• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 6
  • 5
  • Tagged with
  • 37
  • 37
  • 20
  • 20
  • 19
  • 18
  • 15
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Konstrukční návrh trubkového rámu Formule Student / Formula Student Tubular Frame Design

Ratiborský, Pavel January 2014 (has links)
This thesis deals with the design of the tubular frame for the Formula Student car competition. The first part is a brief introduction to the competition and used variants of frames. The main part starts with a list of restrictions by the rules and other necessary installation components. The central part is devoted to the draft modifications and their assessment in terms of torsional stiffness by FEM analysis. The final section presents the resulting frame design with respect to the required properties. The work is concluded final evaluation.
12

Torzní tuhost rámu vozidla Formule Student / Torsional Stiffness of the Formula Student Chassis

Petro, Pavol January 2016 (has links)
The master´s thesis is focused on chassis design of Formula Student car. It´s describes not only design of frame but also mounting of suspension components like arms, rockers and dampers. During whole design process was using finite elements method calculations, to achieve determined value of torsional stiffness and prevent local deformation of frame structure during drive. Value of torsional stiffness is also verificated by measurement and in last chapter is described influence of torsional stiffness on vehicle dynamics.
13

Torsional Stiffness Calculation of CFRP Hybrid Chassis using Finite Element Method : Development of calculation methodology of Formula Student CFRP Chassis / Vridstyvhetsberäkning av kolfiberkompositchassi med hjälp av Finita Elementmetoden : Utveckling av beräkningsrutiner för ett kolfiberbaserat Formula Student-chassi

Assaye, Abb January 2020 (has links)
Composite sandwich structures are being used in the automotive and aerospace industries at an increasing rate due to their high strength and stiffness per unit weight.  Many teams in the world’s largest engineering competition for students, Formula Student, have embraced these types of structures and are using them in their chassis with the intent of increasing the torsional stiffness per unit weight.   The Formula Student team at Karlstad University, Clear River Racing, has since 2017 successfully built three carbon fiber based sandwich structure chassis. A big challenge when designing this type of chassis is the lack of strategy regarding torsional stiffness simulations. Thus, the goal of this thesis project was to provide the organization with a set of accurate yet relatively simple methods of modelling and simulating the torsional stiffness of the chassis.   The first step in achieving the goal of the thesis was the implementation of simplifications to the material model. These simplifications were mainly targeted towards the aluminum honeycomb core. In order to cut computational times and reduce complexity, a continuum model with orthotropic material properties was used instead of the intricate cellular structure of the core. To validate the accuracy of this simplification, the in-plane elastic modulus of the core was simulated in the finite element software Abaqus. The stiffness obtained through simulations was 0.44 % larger than the theoretical value. The conclusion was therefore made that the orthotropic continuum model was an accurate and effective representation of the core.   Furthermore, simplifications regarding the adhesive film in the core-carbon fiber interfaces were made by using constraints in Abaqus instead of modelling the adhesive films as individual parts. To validate this simplification and the overall material model for the sandwich structure, a three-point bend test was simulated in Abaqus and conducted physically. The stiffness for the sandwich panel obtained through physical testing was 2.4 % larger than the simulated stiffness. The conclusion was made that the simplifications in the material modelling did not affect the accuracy in a significant way.   Finally, the torsional stiffness of the 2020 CFRP chassis was found to be 12409.75 Nm/degree.   In addition to evaluating previously mentioned simplifications, this thesis also serves as a comprehensive guide on how the modelling of the chassis and how the three-point bend test can take place in regards to boundary conditions, coordinate system assignments and layup definitions.
14

Toward Deployable Origami Continuum Robot: Sensing, Planning, and Actuation

Santoso, Junius 24 October 2019 (has links)
Continuum manipulators which are robot limbs inspired by trunks, snakes, and tentacles, represent a promising field in robotic manipulation research. They are well known for their compliance, as they can conform to the shape of objects they interact with. Furthermore, they also benefit from improved dexterity and reduced weight compared to traditional rigid manipulators. The current state of the art continuum robots typically consists of a bulky pneumatic or tendon-driven actuation system at the base, hindering their scalability. Additionally, they tend to sag due to their own weight and are weak in the torsional direction, limiting their performance under external load. This work presents an origami-inspired cable-driven continuum manipulator module that offers low-cost, light-weight, and is inherently safe for human-robot interaction. This dissertation includes contributions in the design of the modular and torsionally strong continuum robot, the motion planning and control of the system, and finally the embedded sensing to close the loop providing robust feedback.
15

The design and development of a vehicle chassis for a Formula SAE competition car / Izak Johannes Fourie

Fourie, Izak Johannes January 2014 (has links)
The Formula SAE is a student based competition organised by SAE International where engineering students from a university design, develop and test a formula-style race car prototype to compete against other universities. The competition car needs to satisfy the competition rules set out by the organisers. The competition strives to stimulate original, creative problem solving together with innovative engineering design practices. In any race environment, the primary goal is always to be as competitive as possible. Due to the competitive nature of motor sport, vehicle components need to withstand various and severe stresses. The components of a race car vehicle are responsible for the vehicle’s handling characteristics and reliability. The chassis is a crucial and integral component of a Formula SAE competition car, primarily responsible for the vehicle’s performance characteristics. The chassis is the structural component that accommodates all the other components. A Formula SAE chassis is a structure that requires high torsional stiffness, low weight as well as the necessary strength properties. In this study, multiple Formula SAE chassis were designed and developed using computer aided design software. Each concept’s torsional stiffness, weight and strength properties were tested using finite element analysis software. The different concepts consisted of different design techniques and applications. All the concepts were analysed and assessed, leading to the identification of an acceptable prototype. The prototype was manufactured for experimental tests. The designed chassis complied with the Formula SAE rules and regulations. The weight, torsional stiffness and strength characteristics of the designed chassis frame were also favourable compared to accepted standards for Formula SAE chassis frames. The manufactured chassis was prepared for experimental tests in order to validate the simulation results produced by the finite element analysis. The torsional stiffness, weight and strength were experimentally determined and the results were compared with the corresponding simulations results. The comparison of the experimental and simulated results enabled the validation of the finite element analysis software. The study draws conclusions about the use of computer aided design and finite element analysis software as a design tool for the development of a Formula SAE chassis. Closure about the study is provided with general conclusions, recommendations and research possibilities for future studies. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
16

The design and development of a vehicle chassis for a Formula SAE competition car / Izak Johannes Fourie

Fourie, Izak Johannes January 2014 (has links)
The Formula SAE is a student based competition organised by SAE International where engineering students from a university design, develop and test a formula-style race car prototype to compete against other universities. The competition car needs to satisfy the competition rules set out by the organisers. The competition strives to stimulate original, creative problem solving together with innovative engineering design practices. In any race environment, the primary goal is always to be as competitive as possible. Due to the competitive nature of motor sport, vehicle components need to withstand various and severe stresses. The components of a race car vehicle are responsible for the vehicle’s handling characteristics and reliability. The chassis is a crucial and integral component of a Formula SAE competition car, primarily responsible for the vehicle’s performance characteristics. The chassis is the structural component that accommodates all the other components. A Formula SAE chassis is a structure that requires high torsional stiffness, low weight as well as the necessary strength properties. In this study, multiple Formula SAE chassis were designed and developed using computer aided design software. Each concept’s torsional stiffness, weight and strength properties were tested using finite element analysis software. The different concepts consisted of different design techniques and applications. All the concepts were analysed and assessed, leading to the identification of an acceptable prototype. The prototype was manufactured for experimental tests. The designed chassis complied with the Formula SAE rules and regulations. The weight, torsional stiffness and strength characteristics of the designed chassis frame were also favourable compared to accepted standards for Formula SAE chassis frames. The manufactured chassis was prepared for experimental tests in order to validate the simulation results produced by the finite element analysis. The torsional stiffness, weight and strength were experimentally determined and the results were compared with the corresponding simulations results. The comparison of the experimental and simulated results enabled the validation of the finite element analysis software. The study draws conclusions about the use of computer aided design and finite element analysis software as a design tool for the development of a Formula SAE chassis. Closure about the study is provided with general conclusions, recommendations and research possibilities for future studies. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
17

Efeitos da flexibilidade estrutural em simulações de dinâmica lateral de veículo de transporte de carga

Vargas, Vinicius Athaydes de January 2011 (has links)
Este trabalho apresenta uma análise multicorpos de combinação veicular de carga com chassi de semirreboque flexível, para avaliação de dinâmica lateral. O contexto é dado por um breve panorama do transporte rodoviário de cargas no Brasil. No intuito de melhorar seus produtos, os fabricantes de implementos rodoviários têm utilizado metodologias de desenvolvimento baseadas em simulação virtual. Nessas circunstâncias, análises dinâmicas são realizadas, geralmente levando-se em conta a hipótese de corpos rígidos (não deformáveis). Subjetivamente, é sabido que a inclusão da flexibilidade em um modelo numérico o aproxima do fenômeno real, mas são raros os trabalhos que analisam quantitativamente essa diferença. Assim, neste estudo é proposta uma abordagem para consideração da flexibilidade estrutural do chassi de um semirreboque em simulações de tráfego. Procede-se a discretização do quadro do implemento em elementos finitos, para realização de análise de vibração livre, na qual são determinados os modos (autovetores) e as frequências naturais (autovalores) da estrutura. Utilizando metodologia de superposição modal, os modos de vibração são classificados para compor, por combinação linear, a flexibilidade da estrutura nas análises dinâmicas em ferramenta comercial de MBS (sistemas multicorpos). São realizadas, então, simulações de manobras representativas da dinâmica lateral de combinações veiculares, com ênfase à estabilidade em rolagem. Os efeitos globais da inserção de flexibilidade modal no chassi do semirreboque são avaliados por meio de métricas específicas, baseadas em normas ISO de dinâmica lateral para veículos pesados. Os resultados das simulações, apresentados em forma gráfica e tabelas, mostram a grande influência da flexibilidade estrutural do chassi no desempenho dinâmico da combinação veicular analisada. Grandezas relevantes como aceleração lateral (no domínio do tempo e da frequência), ângulo de rolagem e força atuante nos pneus, além de fenômenos físicos como a transferência lateral de carga em curvas, são fortemente afetados pela flexibilidade do quadro. Agrega-se ao trabalho desenvolvido uma forma simplificada de equacionar analiticamente a rolagem de um semirreboque flexível. É realizada também uma análise de sensibilidade da rigidez torcional do chassi quanto ao número de travessas. / This work presents a lateral dynamics multibody analysis of a heavy articulated vehicle with a flexible frame for the semi-trailer. The context is given by a short perspective of the load carrying transportation scenery in Brazil. In order to build better products, the trailer manufacturers have been using development methodologies based on virtual simulation. In these circumstances, dynamic analyses are carried out, considering the hypothesis of rigid (non-deformable) bodies. Subjectively, it is known that the inclusion of flexibility in a numerical model brings it closer to reality, but very few studies work on giving numbers to this difference. Thus, this study presents an approach for taking into account the frame structural flexibility of a semi-trailer in traffic simulations. The frame of the semi-trailer is represented by a finite element model, and a free vibration analysis of this structure is carried out. The mode shapes (eigenvectors) and natural frequencies (eigenvalues) are determined. With a mode superposition method, the vibration modes are classified, for the purpose of building the structural flexibility (by linear combination) of the chassis in the dynamic analyses of the MBS software. Typical maneuvers of lateral dynamics are simulated, testing the roll stability of the combined vehicle model. The global effects for considering the mode flexibility in the semitrailer frame are evaluated through specific metrics, based on ISO standards for heavy vehicles lateral dynamics. The strong influence of the frame structural flexibility, when analyzing the articulated vehicle transient behavior, is showed by simulation results, which are presented in graphics and tables. Important measurements, such as lateral acceleration (in time and frequency domains), roll angle and vertical force on tires, besides physical phenomenon like lateral load transfer, are significantly modified by the flexibility of the frame. A simplified approach for writing the analytical equations of the flexible semi-trailer roll dynamics is added to the study. A torsional stiffness sensitivity analysis is also performed, regarding the number of transversal members in the semi-trailer chassis.
18

Efeitos da flexibilidade estrutural em simulações de dinâmica lateral de veículo de transporte de carga

Vargas, Vinicius Athaydes de January 2011 (has links)
Este trabalho apresenta uma análise multicorpos de combinação veicular de carga com chassi de semirreboque flexível, para avaliação de dinâmica lateral. O contexto é dado por um breve panorama do transporte rodoviário de cargas no Brasil. No intuito de melhorar seus produtos, os fabricantes de implementos rodoviários têm utilizado metodologias de desenvolvimento baseadas em simulação virtual. Nessas circunstâncias, análises dinâmicas são realizadas, geralmente levando-se em conta a hipótese de corpos rígidos (não deformáveis). Subjetivamente, é sabido que a inclusão da flexibilidade em um modelo numérico o aproxima do fenômeno real, mas são raros os trabalhos que analisam quantitativamente essa diferença. Assim, neste estudo é proposta uma abordagem para consideração da flexibilidade estrutural do chassi de um semirreboque em simulações de tráfego. Procede-se a discretização do quadro do implemento em elementos finitos, para realização de análise de vibração livre, na qual são determinados os modos (autovetores) e as frequências naturais (autovalores) da estrutura. Utilizando metodologia de superposição modal, os modos de vibração são classificados para compor, por combinação linear, a flexibilidade da estrutura nas análises dinâmicas em ferramenta comercial de MBS (sistemas multicorpos). São realizadas, então, simulações de manobras representativas da dinâmica lateral de combinações veiculares, com ênfase à estabilidade em rolagem. Os efeitos globais da inserção de flexibilidade modal no chassi do semirreboque são avaliados por meio de métricas específicas, baseadas em normas ISO de dinâmica lateral para veículos pesados. Os resultados das simulações, apresentados em forma gráfica e tabelas, mostram a grande influência da flexibilidade estrutural do chassi no desempenho dinâmico da combinação veicular analisada. Grandezas relevantes como aceleração lateral (no domínio do tempo e da frequência), ângulo de rolagem e força atuante nos pneus, além de fenômenos físicos como a transferência lateral de carga em curvas, são fortemente afetados pela flexibilidade do quadro. Agrega-se ao trabalho desenvolvido uma forma simplificada de equacionar analiticamente a rolagem de um semirreboque flexível. É realizada também uma análise de sensibilidade da rigidez torcional do chassi quanto ao número de travessas. / This work presents a lateral dynamics multibody analysis of a heavy articulated vehicle with a flexible frame for the semi-trailer. The context is given by a short perspective of the load carrying transportation scenery in Brazil. In order to build better products, the trailer manufacturers have been using development methodologies based on virtual simulation. In these circumstances, dynamic analyses are carried out, considering the hypothesis of rigid (non-deformable) bodies. Subjectively, it is known that the inclusion of flexibility in a numerical model brings it closer to reality, but very few studies work on giving numbers to this difference. Thus, this study presents an approach for taking into account the frame structural flexibility of a semi-trailer in traffic simulations. The frame of the semi-trailer is represented by a finite element model, and a free vibration analysis of this structure is carried out. The mode shapes (eigenvectors) and natural frequencies (eigenvalues) are determined. With a mode superposition method, the vibration modes are classified, for the purpose of building the structural flexibility (by linear combination) of the chassis in the dynamic analyses of the MBS software. Typical maneuvers of lateral dynamics are simulated, testing the roll stability of the combined vehicle model. The global effects for considering the mode flexibility in the semitrailer frame are evaluated through specific metrics, based on ISO standards for heavy vehicles lateral dynamics. The strong influence of the frame structural flexibility, when analyzing the articulated vehicle transient behavior, is showed by simulation results, which are presented in graphics and tables. Important measurements, such as lateral acceleration (in time and frequency domains), roll angle and vertical force on tires, besides physical phenomenon like lateral load transfer, are significantly modified by the flexibility of the frame. A simplified approach for writing the analytical equations of the flexible semi-trailer roll dynamics is added to the study. A torsional stiffness sensitivity analysis is also performed, regarding the number of transversal members in the semi-trailer chassis.
19

Efeitos da flexibilidade estrutural em simulações de dinâmica lateral de veículo de transporte de carga

Vargas, Vinicius Athaydes de January 2011 (has links)
Este trabalho apresenta uma análise multicorpos de combinação veicular de carga com chassi de semirreboque flexível, para avaliação de dinâmica lateral. O contexto é dado por um breve panorama do transporte rodoviário de cargas no Brasil. No intuito de melhorar seus produtos, os fabricantes de implementos rodoviários têm utilizado metodologias de desenvolvimento baseadas em simulação virtual. Nessas circunstâncias, análises dinâmicas são realizadas, geralmente levando-se em conta a hipótese de corpos rígidos (não deformáveis). Subjetivamente, é sabido que a inclusão da flexibilidade em um modelo numérico o aproxima do fenômeno real, mas são raros os trabalhos que analisam quantitativamente essa diferença. Assim, neste estudo é proposta uma abordagem para consideração da flexibilidade estrutural do chassi de um semirreboque em simulações de tráfego. Procede-se a discretização do quadro do implemento em elementos finitos, para realização de análise de vibração livre, na qual são determinados os modos (autovetores) e as frequências naturais (autovalores) da estrutura. Utilizando metodologia de superposição modal, os modos de vibração são classificados para compor, por combinação linear, a flexibilidade da estrutura nas análises dinâmicas em ferramenta comercial de MBS (sistemas multicorpos). São realizadas, então, simulações de manobras representativas da dinâmica lateral de combinações veiculares, com ênfase à estabilidade em rolagem. Os efeitos globais da inserção de flexibilidade modal no chassi do semirreboque são avaliados por meio de métricas específicas, baseadas em normas ISO de dinâmica lateral para veículos pesados. Os resultados das simulações, apresentados em forma gráfica e tabelas, mostram a grande influência da flexibilidade estrutural do chassi no desempenho dinâmico da combinação veicular analisada. Grandezas relevantes como aceleração lateral (no domínio do tempo e da frequência), ângulo de rolagem e força atuante nos pneus, além de fenômenos físicos como a transferência lateral de carga em curvas, são fortemente afetados pela flexibilidade do quadro. Agrega-se ao trabalho desenvolvido uma forma simplificada de equacionar analiticamente a rolagem de um semirreboque flexível. É realizada também uma análise de sensibilidade da rigidez torcional do chassi quanto ao número de travessas. / This work presents a lateral dynamics multibody analysis of a heavy articulated vehicle with a flexible frame for the semi-trailer. The context is given by a short perspective of the load carrying transportation scenery in Brazil. In order to build better products, the trailer manufacturers have been using development methodologies based on virtual simulation. In these circumstances, dynamic analyses are carried out, considering the hypothesis of rigid (non-deformable) bodies. Subjectively, it is known that the inclusion of flexibility in a numerical model brings it closer to reality, but very few studies work on giving numbers to this difference. Thus, this study presents an approach for taking into account the frame structural flexibility of a semi-trailer in traffic simulations. The frame of the semi-trailer is represented by a finite element model, and a free vibration analysis of this structure is carried out. The mode shapes (eigenvectors) and natural frequencies (eigenvalues) are determined. With a mode superposition method, the vibration modes are classified, for the purpose of building the structural flexibility (by linear combination) of the chassis in the dynamic analyses of the MBS software. Typical maneuvers of lateral dynamics are simulated, testing the roll stability of the combined vehicle model. The global effects for considering the mode flexibility in the semitrailer frame are evaluated through specific metrics, based on ISO standards for heavy vehicles lateral dynamics. The strong influence of the frame structural flexibility, when analyzing the articulated vehicle transient behavior, is showed by simulation results, which are presented in graphics and tables. Important measurements, such as lateral acceleration (in time and frequency domains), roll angle and vertical force on tires, besides physical phenomenon like lateral load transfer, are significantly modified by the flexibility of the frame. A simplified approach for writing the analytical equations of the flexible semi-trailer roll dynamics is added to the study. A torsional stiffness sensitivity analysis is also performed, regarding the number of transversal members in the semi-trailer chassis.
20

Měření charakteristiky torzních stabilizátorů náprav vozidel / Measurement of vehicle torsion stabilizer characteristics

Haratek, Marek January 2021 (has links)
This diploma thesis deals with the measurement of the torsion stabilizer characteristics. The beginning of the thesis explains the function of a torsion stabilizer in a vehicle and introduces various technical options of stabilization. Next part is focused on computational simulation of representative stabilizers. Next parts are devoted to proposition of measuring device for torsion stabilizers in the laboratory and execution of the experiment. In the final part multibody model is created to demonstrate achieved results.

Page generated in 0.1393 seconds