuit. It is also developed a Voltage Controled Oscillator (VCO) to view fault effects in analog circuit. LabVIEWr is used to create a set of virtual instruments to simulate SEUs. It is efficient in modeling the characteristics of SETs. It is possible with this toolkit to replicate the effects of SEUs and SETs described in the literature. The tools developed for simulation of transient faults in logic gates insert SET failures automatically without output signal prior analysis. Using the tools of Boolean Logic is possible to obtain results to make statistical studies of the errors that occurred and determine trends in the behavior of TMR with and without redundancy in time. The model developed for failature analysis of the VCO is similar to the real result with that simulated with commercial tools.
110

Scalable state machine replication / Replicação escalável de máquina de estados

Bezerra, Carlos Eduardo Benevides January 2016 (has links)
Redundância provê tolerância a falhas. Um serviço pode ser executado em múltiplos servidores que se replicam uns aos outros, de maneira a prover disponibilidade do serviço em caso de falhas. Uma maneira de implementar um tal serviço replicado é através de técnicas como replicação de máquina de estados (SMR). SMR provê tolerância a falhas, ao mesmo tempo que é linearizável, isto é, clientes não são capazes de distinguir o comportamento do sistema replicado daquele de um sistema não replicado. No entanto, ter um sistema completamente replicado e linearizável vem com um custo, que é escalabilidade – por escalabilidade, queremos dizer que adicionar servidores ao sistema aumenta a sua vazão, pelo menos para algumas cargas de trabalho. Mesmo com uma configuração cuidadosa e usando otimizações que evitam que os servidores executem ações redundantes desnecessárias, em um determinado ponto a vazão de um sistema replicado com SMR não pode ser mais aumentada acrescentando-se servidores; na verdade, adicionar réplicas pode até degradar a sua performance. Uma maneira de conseguir escalabilidade é particionar o serviço e então permitir que partições trabalhem independentemente. Por outro lado, ter um sistema particionado, porém linearizável e com razoavelmente boa performance não é trivial, e esse é o tópico de pesquisa tratado aqui. Para permitir que sistemas escalem, ao mesmo tempo que se garante linearizabilidade, nós propomos as seguinte ideias: (i) Replicação Escalável de Máquina de Estados (SSMR), (ii) Multicast Atômico Otimista (Opt-amcast) e (iii) S-SMR Rápido (Fast-SSMR). S-SMR é um modelo de execução que permite que a vazão do sistema escale de maneira linear com o número de servidores, sem sacrificar consistência. Para reduzir o tempo de resposta dos comandos, nós definimos o conceito de Opt-amcast, que permite que mensagens sejam entregues duas vezes: uma entrega garante ordem atômica (entrega atômica), enquanto a outra é mais rápida, mas nem sempre garante ordem atômica (entrega otimista). A implementação de Opt-amcast que nós propomos nessa tese se chama Ridge, um protocolo que combina baixa latência com alta vazão. Fast-SSMR é uma extensão do S-SMR que utiliza a entrega otimista do Opt-amcast: enquanto um comando é ordenado de maneira atômica, pode-se fazer alguma pré-computação baseado na entrega otimista, reduzindo assim tempo de resposta. / Redundancy provides fault-tolerance. A service can run on multiple servers that replicate each other, in order to provide service availability even in the case of crashes. A way to implement such a replicated service is by using techniques like state machine replication (SMR). SMR provides fault tolerance, while being linearizable, that is, clients cannot distinguish the behaviour of the replicated system to that of a single-site, unreplicated one. However, having a fully replicated, linearizable system comes at a cost, namely, scalability—by scalability we mean that adding servers will always increase the maximum system throughput, at least for some workloads. Even with a careful setup and using optimizations that avoid unnecessary redundant actions to be taken by servers, at some point the throughput of a system replicated with SMR cannot be increased by additional servers; in fact, adding replicas may even degrade performance. A way to achieve scalability is by partitioning the service state and then allowing partitions to work independently. Having a partitioned, yet linearizable and reasonably performant service is not trivial, and this is the topic of research addressed here. To allow systems to scale, while at the same time ensuring linearizability, we propose and implement the following ideas: (i) Scalable State Machine Replication (S-SMR), (ii) Optimistic Atomic Multicast (Opt-amcast), and (iii) Fast S-SMR (Fast-SSMR). S-SMR is an execution model that allows the throughput of the system to scale linearly with the number of servers without sacrificing consistency. To provide faster responses for commands, we developed Opt-amcast, which allows messages to be delivered twice: one delivery guarantees atomic order (conservative delivery), while the other is fast, but not always guarantees atomic order (optimistic delivery). The implementation of Opt-amcast that we propose is called Ridge, a protocol that combines low latency with high throughput. Fast-SSMR is an extension of S-SMR that uses the optimistic delivery of Opt-amcast: while a command is atomically ordered, some precomputation can be done based on its fast, optimistically ordered delivery, improving response time.

Page generated in 0.0756 seconds