Spelling suggestions: "subject:"boric ariety"" "subject:"boric rariety""
1 |
Bounds on codes from smooth toric threefolds with rank(pic(x)) = 2Kimball, James Lee 15 May 2009 (has links)
In 1998, J. P. Hansen introduced the construction of an error-correcting code over a
finite field Fq from a convex integral polytope in R2. Given a polytope P ⊂ R2, there
is an associated toric variety XP , and Hansen used the cohomology and intersection
theory of divisors on XP to determine explicit formulas for the dimension and minimum
distance of the associated toric code CP . We begin by reviewing the basics
of algebraic coding theory and toric varieties and discuss how these areas intertwine
with discrete geometry. Our first results characterize certain polygons that generate
and do not generate maximum distance separable (MDS) codes and Almost-MDS
codes. In 2006, Little and Schenck gave formulas for the minimum distance of certain
toric codes corresponding to smooth toric surfaces with rank(Pic(X)) = 2 and
rank(Pic(X)) = 3. Additionally, they gave upper and lower bounds on the minimum
distance of an arbitrary toric code CP by finding a subpolygon of P with a maximal,
nontrivial Minkowski sum decomposition. Following this example, we give explicit
formulas for the minimum distance of toric codes associated with two families of
smooth toric threefolds with rank(Pic(X)) = 2, characterized by G. Ewald and A.
Schmeinck in 1993. Lastly, we give explicit formulas for the dimension of a toric code
generated from a Minkowski sum of a finite number of polytopes in R2 and R3 and a
lower bound for the minimum distance.
|
2 |
Phylogenetic Toric Varieties on GraphsBuczynska, Weronika J. 2010 August 1900 (has links)
We define the phylogenetic model of a trivalent graph as a generalization of a
binary symmetric model of a trivalent phylogenetic tree. If the underlining graph is a
tree, the model has a parametrization that can be expressed in terms of the tree. The
model is always a polarized projective toric variety. Equivalently, it is a projective
spectrum of a semigroup ring. We describe explicitly the generators of this projective
coordinate ring for graphs with at most one cycle. We prove that models of graphs
with the same topological invariants are deformation equivalent and share the same
Hilbert function. We also provide an algorithm to compute the Hilbert function,
which uses the structure of the graph as a sum of elementary ones. Also, this Hilbert
function of phylogenetic model of a graph with g cycles is meaningful for the theory
of connections on a Riemann surface of genus g.
|
3 |
A criterion for toric varietiesYao, Yuan, active 2013 12 September 2013 (has links)
We consider the pair of a smooth complex projective variety together with an anti-canonical simple normal crossing divisor (we call it "log Calabi- Yau"). Standard examples are toric varieties together with their toric boundaries (we call them "toric pairs"). We provide a numerical criterion for a general log Calabi-Yau to be toric by an inequality between its dimension, Picard number and the number of boundary components. The problem originates in birational geometry and our proof is constructive, motivated by mirror symmetry. / text
|
4 |
TORIC VARIETIES AND COBORDISMWilfong, Andrew 01 January 2013 (has links)
A long-standing problem in cobordism theory has been to find convenient manifolds to represent cobordism classes. For example, in the late 1950's, Hirzebruch asked which complex cobordism classes can be represented by smooth connected algebraic varieties. This question is still open. Progress can be made on this and related problems by studying certain convenient connected algebraic varieties, namely smooth projective toric varieties. The primary focus of this dissertation is to determine which complex cobordism classes can be represented by smooth projective toric varieties. A complete answer is given up to dimension six, and a partial answer is described in dimension eight. In addition, the role of smooth projective toric varieties in the polynomial ring structure of complex cobordism is examined. More specifically, smooth projective toric varieties are constructed as polynomial ring generators in most dimensions, and evidence is presented suggesting that a smooth projective toric variety can be chosen as a polynomial generator in every dimension. Finally, toric varieties with an additional fiber bundle structure are used to study some manifolds in oriented cobordism. In particular, manifolds with certain fiber bundle structures are shown to all be cobordant to zero in the oriented cobordism ring.
|
5 |
Toric varieties and residuesShchuplev, Alexey January 2007 (has links)
<p>The multidimensional residue theory as well as the theory of integral representations for holomorphic functions is a very powerful tool in complex analysis. The computation of integrals, solving algebraic or differential equations is usually reduced to some residue integral. It is a notable feature of the theory that it is based on few model differential forms. These are the Cauchy kernel and the Bochner-Martinelli kernel. These two model kernels have been the source of other fundamental kernels and residue concepts by means of homological procedures.</p><p>The Cauchy and Bochner-Martinelli forms possess two common properties: firstly, their singular sets are the unions of complex subspaces, and secondly, the top cohomology group of the complement to the singular set is generated by a single element. We shall call such a set an atomic family and the corresponding form the associated residue kernel.</p><p>A large class of atomic families is provided by the construction of toric varieties. The extensively developed techniques of toric geometry have already produced many explicit results in complex analysis. In the thesis, we apply these methods to the following two questions of multidimensional residue theory: simplification of the proof of the Vidras-Yger generalisation of the Jacobi residue formula in the toric setting; and construction of a residue kernel associated with a toric variety and its applications in the theory of residues and integral representations. The central role in our construction is played by the theorem stating that under some assumptions a toric variety admits realisation as a complete intersection of toric hypersurfaces in an ambient toric variety.</p>
|
6 |
Toric varieties and residuesShchuplev, Alexey January 2007 (has links)
The multidimensional residue theory as well as the theory of integral representations for holomorphic functions is a very powerful tool in complex analysis. The computation of integrals, solving algebraic or differential equations is usually reduced to some residue integral. It is a notable feature of the theory that it is based on few model differential forms. These are the Cauchy kernel and the Bochner-Martinelli kernel. These two model kernels have been the source of other fundamental kernels and residue concepts by means of homological procedures. The Cauchy and Bochner-Martinelli forms possess two common properties: firstly, their singular sets are the unions of complex subspaces, and secondly, the top cohomology group of the complement to the singular set is generated by a single element. We shall call such a set an atomic family and the corresponding form the associated residue kernel. A large class of atomic families is provided by the construction of toric varieties. The extensively developed techniques of toric geometry have already produced many explicit results in complex analysis. In the thesis, we apply these methods to the following two questions of multidimensional residue theory: simplification of the proof of the Vidras-Yger generalisation of the Jacobi residue formula in the toric setting; and construction of a residue kernel associated with a toric variety and its applications in the theory of residues and integral representations. The central role in our construction is played by the theorem stating that under some assumptions a toric variety admits realisation as a complete intersection of toric hypersurfaces in an ambient toric variety.
|
7 |
Extremal transition and quantum cohomology / 端転移と量子コホモロジーXiao, Jifu 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19259号 / 理博第4114号 / 新制||理||1592(附属図書館) / 32261 / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 入谷 寛, 教授 加藤 毅, 教授 吉川 謙一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
8 |
Actions des groupes algébriques sur les variétés affines et normalité d'adhérences d'orbites / Actions of algebraic groups on affine varieties and normality of orbits closuresKuyumzhiyan, Karine 10 May 2011 (has links)
Cette thèse est consacrée aux actions des groupes de transformations algébriques sur les variétés affines algébriques. Dans la première partie, on étudie la normalité des adhérences des orbites de tore maximal dans un module rationnel de groupe algébrique simple. La seconde partie porte sur les actions du groupe d'automorphismes d'une variété affine. Nous nous intéressons aux propriétés de transitivité et de transitivité multiple de ces actions sur le lieu lisse de la variété. / This thesis is devoted to the actions of groups of algebraic transformations on affine algebraic varieties. In the first part we study normality of closures of maximal torus orbits in the rational modules of simple algebraic groups. The second part deals with actions of automorphism groups on affine varieties. We study here transitivity and multiple transitivity of such an action on the set of smooth points.
|
9 |
Compactification d'espaces homogènes sphériques sur un corps quelconque / Compactification of spherical homogeneous spaces over an arbitrary fieldHuruguen, Mathieu 29 November 2011 (has links)
Cette thèse porte sur les plongements d'espaces homogènes sphériques sur un corps quelconque. Dans une première partie, on aborde la classification de ces plongements, dans la lignée des travaux de Demazure et bien d'autres sur les variétés toriques, et de Luna, Vust et Knop sur les variétés sphériques. Dans une seconde partie, on généralise en caractéristique positive certains résultats obtenus par Bien et Brion portant sur les plongements complets et lisses qui sont log homogènes, c'est-à-dire dont le bord est un diviseur à croisements normaux et le fibré tangent logarithmique associé est engendré par ses sections globales. Dans une dernière partie, on construit par éclatements successifs une compactification lisse et log homogène explicite du groupe linéaire (différente de celle obtenue par Kausz). En prenant dans cette compactification les points fixes de certains automorphismes, on en déduit alors la construction de compactifications lisses et log homogènes de certains groupes semi-simples classiques. / This thesis is devoted to the study of embeddings of spherical homogeneous spaces over an arbitrary field. In the first part, we address the classification of such embeddings, in the spirit of Demazure and many others in the setting of toric varieties and of Luna, Vust and Knop in the setting of spherical varieties. In the second part, we generalize in positive characteristics some results obtained by Bien and Brion on those complete smooth embeddings that are log homogeneous, i.e., whose boundary is a normal crossing divisor and the associated logarithmic tangent bundle is generated by its global sections. In the last part, we construct an explicit smooth log homogeneous compactification of the general linear group by successive blow-ups (different from the one obtained by Kausz). By taking fixed points of certain automorphisms on this compactification, one gets smooth log homogeneous compactifications of some classical semi-simple groups.
|
10 |
Calculs du symbole de kronecker dans le tore / Computations of the Kronecker symbol in the torusDupont, Franck 04 December 2017 (has links)
Soit k un corps algébriquement clos de caractéristique 0 et F une suite de n polynômes en intersection complète sur k[X1,...,Xn]. Le Bezoutien de F fournit une forme dualisante sur k[X]/<F> appelée symbole de Kronecker, qui est un analogue algébrique du résidu. L'objet de ce travail est de construire et calculer le symbole de Kronecker dans le tore (C*)n relativement à une famille f de n polynômes de Laurent en n variables. La famille f possède un nombre fini de zéros et est régulière pour ses polytopes de Newton. La représentation du résidu global dans le tore à l'aide d'un résidu torique, donnée par Cattani et Dickenstein, suggère d'interpréter le symbole de Kronecker dans le tore dans la variété torique projective définie par le polytope P, somme de Minkowski des polytopes de Newton de f.Lorsque P est premier, Roy et Szpirglas ont défini le symbole de Kronecker dans le tore à partir des symboles de Kronecker définis sur les ouverts affines de la variété torique Xp relativement à une famille de n + 1 polynômes homogènes sans zéros communs dans la variété Xp. Nous montrons ici que le cas « P non premier » est réductible au cas précédent en explicitant les morphismes d'éclatement qui traduisent le raffinement de l’éventail de Xp en un éventail simplicial. / Let k be an algebraically closed field with char(k) = 0 and let be polynomials F1,..., Fn such that k[X1,...,Xn]/<F1,..., Fn> is a complete intersection k-algebra. The Bezoutian of F1,..., Fn gives a dualizing form acting on k[X1,...,Xn]/<F1,..., Fn> called Kronecker symbol. It is an algebraic analogue of residue. The aim of this work is to build and calculate the Kronecker symbol in the torus (C*)n for a system f of Laurent polynomials with a a finite set of zeroes and regular for its Newton polytopes. In the same way as Cattani and Dickenstein have done for the global residue in the torus, we consider the projective variety given by the Minkowski sum P of the Newton polytopes of f in order to build the Kronecker symbol in the torus.When P is prime, Roy and Szpirglas have defined the Kronecker symbol in the torus from Kronecker symbols on affine subsets of Xp for a system of n+1 homogeneous polynomials with no common zeroes in XP . We prove that the case "P no prime" can be reduced to the previous case by using simplicial refinements of the fan of Xp and making explicit the associated toric morphisms on the total coordinate spaces.
|
Page generated in 0.0638 seconds