Spelling suggestions: "subject:"transcription regulation."" "subject:"ranscription regulation.""
161 |
Discovery and evolutionary dynamics of RBPs and circular RNAs in mammalian transcriptomesBadve, Abhijit 30 March 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / RNA-binding proteins (RBPs) are vital post-transcriptional regulatory molecules in transcriptome of mammalian species. It necessitates studying their expression dynamics to extract how post-transcriptional networks work in various mammalian tissues. RNA binding proteins (RBPs) play important roles in controlling the post-transcriptional fate of RNA molecules, yet their evolutionary dynamics remains largely unknown. As expression profiles of genes encoding for RBPs can yield insights about their evolutionary trajectories on the post-transcriptional regulatory networks across species, we performed a comparative analyses of RBP expression profiles across 8 tissues (brain, cerebellum, heart, lung, liver, lung, skeletal muscle, testis) in 11 mammals (human, chimpanzee, gorilla, orangutan, macaque, rat, mouse, platypus, opossum, cow) and chicken & frog (evolutionary outgroups). Noticeably, orthologous gene expression profiles suggest a significantly higher expression level for RBPs than their non-RBP gene counterparts, which include other protein-coding and non-coding genes, across all the mammalian tissues studied here. This trend is significant irrespective of the tissue and species being compared, though RBP gene expression distribution patterns were found to be generally diverse in nature. Our analysis also shows that RBPs are expressed at a significantly lower level in human and mouse tissues compared to their expression levels in equivalent tissues in other mammals: chimpanzee, orangutan, rat, etc., which are all likely exposed to diverse natural habitats and ecological settings compared to more stable ecological environment humans and mice might have been exposed, thus reducing the need for complex and extensive post-transcriptional control. Further analysis of the similarity of orthologous RBP expression profiles between all pairs of tissue-mammal combinations clearly showed the grouping of RBP expression profiles across tissues in a given mammal, in contrast to the clustering of expression profiles for non-RBPs, which frequently grouped equivalent tissues across diverse mammalian species together, suggesting a significant evolution of RBPs expression after speciation events. Calculation of species specificity indices (SSIs) for RBPs across various tissues, to identify those that exhibited restricted expression to few mammals, revealed that about 30% of the RBPs are species-specific in at least one tissue studied here, with lung, liver, kidney & testis exhibiting a significantly higher proportion of species specifically expressed RBPs. We conducted a differential expression analysis of RBPs in human, mouse and chicken tissues to study the evolution of expression levels in recently evolved species (i.e., humans and mice) than evolutionarily-distant species (i.e., chickens). We identified more than 50% of the orthologous RBPs to be differentially expressed in at least one tissue, compared between human and mouse, but not so between human and an outgroup chicken, in which RBP expression levels are relatively conserved. Among the studied tissues (brain, liver and kidney) showed a higher fraction of differentially expressed RBPs, which may suggest hyper- regulatory activities by RBPs in these tissues with species evolution. Overall, this study forms a foundation for understanding the evolution of expression levels of RBPs in mammals, facilitating a snapshot of the wiring patterns of post-transcriptional regulatory networks in mammalian genomes. In our second study, we focused on elucidating novel features of post-transcriptional regulatory molecules called as circRNA from LongPolyA RNA-sequence data. The debate over presence of nonlinear exon splicing such as exon-shuffling or formation of circularized forms has finally come to an end as numerous repertoires have shown of their occurrence and presence through transcriptomic analyses. It is evident from previous studies that along with consensus-site splicing non-consensus site splicing is robustly occurring in the cell. Also, in spite of applying different high-throughput approaches (both computational and experimental) to determine their abundance, the signal is consistent and strongly conforming the plausible circularization mechanisms. Earlier studies hypothesized and hence focused on the ribo-minus non-polyA RNA-sequence data to identify circular RNA structures in cell and compared their abundance levels with their linear counterparts. Thus far, the studies show their conserved nature across tissues and species also that they are not translated and preferentially are without poly (A) tail, with one to five exons long. Much of this initial work has been performed using non-polyA sequencing thus probably underestimates the abundance of circular RNAs originating from long poly (A) RNA isoforms. Our hypothesis is if the circular RNA events are not the artifact of random events, but has a structured and defined mechanism for their formation, then there would not be biases on preferential selection / leaving of polyA tails, while forming the circularized isoforms. We have applied an existing computational pipeline from earlier studies by Memczack et. al., on ENCODE cell-lines long poly (A) RNA-sequence data. With the same pipeline, we achieve a significant number of circular RNA isoforms in the data, some of which are overlapping with known circular RNA isoforms from the literature. We identified an approach and worked upon to identify the precise structure of circular RNA, which is not plausible from the existing computational approaches. We aim to study their expression profiles in normal and cancer cell-lines, and see if there exists any pattern and functional significance based on their abundance levels in the cell.
|
162 |
Differentiation and contractility of colon smooth muscle under normal and diabetic conditionsTouw, Ketrija 07 October 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Intestinal smooth muscle development involves complex transcriptional regulation leading to cell differentiation of the circular, longitudinal and muscularis mucosae layers. Differentiated intestinal smooth muscle cells express high levels of smooth muscle-specific contractile and regulatory proteins, including telokin. Telokin is regulatory protein that is highly expressed in visceral smooth muscle. Analysis of cis-elements required for transcriptional regulation of the telokin promoter by using hypoxanthine-guanine phosphoribosyltransferase (Hprt)-targeted reporter transgenes revealed that a 10 base pair large CC(AT)₆GG ciselement, called CArG box is required for promoter activity in all tissues. We also determined that an additional 100 base pair region is necessary for transgene activity in intestinal smooth muscle cells. To examine how transcriptional regulation of intestinal smooth muscle may be altered under pathological conditions we examined the effects of diabetes on colonic smooth muscle. Approximately 76% of diabetic patients develop gastrointestinal (GI) symptoms such as constipation due to intestinal dysmotility. Mice were treated with low-dose streptozotocin to induce a type 1 diabetes-like hyperglycemia. CT scans revealed decreased overall GI tract motility after 7 weeks of hyperglycemia. Acute (1 week) and chronic (7 weeks) diabetic mice also had decreased potassium chloride (KCl)-induced colon smooth muscle contractility. We hypothesized that decreased smooth muscle contractility at least in part, was due to alteration of contractile protein gene expression. However, diabetic mice showed no changes in mRNA or protein levels of smooth muscle contractile proteins. We determined that the decreased colonic contractility was associated with an attenuated intracellular calcium increase, as measured by ratio-metric imaging of Fura-2 fluorescence in isolated colonic smooth muscle strips. This attenuated calcium increase resulted in decreased myosin light chain phosphorylation, thus explaining the decreased contractility of the colon. Chronic diabetes was also associated with increased basal calcium levels. Western blotting and quantitative real time polymerase chain reaction (qRT-PCR) analysis revealed significant changes in calcium handling proteins in chronic diabetes that were not seen in the acute state.These changes most likely reflect compensatory mechanisms activated by the initial impaired calcium response. Overall my results suggest that type 1 diabetes in mice leads to decreased colon motility in part due to altered calcium handling without altering contractile protein expression.
|
163 |
Mechanisms of recruitment of the CTD phosphatase Rtr1 to RNA polymerase IIBerna, Michael J., Sr. 19 October 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The C-terminal domain (CTD) of the RNA polymerase II (RNAPII) subunit Rpb1 must exist in a hypophosphorylated state prior to forming a competent transcription initiation complex. However, during transcription, specific kinases and phosphatases act on the RNAPII CTD to regulate its phosphorylation state, which serves to recruit sequence-specific and general transcription factors at the appropriate stage of transcription. A key phosphatase involved in this process, Rtr1 (Regulator of Transcription 1), was shown to regulate a key step important for transcription elongation and termination. Although the role that Rtr1 plays in regulating RNAPII transcription has been described, the mechanism involved in the recruitment of Rtr1 to RNAPII during transcription has not been elucidated in yeast. Consequently, the present work utilized both affinity purification schemes in Saccharomyces cerevisiae and mass spectrometry to identify key Rtr1-interacting proteins and post-translational modifications that potentially play a role in recruiting Rtr1 to RNAPII. In addition to RNAPII subunits, which were the most consistently enriched Rtr1-interacting proteins, seven proteins were identified that are potentially involved in Rtr1 recruitment. These included PAF complex subunits (Cdc73, Ctr9, Leo1), the heat shock protein Hsc82, the GTPase Npa3, the ATPase Rpt6, and Spn1. Indirect evidence was also uncovered that implicates that the CTDK-I complex, a kinase involved in RNAPII CTD phosphorylation, is important in facilitating interactions between Rtr1, RNAPII, and select transcription factors. Additionally, a putative phosphorylation site was identified on Ser217 of Rtr1 that may also play a role in its recruitment to RNAPII during transcription.
|
164 |
REGULATION OF CHOP TRANSLATION IN RESPONSE TO eIF2 PHOSPHORYLATION AND ITS ROLE IN CELL FATEPalam, Lakshmi Reddy 11 December 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In response to different environmental stresses, phosphorylation of eukaryotic initiation factor-2 (eIF2) rapidly reduces protein synthesis, which lowers energy expenditure and facilitates reprogramming of gene expression to remediate stress damage. Central to the changes in gene expression, eIF2 phosphorylation also enhances translation of ATF4, a transcriptional activator of genes subject to the Integrated Stress Response (ISR). The ISR increases the expression of genes important for alleviating stress, or alternatively triggering apoptosis. One ISR target gene encodes the transcriptional regulator CHOP whose accumulation is critical for stress-induced apoptosis. In this dissertation research, I show that eIF2 phosphorylation induces preferential translation of CHOP by a mechanism involving a single upstream ORF (uORF) located in the 5’-leader of the CHOP mRNA. In the absence of stress and low eIF2 phosphorylation, translation of the uORF serves as a barrier that prevents translation of the downstream CHOP coding region. Enhanced eIF2 phosphorylation during stress facilitates ribosome bypass of the uORF, and instead results in the translation of CHOP. Stable cell lines were also constructed that express CHOP transcript containing the wild type uORF or deleted for the uORF and each were analyzed for expression changes in response to the different stress conditions. Increased CHOP levels due to the absence of inhibitory uORF sensitized the cells to stress-induced apoptosis when compared to the cells that express CHOP mRNA containing the wild type uORF. This new mechanism of translational control explains how expression of CHOP and the fate of cells are tightly linked to the levels of phosphorylated eIF2 and stress damage.
|
165 |
Bone Metabolism: The Role of STAT3 and Reactive Oxygen SpeciesNewnum, America Bethanne 14 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Signal Transducers and Activators of Transcription 3 (STAT3), a transcription factor expressed in many cell types, including osteoblasts and osteoclasts, is emerging as a key regulator of bone mass and strength. STAT3 mutations cause a rare human immunodeficiency disease characterized by extremely elevated levels of IgE in serum that have associated craniofacial and skeletal features, such as reduced bone mineral density and recurrent pathological fractures. Our microarray data and immunohistochemical staining using a normal rat model have shown that STAT3 mRNA and protein levels markedly increase in response to mechanical loading. In addition, as indicated by STAT3 phosphorylation in MC3T3-E1 osteoblastic cells, STAT3 activity significantly increases in response to 30 to 90 minutes fluid shear stress. In order to further study the role that STAT3 plays in bone responsiveness to loading, tissue-selective STAT3 knockout (KO) mice, in which inactivation of STAT3 occurs in osteoblasts, were generated by breeding the transgenic mice in which Cre recombinase cDNA was cloned downstream of a 3.6 or 2.3 kb fragment of the rat Col1a1 promoter (Col3.6-Cre and Col2.3-Cre, respectively) with a strain of floxed mice in which the two loxP sites flank exons 18-20 of the STAT3 gene were used. Mice engineered with bone selective inactivation of STAT3 in osteoblasts exhibited significantly lower bone mineral density (7-12%, p<0.05) and reduced ultimate force (21-34%, p<0.01) compared to their age-matched littermate controls. The right ulnae of 16-week-old bone specific STAT3 KO mice and the age-matched control mice were loaded with peak forces of 2.5 N and 2.75 N for female and male mice, respectively, at 2 Hz, 120 cycles/day for 3 consecutive days. Mice with inactivation of STAT3 specific in bone were significantly less responsive to mechanical loading than the control mice as indicated by decreased relative mineralizing surface (rMS/BS, 47-59%, p<0.05) and relative bone formation rate (rBFR/BS, 64-75%, p<0.001). Bone responsiveness was equally decreased in mice in which STAT3 is inactivated either in early osteoblasts (Col3.6-Cre) or in mature osteoblasts (Col2.3-Cre).
Accumulating evidence indicates that bone metabolism is significantly affected by activities in mitochondria. For instance, although STAT3 is reported to be involved in bone formation and resorption through regulation of nuclear genes, inactivation of STAT3 is shown to disrupt mitochondrial activities and result in an increased level of reactive oxygen species (ROS). Inactivation of STAT3 suppressed load-driven mitochondrial activity, which led to an elevated level of ROS in cultured primary osteoblasts. Oxidative stress induced by administration of buthionine sulfoximine (BSO) significantly inhibits load-induced bone formation in wild type mice. Taken together, the results support the notion that the loss-of-function mutation of STAT3 in osteoblasts and osteocytes diminishes load-driven bone formation and impairs the regulation of oxidative stress in mitochondria.
|
166 |
Ultraviolet Light-Induced Regulation of Transcription and Translation, COX-2 Expression and Noncanonical NF-κB ActivationCarpenter, Oliver L. January 2013 (has links)
No description available.
|
167 |
Investigating AmrZ-mediated activation of <i>Pseudomonas aeruginosa</i> twitching motility and alginate productionXu, Binjie January 2015 (has links)
No description available.
|
168 |
How tissues tell timeRosahl, Agnes Lioba 22 January 2015 (has links)
Durch ihren Einfluß auf die Genexpression reguliert die zirkadiane Uhr physiologische Funktionen vieler Organe. Obwohl der zugrundeliegende allgemeine Uhrmechanismus gut untersucht ist, bestehen noch viele Unklarheiten über die gewebespezifische Regulation zirkadianer Gene. Neben ihrer gemeinsamen 24-h-Periode im Expressionsmuster unterscheiden diese sich darin, zu welcher Tageszeit sie am höchsten exprimiert sind und in welchem Gewebe sie oszillieren. Mittels Überrepräsentationsanalyse lassen sich Bindungsstellen von Transkriptionsfaktoren identifizieren, die an der Regulation ähnlich exprimierter Gene beteiligt sind. Um diese Methode auf zirkadiane Gene anzuwenden, ist es nötig, Untergruppen ähnlich exprimierter Gene genau zu definieren und Vergleichsgene passend auszuwählen. Eine hierarchische Methode zur Kontrolle der FDR hilft, aus der daraus entstehenden Menge vieler Untergruppenvergleiche signifikante Ergebnisse zu filtern. Basierend auf mit Microarrays gemessenen Zeitreihen wurde durch Promotoranalyse die gewebespezifische Regulation von zirkadianen Genen zweier Zelltypen in Mäusen untersucht. Bindungsstellen der Transkriptionsfaktoren CLOCK:BMAL1, NF-Y und CREB fanden sich in beiden überrepräsentiert. Diesen verwandte Transkriptionsfaktoren mit spezifischen Komplexierungsdomänen binden mit unterschiedlicher Stärke an Motivvarianten und arrangieren dabei Interaktionen mit gewebespezifischeren Regulatoren (z.B. HOX, GATA, FORKHEAD, REL, IRF, ETS Regulatoren und nukleare Rezeptoren). Vermutlich beeinflußt dies den Zeitablauf der Komplexbildung am Promotor zum Transkriptionsstart und daher auch gewebespezifische Transkriptionsmuster. In dieser Hinsicht sind der Gehalt an Guanin (G) und Cytosin (C) sowie deren CpG-Dinukleotiden wichtige Promotoreigenschaften, welche die Interaktionswahrscheinlichkeit von Transkriptionsfaktoren steuern. Grund ist, daß die Affinitäten, mit denen Regulatoren zu Promotoren hingezogen werden, von diesen Sequenzeigenschaften abhängen. / A circadian clock in peripheral tissues regulates physiological functions through gene expression timing. However, despite the common and well studied core clock mechanism, understanding of tissue-specific regulation of circadian genes is marginal. Overrepresentation analysis is a tool to detect transcription factor binding sites that might play a role in the regulation of co-expressed genes. To apply it to circadian genes that do share a period of about 24 hours, but differ otherwise in peak phase timing and tissue-specificity of their oscillation, clear definition of co-expressed gene subgroups as well as the appropriate choice of background genes are important prerequisites. In this setting of multiple subgroup comparisons, a hierarchical method for false discovery control reveals significant findings. Based on two microarray time series in mouse macrophages and liver cells, tissue-specific regulation of circadian genes in these cell types is investigated by promoter analysis. Binding sites for CLOCK:BMAL1, NF-Y and CREB transcription factors are among the common top candidates of overrepresented motifs. Related transcription factors of BHLH and BZIP families with specific complexation domains bind to motif variants with differing strengths, thereby arranging interactions with more tissue-specific regulators (e.g. HOX, GATA, FORKHEAD, REL, IRF, ETS regulators and nuclear receptors). Presumably, this influences the timing of pre-initiation complexes and hence tissue-specific transcription patterns. In this respect, the content of guanine (G) and cytosine (C) bases as well as CpG dinucleotides are important promoter properties directing the interaction probability of regulators, because affinities with which transcription factors are attracted to promoters depend on these sequence characteristics.
|
169 |
Understanding the Heat Shock Response Pathway in Plasmodium Falciparum and Identification of a Novel Exported Heat Shock ProteinGrover, Manish January 2014 (has links) (PDF)
Infections or diseases are not just stressful for the one who encounters it. The pathogens causing the same also have to deal with the hostile environment present in the host. The maintenance of physiological homeostatic balance is must for survival of all organisms. This becomes a challenging task for the protozoan parasites which often alternate between two different hosts during their life cycle and thereby encounter several environmental insults which they need to acclimatize against, in order to establish a productive infection. Since their discovery as proteins up-regulated upon heat shock, heat shock proteins have emerged as main mediators of cellular stress responses and are now also known to chaperone normal cellular functions. Parasites like Plasmodium falciparum have fully utilized the potential of these molecular chaperones. This is evident from the fact that parasite has dedicated about 2% of its genome for this purpose.
During transmission from the insect vector to humans, the malaria parasite Plasmodium falciparum experiences a temperature rise of about 10oC, and the febrile episodes associated with asexual cycle further add to the heat shock which the parasite has to bear with. The exact mechanism by which the parasite responds to temperature stress remains unclear; however, the induction of chaperones such as PfHsp90 and PfHsp70 has been reported earlier. In other eukaryotes, there are three main factors which regulate heat shock response (HSR): heat shock factor (HSF), heat shock element (HSE) and HSF binding protein (HSBP). Bioinformatics analysis revealed presence of HSE and HSBP in P. falciparum genome; however, no obvious homolog of HSF could be identified. Either the HSF homologue in P. falciparum is highly divergent or the parasite has evolved alternate means to tackle temperature stress. Therefore, we decided to biochemically characterize HSBP and understand the heat shock response pathway in the parasite using transcriptomics and proteomics. The expression for PfHSBP was confirmed at both mRNA and protein level and it was found to translocate into the nucleus during heat shock. As previously reported for HSBP in other organisms, PfHSBP also exists predominantly in trimeric and hexameric form and it interacts with PfHsp70-1. Nearly 900 genes, which represent almost 17% of the parasite genome, were found to have HSE in their promoter region. HSE are represented by three repeating units of nGAAn pentamer and its inverted repeat nCTTn; however, the most abundant class of genes in P. falciparum possessed an atypical HSE which had only 2 continuous repeat units. Next, we were interested to find out if these HSE could actually bind to any parasite protein. Therefore, we performed EMSA analysis with the parasite nuclear extracts using HSE sequence as the oligonucleotide. We observed retarded mobility of the oligonucleotide suggesting that it was indeed able to recruit some protein from the nuclear extract. The importance of transcriptional regulation during heat shock was further confirmed when parasite culture subjected to heat shock in the presence of transcription inhibitor did not show induction in the levels of PfHsp70. These evidences suggest that parasite indeed possesses all the components of heat shock response pathway with either a divergent homologue of HSF or an alternate transcription factor which would have taken its role. Next, we performed global profiling of heat shock response using transcriptomic analysis and 2DDIGE based proteomic profiling. Overall, the parasite’s response to heat shock can be classified under 5 functional categories which aim at increasing the folding capacity of the cell, prevent protein aggregation, increase cytoadhesion, increase host cell remodelling and increase erythrocyte membrane rigidity. Out of the 201 genes found to be up-regulated upon heat shock, 36 were found to have HSE in their promoter region. This suggested that HSE-mediated protein up-regulation could be responsible for the induction of only 18% of total number of genes up-regulated upon heat shock. How would the parasite bring about up-regulation of rest of the heat shock responsive genes? It has been previously reported that genes for some of the heat shock proteins in P. falciparum possess G-box regulatory elements in their promoters and recently, it was shown that these elements served as the binding site for one of the transcription factors (PF13_0235) of AP2 family. Therefore, we looked for the status of this AP2 factor and its targets in our transcriptome data. Although, PF13_0235 was itself not up-regulated, we found up-regulation of its target genes which included another AP2 factor gene PF11_0404. The target genes of PF11_0404 were also up-regulated upon heat shock, thereby suggesting the functioning of an AP2 factor mediated response to heat shock.
The next major challenge which the malaria parasite has to deal with is the remodelling of the erythrocyte as these cells do not have a cellular machinery which the parasite can take control of. The parasite remodels the erythrocyte with the help of its large repertoire of exported proteins and develops protrusions known as “knobs” on the erythrocyte surface. These protrusions are cytoadherent in nature and constitute the main virulence determinants of malaria. They also represent variable antigens that allow immune escape. Our lab has previously demonstrated an exported PfHsp40, termed as KAHsp40, to be involved in knob biogenesis. Apart from KAHsp40, there are 19 other PfHsp40s which possess the PEXEL motif required for protein export to erythrocytes. Although, Hsp40s work with an Hsp70 partner, none of the parasitic Hsp70s were known to be exported and was always a missing link in the field of malaria chaperone biology. A genomic re-annotation event could fill this gap by re-annotating the sequence for a pseudogene, PfHsp70-x and described it to contain a functional ORF. According to the re-annotated ORF sequence, PfHsp70-x possessed an ER signal peptide and thus could be targeted to the secretory pathway.
Following validation of the re-annotation using a PCR-based approach, we confirmed the expression of this protein at the protein level by immunoblot analysis. Using various subcellular fractionation approaches and immunolocalization studies we established that PfHsp70-x indeed gets exported to the erythrocyte compartment; however, it did not contain the PEXEL motif required for protein export. It gets secreted into the vacuole around the parasite via the canonical ER-Golgi secretory pathway. Its trafficking from vacuole into the erythrocyte was mediated by a hexameric sequence which was present just after the signal peptide cleavage site and before the beginning of ATP-binding domain. In the erythrocyte compartment, it was found to interact with KAHsp40 and MAHRP1, proteins previously implicated in knob biogenesis. Most importantly, PfHsp70-x interacted with the major knob component PfEMP1; however, itself did not become part of knobs. Instead, it localized to the Maurer’s clefts in the erythrocyte compartment. Inside the parasite, PfHsp70-x was present in a complex with Plasmepsin V and PfHsp101. These proteins have been shown to be essential for host cell remodelling process. Plasmepsin V recognizes the PEXEL motif and brings about its cleavage and PfHsp101 specifically targets these PEXEL-cleaved exported proteins to the translocon in vacuolar membrane thereby facilitating their export into the erythrocyte. Thus, PfHsp70-x could also be involved in directing the export of knob constituents apart from just facilitating their assembly. Since, we found out that heat shock or the febrile episodes encountered during the asexual cycling of the parasite promote host cell remodelling; we wanted to find out if PfHsp70-x has any specific role under conditions of temperature stress. PfHsp70-x gene expression was not influenced upon heat shock, however, its export into the erythrocyte was inhibited and the protein got accumulated within the parasite compartment. Surprisingly, immunolocalization studies revealed that the accumulated pool of PfHsp70-x localized into the nucleus instead of ER thus suggesting an alternate role to be associated with PfHsp70-x under stress.
Overall, our study addresses two major aspects of malaria pathogenesis. First, response to heat shock and second, remodelling of the host cell. We, for the first time describe global profiling of the parasite’s heat shock response and identify a novel P. falciparum specific heat shock protein member to be involved in malaria pathogenesis.
|
170 |
Insights into Occurrence and Divergence of Intrinsic Terminators and Studies on Rho-Dependent Termination in Mycobacterium TuberculosisMitra, Anirban January 2013 (has links) (PDF)
Two mechanisms, intrinsic and factor-dependent, have evolved for accomplishing the termination of transcription in eubacteria. In this thesis, the first chapter is an introduction to the topic that presents what is known about the mechanisms of termination. The properties of the primary and secondary ‘players’- intrinsic terminators, Rho protein, rho-dependent terminators, RNA polymerse and Nus factors - are presented and the known mechanisms by which termination functions are discussed. In Chapter 2, a detailed analysis of intrinsic terminators – their differential distribution, similarity and divergence - has been penned. The database, compiled using the program GeSTer (Genome Scanner for Terminators), comprises ~2000 sequences and is one of the largest of its kind. Furthermore, analyzing the data from over 700 bacteria reveals how different species have fine-tuned intrinsic terminators to suit their cellular needs. Non-canonical intrinsic terminators emerge to be a significant fraction of the observed structures. The conserved structural features of identified intrinsic terminators are discussed and the relationship between the two modes of termination is assessed. Chapter 3 deals with the importance of transcription termination in regulating horizontally acquired DNA. The results show that genomic islands are scarce in intrinsic terminators and thus constitute most likely sites for Rho-dependent termination. Plausible reasons for why such a scenario has evolved are discussed and a generally applicable model is presented. Chapters 4 and 5 focus on Rho protein from Mycobacterium tuberculosis. In silico identification of M. tuberculosisgenes that rely on MtbRho-dependent termination is followed by experimental validation. The data show that Rho-dependent termination is the predominant mechanism in this species.MtbRho is a majorly expressed protein that governs termination of protein-coding and non-protein coding genes. Further, MtbRho can productively interact with RNA that has considerable secondary structure. Such interactions cause conformational changes in the enzyme. Given that MtbRho has to function with a GC-rich transcriptome, the altered properties could have evolved for optimal function.
Taken together, the thesis extends our current understanding of both modes of termination. The importance of non-canonical intrinsic terminators in mycobacteria and other organisms is discussed. The unusual function of Rho and its predominant role in mycobacteria is elucidated. Finally, the inter-relationship between the two modes of termination is also discussed.
|
Page generated in 0.1631 seconds