Spelling suggestions: "subject:"transformed cells"" "subject:"ransformed cells""
1 |
ERK and JNK activation is essential for transformation by v-RelSheely, Juliana Irene 23 October 2009 (has links)
v-Rel is the acutely oncogenic member of the NF-[kappa]B family of transcription
factors and transforms cells through the altered regulation of pathways normally
controlled by cellular NF-[kappa]B. Initial studies revealed that expression of v-Rel results in
the strong and sustained activation of the ERK and JNK MAP kinases. This induction is
critical for the v-Rel transformed phenotype, as suppression of MAPK activity with
chemical inhibitors or siRNA severely limited colony formation of v-Rel transformed cell
lines of hematopoietic origin. However, signaling must be maintained within a certain
range in these cells, as strong additional activation of either pathway through expression
of constitutively active MKK mutants also attenuated the transformed phenotype.
Studies in primary spleen cells revealed that MAPK signaling is also required for the
early stages of v-Rel-mediated transformation. However, constitutive MAPK activity
further enhanced the transformation efficiency of v-Rel in primary cells. These studies,
as well as analogous experiments in DT40 cells, indicate distinct requirements for MAPK activity at different stages of v-Rel-mediated transformation. The proto-oncoprotein, c-Rel, only weakly activates ERK and JNK signaling compared to v-Rel. Importantly,
elevated MAPK activity enhanced transformation by c-Rel, indicating that the ability of
v-Rel to induce MAPK signaling is a major contributor to its oncogenic potential. Taken
together, this work demonstrates an important role for ERK and JNK activity in
transformation by v-Rel.
Additional studies examined mechanisms through which MAPK activity is
regulated in v-Rel transformed cells. Feedback regulation of the ERK activator, MKK1,
at T292 was shown to limit ERK activation in v-Rel transformed cells, preventing the
detrimental effects of constitutive activity. This result is the first indication that this
regulation may have a role in the maintenance of transformation. Further, several v-Rel induced
cytokines were identified that activate ERK and JNK signaling in v-Rel
transformed cells, revealing one means by which v-Rel-dependent transcriptional changes
lead to MAPK activation. These studies demonstrate the integration of multiple
mechanisms in achieving the optimal levels of MAPK activity that are essential for v-Rel-mediated transformation. / text
|
2 |
Cellular Responses to Complex Strain Fields Studied in Microfluidic DevicesChagnon-Lessard, Sophie 25 July 2018 (has links)
Cells in living organisms are constantly experiencing a variety of mechanical cues. From the stiffness of the extra cellular matrix to its topography, not to mention the presence of shear stress and tension, the physical characteristics of the microenvironment shape the cells’ fate. A rapidly growing body of work shows that cellular responses to these stimuli constitute regulatory mechanisms in many fundamental biological functions. Substrate strains were previously shown to be sensed by cells and activate diverse biochemical signaling pathways, leading to major remodeling and reorganization of cellular structures. The majority of studies had focused on the stretching avoidance response in near-uniform strain fields. Prior to this work, the cellular responses to complex planar strain fields were largely unknown. In this thesis, we uncover various aspects of strain sensing and response by first developing a tailored lab-on-a-chip platform that mimics the non-uniformity and complexity of physiological strains. These microfluidic cell stretchers allow independent biaxial control, generate cyclic stretching profiles with biologically relevant strain and strain gradient amplitudes, and enable high resolution imaging of on-chip cell cultures. Using these microdevices, we reveal that strain gradients are potent mechanical cues by uncovering the phenomenon of cell gradient avoidance. This work establishes that the cellular mechanosensing machinery can sense and localize changes in strain amplitude, which orchestrate a coordinated cellular response. Subsequently, we investigate the effect of multiple changes in stretching directions to further explore mechanosensing subtleties. The evolution of the cellular response shed light on the interplay of the strain avoidance and the newly demonstrated strain gradient avoidance, which were found to occur on two different time scales. Finally, we extend our work to study the influence of cyclic strains on the early stages of cancer development in epithelial tissues (using MDCK-RasV12 system), which was previously largely unexplored. This work reveals that external mechanical forces impede the healthy cells’ ability to eliminate newly transformed cells and greatly promote invasive protrusions, as a result of their different mechanoresponsiveness. Overall, not only does our work reveal new insights regarding the long-range organization in population of cells, but it may also contribute to paving the way towards new approaches in cancer prevention treatments.
|
3 |
p62-mediated Selective Autophagy Endows Virus-Transformed Cells With Insusceptibility to DNA Damage Under Oxidative StressWang, Ling, Howell, Mary E. A., Wallace, Aryianna Sparks, Hawkins, Caroline, Nicksic, Camri A., Kohne, Carissa, Hall, Kenton H., Moorman, Jonathan P., Yao, Zhi Q., Ning, Shunbin 24 April 2019 (has links) (PDF)
DNA damage response (DDR) and selective autophagy both can be activated by reactive oxygen/nitrogen species (ROS/RNS), and both are of paramount importance in cancer development. The selective autophagy receptor and ubiquitin (Ub) sensor p62 plays a key role in their crosstalk. ROS production has been well documented in latent infection of oncogenic viruses including Epstein-Barr Virus (EBV). However, p62-mediated selective autophagy and its interplay with DDR have not been investigated in these settings. In this study, we provide evidence that considerable levels of p62-mediated selective autophagy are spontaneously induced, and correlate with ROS-Keap1-NRF2 pathway activity, in virus-transformed cells. Inhibition of autophagy results in p62 accumulation in the nucleus, and promotes ROS-induced DNA damage and cell death, as well as downregulates the DNA repair proteins CHK1 and RAD51. In contrast, MG132-mediated proteasome inhibition, which induces rigorous autophagy, promotes p62 degradation but accumulation of the DNA repair proteins CHK1 and RAD51. However, pretreatment with an autophagy inhibitor offsets the effects of MG132 on CHK1 and RAD51 levels. These findings imply that p62 accumulation in the nucleus in response to autophagy inhibition promotes proteasome-mediated CHK1 and RAD51 protein instability. This claim is further supported by the findings that transient expression of a p62 mutant, which is constitutively localized in the nucleus, in B cell lines with low endogenous p62 levels recaptures the effects of autophagy inhibition on CHK1 and RAD51 protein stability. These results indicate that proteasomal degradation of RAD51 and CHK1 is dependent on p62 accumulation in the nucleus. However, small hairpin RNA (shRNA)-mediated p62 depletion in EBV-transformed lymphoblastic cell lines (LCLs) had no apparent effects on the protein levels of CHK1 and RAD51, likely due to the constitutive localization of p62 in the cytoplasm and incomplete knockdown is insufficient to manifest its nuclear effects on these proteins. Rather, shRNA-mediated p62 depletion in EBV-transformed LCLs results in significant increases of endogenous RNF168-γH2AX damage foci and chromatin ubiquitination, indicative of activation of RNF168-mediated DNA repair mechanisms. Our results have unveiled a pivotal role for p62-mediated selective autophagy that governs DDR in the setting of oncogenic virus latent infection, and provide a novel insight into virus-mediated oncogenesis.
|
4 |
Purificação e caracterização das lectinas ACL-I e ACL-II da esponja marinha axinella corrugata, imunolocalização da ACL-I e avaliação do seu potencial como marcador de transformação celular / Purification and characterization of lectins ACL-I and ACL-II from the marine sponge Axinella corrugata, immunolocalization of ACL-I and its evaluation as marker of cellular transformationDresch, Roger Remy January 2008 (has links)
A partir de extratos aquosos da esponja marinha Axinella corrugata, coletada na costa sul do Brasil (Santa Catarina), foram purificadas duas lectinas, ACL-I e ACL-II, por cromatografia em coluna de afinidade de matriz de estroma de coelhopoliacrilamida, seguida por gel filtração em Ultrogel AcA 44. Os trabalhos se concentraram, especialmente, no estudo da lectina com maior atividade hemaglutinante, ACL-I. Dentre os eritrócitos testados, ACL-I aglutinou, fortemente, eritrócitos de coelho, além de eritrócitos caprinos e caninos. A atividade hemaglutinante foi inibida por N-acetil-D-glicosamina, N-acetil-D-galactosamina e Nacetil- D-manosamina com igual intensidade, além de N, N’, N”-triacetilquitotriose, o melhor inibidor. Por outro lado, ACL-II aglutinou, preferencialmente, eritrócitos de coelho e caninos, tendo sua atividade hemaglutinante inibida por N-acetil-Dglicosamina, N-acetil-D-manosamina, quitina, N, N’, N”-triacetilquitotriose e fetuína, além de D-galactose, mas não por N-acetil-D-galactosamina. Ambas lectinas foram fracamente inibidas por N-acetil-D-lactosamina. A atividade hemaglutinante mostrouse independente de cátions divalentes e foi estável a uma ampla faixa de temperatura e de pH para ACL-I e para ACL-II. ACL-I foi estável frente à ação de enzimas proteolíticas, mas perdeu 50 % de sua atividade na presença de agentes redutores e desnaturantes. ACL-I é uma glicoproteína e sua massa molecular relativa foi estimada em 82.300 por SDS-PAGE em condições redutoras e não redutoras, e sem desnaturação pelo calor. Ainda, mostrou ser constituída por 6 subunidades monoméricas de 13.900, apresentando pontes de dissulfeto entre as mesmas. Por FPLC, a massa molecular estimada foi de 78.500. Da mesma forma como para ACL-I, ACL-II apresentou apenas uma banda em sistema SDS-PAGE, na ausência de agente redutor e sem desnaturação pelo calor, cuja massa molecular relativa foi estimada em 80.000, enquanto que por FPLC foi estimada em 78.000. O pI de ACL-I foi de 6,3, avaliado por focalização isoelétrica, e a sua composição centesimal de aminoácidos exibiu uma prevalência de glicina, seguida de ácido aspártico/asparagina, ácido glutâmico/glutamina e alanina. Dentre as atividades biológicas testadas, a ACL-I demonstrou atividade quimiotáxica, mitogênica e citotóxica, mas não antioxidante. Os ensaios imuno-histoquímicos mostraram que ACL-I se encontra intracelularmente em grânulos celulares, provavelmente no interior de células esferulosas da esponja marinha. A lectina também mostrou ser uma ferramenta útil na marcação de células transformadas de mama, cólon, pulmão, ovário e bexiga. / Two lectins, ACL-I and ACL-II, were purified from aqueous extracts of marine sponge Axinella corrugata, collected at Atlantic coastline of southern Brazil (Santa Catarina) by rabbit stroma-polyacrylamide gel affinity column, followed by size-exclusion chromatography on Ultrogel AcA 44. The analysis were performed, especially, on the study of lectin with greater hemagglutinating activity, ACL-I. Among the erythrocytes tested, ACL-I agglutinated, strongly, native rabbit, goat and dog erythrocytes, whose hemagglutinating activity was inhibited by N-acetyl-D-glucosamine, N-acetyl-Dmannosamine, N-acetyl-D-galactosamine and N, N’, N”- triacetylchitotriose. On the other hand, ACL-II agglutinated, preferentially, rabbit and dog erythrocytes, with its hemagglutinating activity inhibited by D-galactose, N-acetyl-D-glucosamine, N-acetyl- D-mannosamine, chitin, N, N’, N”- triacetylchitotriose and fetuin, but not by N-acetyl- D-galactosamine. Both lectins were weakly inhibited by N-acetyl-D-lactosamine. The hemagglutinating activity was independent of divalent cations and it was stable at large range of temperature and pH to ACL-I and ACL-II. ACL-I was resistent to enzymatic proteolysis, but lost 50 % of its activity in the presence of reducing or denaturant agents. This lectin presented a relative molecular mass of 82,300 estimated by SDS-PAGE in the presence or absence of 2-mercaptoethanol, without pre-heating, and it is constituted by six monomeric subunits of 13,900, showing disulphide bridges among them. By FPLC the relative molecular mass was 78,500. Similar to ACL-I, ACL-II showed one unique protein band by SDS-PAGE, in the absence of 2-mercaptoethanol and without pre-heating, whose relative molecular mass was estimated as 80,000 and by gel filtration as 78,000. The isoelectric focusing of ACL-I revealed the presence of one unique protein band with pI of 6.3 and the amino acid composition showed a prevalence of glycine, followed by aspartic acid/asparagine, glutamic acid/glutamine and alanine. Among the biological activities analysed, the ACL-I demonstrated chemotactic, mitogenic and cytotoxic activities, but not antioxidant. The immunohistochemical assays revealed that ACL-I is stored in vesicles, probably inside of spherulous cells of the marine sponge. The lectin showed to be a useful tool in the labelling of transformed cells of breast, colon, lung, ovary and bladder.
|
5 |
Purificação e caracterização das lectinas ACL-I e ACL-II da esponja marinha axinella corrugata, imunolocalização da ACL-I e avaliação do seu potencial como marcador de transformação celular / Purification and characterization of lectins ACL-I and ACL-II from the marine sponge Axinella corrugata, immunolocalization of ACL-I and its evaluation as marker of cellular transformationDresch, Roger Remy January 2008 (has links)
A partir de extratos aquosos da esponja marinha Axinella corrugata, coletada na costa sul do Brasil (Santa Catarina), foram purificadas duas lectinas, ACL-I e ACL-II, por cromatografia em coluna de afinidade de matriz de estroma de coelhopoliacrilamida, seguida por gel filtração em Ultrogel AcA 44. Os trabalhos se concentraram, especialmente, no estudo da lectina com maior atividade hemaglutinante, ACL-I. Dentre os eritrócitos testados, ACL-I aglutinou, fortemente, eritrócitos de coelho, além de eritrócitos caprinos e caninos. A atividade hemaglutinante foi inibida por N-acetil-D-glicosamina, N-acetil-D-galactosamina e Nacetil- D-manosamina com igual intensidade, além de N, N’, N”-triacetilquitotriose, o melhor inibidor. Por outro lado, ACL-II aglutinou, preferencialmente, eritrócitos de coelho e caninos, tendo sua atividade hemaglutinante inibida por N-acetil-Dglicosamina, N-acetil-D-manosamina, quitina, N, N’, N”-triacetilquitotriose e fetuína, além de D-galactose, mas não por N-acetil-D-galactosamina. Ambas lectinas foram fracamente inibidas por N-acetil-D-lactosamina. A atividade hemaglutinante mostrouse independente de cátions divalentes e foi estável a uma ampla faixa de temperatura e de pH para ACL-I e para ACL-II. ACL-I foi estável frente à ação de enzimas proteolíticas, mas perdeu 50 % de sua atividade na presença de agentes redutores e desnaturantes. ACL-I é uma glicoproteína e sua massa molecular relativa foi estimada em 82.300 por SDS-PAGE em condições redutoras e não redutoras, e sem desnaturação pelo calor. Ainda, mostrou ser constituída por 6 subunidades monoméricas de 13.900, apresentando pontes de dissulfeto entre as mesmas. Por FPLC, a massa molecular estimada foi de 78.500. Da mesma forma como para ACL-I, ACL-II apresentou apenas uma banda em sistema SDS-PAGE, na ausência de agente redutor e sem desnaturação pelo calor, cuja massa molecular relativa foi estimada em 80.000, enquanto que por FPLC foi estimada em 78.000. O pI de ACL-I foi de 6,3, avaliado por focalização isoelétrica, e a sua composição centesimal de aminoácidos exibiu uma prevalência de glicina, seguida de ácido aspártico/asparagina, ácido glutâmico/glutamina e alanina. Dentre as atividades biológicas testadas, a ACL-I demonstrou atividade quimiotáxica, mitogênica e citotóxica, mas não antioxidante. Os ensaios imuno-histoquímicos mostraram que ACL-I se encontra intracelularmente em grânulos celulares, provavelmente no interior de células esferulosas da esponja marinha. A lectina também mostrou ser uma ferramenta útil na marcação de células transformadas de mama, cólon, pulmão, ovário e bexiga. / Two lectins, ACL-I and ACL-II, were purified from aqueous extracts of marine sponge Axinella corrugata, collected at Atlantic coastline of southern Brazil (Santa Catarina) by rabbit stroma-polyacrylamide gel affinity column, followed by size-exclusion chromatography on Ultrogel AcA 44. The analysis were performed, especially, on the study of lectin with greater hemagglutinating activity, ACL-I. Among the erythrocytes tested, ACL-I agglutinated, strongly, native rabbit, goat and dog erythrocytes, whose hemagglutinating activity was inhibited by N-acetyl-D-glucosamine, N-acetyl-Dmannosamine, N-acetyl-D-galactosamine and N, N’, N”- triacetylchitotriose. On the other hand, ACL-II agglutinated, preferentially, rabbit and dog erythrocytes, with its hemagglutinating activity inhibited by D-galactose, N-acetyl-D-glucosamine, N-acetyl- D-mannosamine, chitin, N, N’, N”- triacetylchitotriose and fetuin, but not by N-acetyl- D-galactosamine. Both lectins were weakly inhibited by N-acetyl-D-lactosamine. The hemagglutinating activity was independent of divalent cations and it was stable at large range of temperature and pH to ACL-I and ACL-II. ACL-I was resistent to enzymatic proteolysis, but lost 50 % of its activity in the presence of reducing or denaturant agents. This lectin presented a relative molecular mass of 82,300 estimated by SDS-PAGE in the presence or absence of 2-mercaptoethanol, without pre-heating, and it is constituted by six monomeric subunits of 13,900, showing disulphide bridges among them. By FPLC the relative molecular mass was 78,500. Similar to ACL-I, ACL-II showed one unique protein band by SDS-PAGE, in the absence of 2-mercaptoethanol and without pre-heating, whose relative molecular mass was estimated as 80,000 and by gel filtration as 78,000. The isoelectric focusing of ACL-I revealed the presence of one unique protein band with pI of 6.3 and the amino acid composition showed a prevalence of glycine, followed by aspartic acid/asparagine, glutamic acid/glutamine and alanine. Among the biological activities analysed, the ACL-I demonstrated chemotactic, mitogenic and cytotoxic activities, but not antioxidant. The immunohistochemical assays revealed that ACL-I is stored in vesicles, probably inside of spherulous cells of the marine sponge. The lectin showed to be a useful tool in the labelling of transformed cells of breast, colon, lung, ovary and bladder.
|
6 |
Purificação e caracterização das lectinas ACL-I e ACL-II da esponja marinha axinella corrugata, imunolocalização da ACL-I e avaliação do seu potencial como marcador de transformação celular / Purification and characterization of lectins ACL-I and ACL-II from the marine sponge Axinella corrugata, immunolocalization of ACL-I and its evaluation as marker of cellular transformationDresch, Roger Remy January 2008 (has links)
A partir de extratos aquosos da esponja marinha Axinella corrugata, coletada na costa sul do Brasil (Santa Catarina), foram purificadas duas lectinas, ACL-I e ACL-II, por cromatografia em coluna de afinidade de matriz de estroma de coelhopoliacrilamida, seguida por gel filtração em Ultrogel AcA 44. Os trabalhos se concentraram, especialmente, no estudo da lectina com maior atividade hemaglutinante, ACL-I. Dentre os eritrócitos testados, ACL-I aglutinou, fortemente, eritrócitos de coelho, além de eritrócitos caprinos e caninos. A atividade hemaglutinante foi inibida por N-acetil-D-glicosamina, N-acetil-D-galactosamina e Nacetil- D-manosamina com igual intensidade, além de N, N’, N”-triacetilquitotriose, o melhor inibidor. Por outro lado, ACL-II aglutinou, preferencialmente, eritrócitos de coelho e caninos, tendo sua atividade hemaglutinante inibida por N-acetil-Dglicosamina, N-acetil-D-manosamina, quitina, N, N’, N”-triacetilquitotriose e fetuína, além de D-galactose, mas não por N-acetil-D-galactosamina. Ambas lectinas foram fracamente inibidas por N-acetil-D-lactosamina. A atividade hemaglutinante mostrouse independente de cátions divalentes e foi estável a uma ampla faixa de temperatura e de pH para ACL-I e para ACL-II. ACL-I foi estável frente à ação de enzimas proteolíticas, mas perdeu 50 % de sua atividade na presença de agentes redutores e desnaturantes. ACL-I é uma glicoproteína e sua massa molecular relativa foi estimada em 82.300 por SDS-PAGE em condições redutoras e não redutoras, e sem desnaturação pelo calor. Ainda, mostrou ser constituída por 6 subunidades monoméricas de 13.900, apresentando pontes de dissulfeto entre as mesmas. Por FPLC, a massa molecular estimada foi de 78.500. Da mesma forma como para ACL-I, ACL-II apresentou apenas uma banda em sistema SDS-PAGE, na ausência de agente redutor e sem desnaturação pelo calor, cuja massa molecular relativa foi estimada em 80.000, enquanto que por FPLC foi estimada em 78.000. O pI de ACL-I foi de 6,3, avaliado por focalização isoelétrica, e a sua composição centesimal de aminoácidos exibiu uma prevalência de glicina, seguida de ácido aspártico/asparagina, ácido glutâmico/glutamina e alanina. Dentre as atividades biológicas testadas, a ACL-I demonstrou atividade quimiotáxica, mitogênica e citotóxica, mas não antioxidante. Os ensaios imuno-histoquímicos mostraram que ACL-I se encontra intracelularmente em grânulos celulares, provavelmente no interior de células esferulosas da esponja marinha. A lectina também mostrou ser uma ferramenta útil na marcação de células transformadas de mama, cólon, pulmão, ovário e bexiga. / Two lectins, ACL-I and ACL-II, were purified from aqueous extracts of marine sponge Axinella corrugata, collected at Atlantic coastline of southern Brazil (Santa Catarina) by rabbit stroma-polyacrylamide gel affinity column, followed by size-exclusion chromatography on Ultrogel AcA 44. The analysis were performed, especially, on the study of lectin with greater hemagglutinating activity, ACL-I. Among the erythrocytes tested, ACL-I agglutinated, strongly, native rabbit, goat and dog erythrocytes, whose hemagglutinating activity was inhibited by N-acetyl-D-glucosamine, N-acetyl-Dmannosamine, N-acetyl-D-galactosamine and N, N’, N”- triacetylchitotriose. On the other hand, ACL-II agglutinated, preferentially, rabbit and dog erythrocytes, with its hemagglutinating activity inhibited by D-galactose, N-acetyl-D-glucosamine, N-acetyl- D-mannosamine, chitin, N, N’, N”- triacetylchitotriose and fetuin, but not by N-acetyl- D-galactosamine. Both lectins were weakly inhibited by N-acetyl-D-lactosamine. The hemagglutinating activity was independent of divalent cations and it was stable at large range of temperature and pH to ACL-I and ACL-II. ACL-I was resistent to enzymatic proteolysis, but lost 50 % of its activity in the presence of reducing or denaturant agents. This lectin presented a relative molecular mass of 82,300 estimated by SDS-PAGE in the presence or absence of 2-mercaptoethanol, without pre-heating, and it is constituted by six monomeric subunits of 13,900, showing disulphide bridges among them. By FPLC the relative molecular mass was 78,500. Similar to ACL-I, ACL-II showed one unique protein band by SDS-PAGE, in the absence of 2-mercaptoethanol and without pre-heating, whose relative molecular mass was estimated as 80,000 and by gel filtration as 78,000. The isoelectric focusing of ACL-I revealed the presence of one unique protein band with pI of 6.3 and the amino acid composition showed a prevalence of glycine, followed by aspartic acid/asparagine, glutamic acid/glutamine and alanine. Among the biological activities analysed, the ACL-I demonstrated chemotactic, mitogenic and cytotoxic activities, but not antioxidant. The immunohistochemical assays revealed that ACL-I is stored in vesicles, probably inside of spherulous cells of the marine sponge. The lectin showed to be a useful tool in the labelling of transformed cells of breast, colon, lung, ovary and bladder.
|
Page generated in 0.0764 seconds