• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 3
  • 1
  • Tagged with
  • 31
  • 11
  • 11
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Characterization of a Lambdoid Phage Gene Encoding a Host Cell Attachment Spike

Henry, Matthew S. 31 July 2008 (has links)
No description available.
22

Cross-talk between the TonB and TolA Energy Transduction Systems in Escherichia coli

South, Timothy E. 23 October 2009 (has links)
No description available.
23

Functional complementation of <i>ΔexbD E. coli</i> by homologous <i>exbD</i> genes

Butler, Kate Ann 20 November 2013 (has links)
No description available.
24

Identification of Potential TonB-Interactive Sites in the Periplasmic Domain of the ExbD Protein

Cholewa, Kelly M. 18 November 2016 (has links)
No description available.
25

Conception, synthèse et vectorisation d'inhibiteurs potentiels de la protéine bactérienne TonB / Conception, synthesis and vectorization of potential inhibitors of the bacterial protein TonB

Pesset, Bénédicte 27 September 2012 (has links)
La multiplication des résistances aux antibiothérapies actuelles et l’utilisation potentielle de bactéries pathogènes dans le cadre d’attentats bioterroristes rendent nécessaire la recherche de nouvelles cibles biologiques et la découverte de nouvelles stratégies antibiotiques. Dans ce contexte, les mécanismes d’assimilation du fer chez les bactéries à Gram négatif sont des cibles particulièrement prometteuses. Le fer est en effet un élément essentiel à la vie, mais peu biodisponible. Les bactéries ont donc développé des mécanismes efficaces pour subvenir à leurs besoins en fer. Ces mécanismes de transport nécessitent un apport d’énergie fourni par une machinerie bactérienne complexe, la machinerie TonB. La protéine TonB, qui joue un rôle central dans le fonctionnement de cette machinerie, est la cible de notre approche. Nous souhaitons séquestrer cette protéine dans le périplasme grâce à des composés peptidiques fonctionnalisés par des hétérocycles de type isoindole ou 1,2,4-triazine. La conception et la synthèse de ces molécules sont présentées dans ce manuscrit, ainsi que leurs perspectives de vectorisation en utilisant une stratégie dite du "cheval de Troie". Notre contribution à la mise au point d’un test d’affinité in vitro est également abordée. / The increasing resistances to the current antibiotherapies, and the potential use of pathogenic bacteria as biological weapons led us to the absolute necessity of discovering new biological targets and new antibiotic strategies. In this context, iron uptake pathways of Gram negative bacteria are promising targets. Indeed, iron is an essential nutrient, but it has a low bioavailability. Bacteria have developed efficient iron uptake pathways in order to proliferate. Iron is transported in the bacterial cell by specific outer membrane transporters and thanks to the energy provided by a complex molecular machinery, called TonB. The TonB protein, which is the keystone of this machinery, is a key target for the development of new antibiotics. We would like to sequester this protein in the periplasm thanks to molecules constituted of a peptidic moiety and a heterocyclic moiety such as isoindole or 1,2,4-triazine. The conception and the synthesis of these compounds are presented in this document, as well as their possibilities to be vectorized using a “Trojan Horse” strategy. Our contribution to the development of an in vitro test of affinity is presented as well.
26

Import of macromolecules : structural studies of the Pesticin toxin and of an engineered variant / Import des macromelecules : analyses structurales de la toxine bactérienne pesticine et d'un derive hybride

Seddiki, Nadir 27 September 2010 (has links)
Chez les bactéries à Gram-négatif, deux systèmes très bien conservés et essentiels à la survie de la cellule bactérienne ont été identifiés : les systèmes Tol et TonB. Ces deux systèmes utilisent la force proton motrice, issue de la membrane interne et transfert l’énergie associée pour le transport actif de molécules (TonB) ou nécessaire au maintien de l’intégrité membranaire (Tol). Ces 2 systèmes ont été détournés de leurs fonctions initiales et parasités par les colicines, leur conférant un rôle primordial dans le mécanisme d’import de la colicine. Une colicine est une bactériocine (toxine) produite par Escherichia coli pour tuer des souches apparentées. Ce sont des toxines spécifiques et hautement actives. Cependant E.coli a développé des mécanismes de protection afin de résister à l’action cytotoxique des colicines. Ces mécanismes de résistance consistent essentiellement à produire des protéines d’immunité, qui vont pour la plupart se fixer sur le domaine catalytique de la colicine et l’empêcher d’exercer son action létale. La bactérie Yersinia pestis, agent de la peste, possède une colicin-like bactériocine, la pesticine, dont l’activité est de dégrader le peptidoglycane. L’action de la pesticine est inhibée par une protéine d’immunité, Pim, localisée dans le périplasme. Le principal objectif de ce projet est de comprendre les mécanismes d’inhibition de la pesticine par sa protéine d’immunité, grâce à des données biochimiques et structurales, mais aussi d’apporter des solutions pour contourner ce problème de résistance. La structure de la pesticine révèle des homologies structurales avec le T4 lysozyme du bactériophage T4. Pour contourner le problème de la résistance bactérienne liée à la protéine d’immunité, une solution a été de fusionner le domaine de réception/translocation de la pesticine avec le T4 lysozyme. Nous avons ainsi pu créer et résoudre la structure tridimensionnelle d’une protéine chimère fonctionnelle, capable de se fixer sur FyuA (récepteur de la pesticine) et tuer une souche exprimant ce récepteur et dont l’activité létale n’est pas inhibée par Pim. / In Gram-negative bacteria, two essential systems for cell survival have been characterized: the Tol and TonB system. Both Ton and Tol systems are very well conserved in Gram-negative bacteria and coupled to the proton motive force across the inner membrane, acting as energy transducers for active transport (Ton) or maintenance of outer envelope integrity (Tol). Both systems have been embezzled from their primary function and hijacked by colicins as part of the colicin killing pathway. Colicin is a bacteriocin (toxin) produced by and toxic to some strains of Escherichia coli. Colicins are highly effective toxins. However E.coli could develop protective mechanisms to resist to colicin cytotoxic effect. These mechanisms essentially consist to produce an immunity protein. These proteins bind to colicin catalytic domain and inhibit its lethal activity. Yersinia pestis, plague agent, possesses its own colicin-like bacteriocin, Pesticin, which degrades murein. Pesticin activity is inhibited by an immunity protein, Pim, localized in the periplasm. The main goal of this project is to understand inhibition mechanisms between Pim and Pesticin by biochemical and structural data and to provide solution to overcome the resistance issue, since Pesticin was thought to be used as antimicrobial agent. The Pesticin structure has revealed that Pesticin share structural homologies with the T4 lysozyme from the bacteriophage T4. To overcome the resistance issue due to the immunity protein, one solution has been to fuse the Pesticin binding/translocation domain with the T4 lysozyme. Thus, we could engineered and solved the three-dimensional structure of a chimera protein, able to bind FyuA (Pesticin physiological receptor) and kill a FyuA expressing strain, in which the lethal activity is not affected by Pim.
27

Characterization of the Novel Interaction Between Neisseria gonorrhoeae TdfJ and its Human Ligand S100A7

Maurakis, Stavros 01 January 2019 (has links)
Neisseria gonorrhoeae is an obligate human pathogen that causes the common STI gonorrhea, which presents a growing threat to global health. The WHO estimated 78 million new cases of gonorrhea worldwide in 2017, with estimates of 820,000 new cases in the United States alone according to the CDC. High-frequency phase and antigenic variation inherent in N. gonorrhoeae, coupled with its natural ability to rapidly acquire and stably integrate antimicrobial resistance factors into its genome, have culminated in an infection against which there is no effective vaccine, and for which the list of viable therapeutic options is quickly shrinking. Moreover, no protective immunity against subsequent infections is elicited upon exposure to N. gonorrhoeae, which highlights the need for research of novel antimicrobial and vaccination strategies. Within the human host, N. gonorrhoeae utilizes a unique strategy to overcome host sequestration of essential nutrients – termed nutritional immunity (NI) – such as ions of trace metals. The pathogen produces a family of outer membrane proteins called TonB-dependent transporters (TdTs) capable of binding to host NI factors and stripping them of their nutritional cargo for use by the pathogen. Importantly, these TdTs are very highly conserved and expressed among Neisseria species. TbpA is a well-characterized TdT that allows N. gonorrhoeae to acquire iron from human transferrin, and recent studies from our lab have shown that TdfH is capable of binding to a zinc-sequestering S100 protein called calprotectin and stripping it of its zinc ion. The S100 proteins are EF-hand calcium-binding proteins that naturally play an integral role in Ca2+ homeostasis, but due to their ability to bind transition metals, they have also demonstrated an innate immunity role by participating in nutrient sequestration. The S100 proteins are expressed in all human cells, and all are capable of binding transition metals including zinc, manganese, and cobalt. Calprotectin, S100A7, and S100A12 have demonstrated an ability to hinder the infection potential of pathogenic E. coli, S. aureus, C. albicans, and various other pathogens via zinc sequestration. Herein, we demonstrate that N. gonorrhoeae is able to overcome this phenomenon and actually utilize these proteins as a zinc source in vitro. Furthermore, we identify S100A7 as the specific ligand for TdfJ, which utilizes this ligand to internalize zinc during infection. S100A7 growth support in vitro is dependent upon a functional TonB, TdfJ, and the cognate ABC transport system ZnuABC, and isogenic mutants incapable of producing znuA or tdfJ recover S100A7 utilization by complementation. Whole-cell binding assays and affinity pulldowns show that S100A7 binds specifically to both gonococcal and recombinant TdfJ, and growth and binding experiments show that these described phenomena are specific to human and not mouse S100A7. Finally, we show that a His-Asn double mutant S100A7 that is incapable of binding zinc cannot be utilized for growth by gonococci. These data illustrate the unique nature of the gonococcus’ ability to co-opt host defense strategies for its own purposes, and further identify the TdTs as promising targets for strategies to combat and prevent gonococcal infection.
28

TonB-dependent outer-membrane proteins of Pseudomonas fluorescens : diverse and redundant roles in iron acquisition

Hartney, Sierra Louise, 1980- 28 November 2011 (has links)
Pseudomonas is a diverse genus of Gram-negative bacteria that includes pathogens of plants, insects, and humans as well as environmental strains with no known pathogenicity. Pseudomonas fluorescens itself encompasses a heterologous group of bacteria that are prevalent in soil and on foliar and root surfaces of plants. Some strains of P. fluorescens suppress plant diseases and the genomic sequences of many biological control strains are now available. I used a combination of bioinformatic and phylogenetic analyses along with mutagenesis and biological assays to identify and compare the TonB-dependent outer-membrane proteins (TBDPs) of ten plant-associated strains of P. fluorescens and related species. TBDPs are common in Gram-negative bacteria, functioning in the uptake of ferric-siderophore complexes and other substrates into the cell. I identified 14 to 45 TBDRs in each strain of P. fluorescens or P. chlororaphis. Collectively, the ten strains have 317 TBDPs, which were grouped into 84 types based upon sequence similarity and phylogeny. As many as 13 TBDPs are unique to a single strain and some show evidence of horizontal gene transfer. Putative functions in the uptake of diverse groups of microbial siderophores, sulfur-esters, and other substrates were assigned to 28 of these TBDP types based on similarity to characterized orthologs from other Pseudomonas species. Redundancy of TBDP function was evident in certain strains of P. fluorescens, especially Pf-5, which has three TBDPs for ferrichrome/ferrioxamine uptake, two for ferric-citrate uptake and three for heme uptake. Five TBDP types are present in all ten strains, and putative functions in heme, ferrichrome, cobalamin, and copper/zinc uptake were assigned to four of the conserved TBDPs. The fluorescent pseudomonads are characterized by the production of pyoverdine siderophores, which are responsible for the diffusible UV fluorescence of these bacteria. Each of the ten plant-associated strains of P. fluorescens or P. chlororaphis has three to six TBDPs with putative roles in ferric-pyoverdine uptake (Fpv). To confirm the roles of the six Fpv outer membrane proteins in P. fluorescens Pf-5, I introduced deletions into each of the six fpv genes in this strain and evaluated the mutants and the parental strain for heterologous pyoverdine uptake. I identified at least one ferric-pyoverdine that was taken up by each of the six Fpv outer-membrane proteins of Pf-5. By comparing the ferric-pyoverdine uptake assay results to a phylogenetic analysis of the Fpv outer-membrane proteins, I observed that phylogenetically-related Fpv outer-membrane proteins take up structurally-related pyoverdines. I then expanded the phylogenetic analysis to include nine other strains within the P. fluorescens group, and identified five additional types of Fpv outer-membrane proteins. Using the characterized Fpv outer-membrane proteins of Pf-5 as a reference, pyoverdine substrates were predicted for many of the Fpv outer-membrane proteins in the nine other strains. Redundancy of Fpv function was evident in Pf-5, as some pyoverdines were recognized by more than one Fpv. It is apparent that heterologous pyoverdine recognition is a conserved feature, giving these ten strains flexibility in acquiring iron from the environment. Overall, the TBDPs of the P. fluorescens group are a functionally diverse set of structurally-related proteins present in high numbers in many strains. While putative functions have been assigned to a subset of the proteins, the functions of most TBDPs remain unknown, providing targets for further investigations into nutrient uptake by P. fluorescens spp.. The work presented here provides a template for future studies using a combination of bioinformatic, phylogenetic, and molecular genetic approaches to predict and analyze the function of these TBDPs. / Graduation date: 2012
29

Études structurales et fonctionnelles de protéines impliquées dans l'assimilation du fer chez les bactéries Gram-négatives

Brillet, Karl 11 April 2013 (has links) (PDF)
Le fer est un élément essentiel à la vie car il possède un rôle clé dans de nombreux processus biologiques.Malgré son abondance au niveau de la croûte terrestre, le fer est très faiblement biodisponible. Pour contourner ce problème, la majorité des micro-organismes a développé différents systèmes particulièrement efficaces pour l'acquisition de cet élément. Le mécanisme le plus répandu implique la production et la sécrétion de petites molécules chélatrices ayant une forte affinité pour le fer. Après sécrétion dans le milieu extracellulaire, ces composés chélatent le Fe3+ et le transportent ensuite au travers de la membrane externe via des transporteurs TonB-dépendants (TBDT). Durant cette thèse, nous avons mis en place un protocoleefficace permettant d'aller rapidement du clonage à la cristallisation de ces cibles afin d'étudier la structure tridimensionnelle de cette famille de protéines. Ainsi, nous avons pu résoudre et étudier la structure de plusieurs TBDT, de bactéries Gram-négatives. Ainsi nous avons mis en évidence un mouvement du domaine de signalisation en présence du ligand, proposé un mécanisme de transporteur de la molécule d'hème par le système shu chez Shigella dysenteriae. Chez les bactéries du genre Pseudomonas, nous avons élucidé et caractérisé au niveau structural les mystères de l'énantiosélectivité des pyochélines. En parallèle, nous nous sommes intéressé au devenir du ferri-sidérophore au niveau du périplasme, chez P. aeruginosa, ainsi qu'au transport du fer au travers de la membrane interne grâce à un transporteur ABC FpvCDEF ayant laparticularité de posséder deux protéines périplasmiques associées capables d'interagir avec le sidérophore.
30

The Structural Characterization of Two Prokaryotic Membrane Proteins: CfrA and ELIC

Carswell, Casey January 2014 (has links)
This thesis focuses on the structural and functional characterization of two integral membrane proteins; CfrA, an outer membrane TonB-dependent transporter (TBDT) from Campylobacter jejuni, and ELIC, a pentameric ligand-gated ion channel (pLGIC) from Erwinia Chrysanthemi. The spectroscopic characterization of CfrA revealed a fold consistent with the structural and biophysical properties observed for other TBDT. Both a homology model of CfrA and sequence alignments of CfrA with other ferric-enterobactin transporters suggested a unique mode of ligand binding, thus raising the possibility that C. jejuni can be specifically inhibited. To investigate the molecular determinates of binding to CfrA, I set out to crystallize CfrA. Hundreds of crystal trials led to crystals diffracting to 3.6 Å resolution, with a complete data set acquired at 5 Å resolution that led to a structural model of the CfrA β-barrel. In the second part of this thesis, I reconstituted ELIC into model membranes in order to test the role of intramembrane aromatic interactions in ELIC gating and lipid sensing. ELIC was reconstituted into both asolectin (aso-ELIC) and 1-palmitoyl-2-oleoyl phosphatidylcholine (PC-ELIC), membranes that stabilize the homologous nicotinic acetylcholine receptor (nAChR) in functional coupled versus non-functional uncoupled conformations, respectively. In both membrane environments, ELIC exhibits a mixed α-helical and β-sheet secondary structure, with a thermal denaturation intermediate between those of the nAChR and the close prokaryotic homolog, GLIC, in similar membranes. The data suggest that although ELIC has a decreased propensity to adopt an uncoupled conformation relative to the nAChR, its ability to undergo cysteamine-induced channel gating is sensitive to its lipid environment. The decreased propensity to uncouple may reflect an increased level of aromatics at the interface between the transmembrane α-helices, M1, M3, and M4. To test this hypothesis further, the level or aromatic residues at the M1, M3, and M4 interface in both GLIC and ELIC were varied, and in both cases the levels of intramembrane aromatic interactions correlated with the efficiency of coupling binding to gating. The data provide further evidence for a role of intramembrane aromatics in channel gating and in dictating the propensity of pentameric ligand-gated ion channels to adopt an uncoupled conformation.

Page generated in 0.0567 seconds