• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 9
  • 9
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 77
  • 77
  • 16
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Transient Analysis in Pipe Networks

Sirvole, Kishore 23 March 2010 (has links)
Power failure of pumps, sudden valve actions, and the operation of automatic control systems are all capable of generating high pressure waves in domestic water supply systems. These transient conditions resulting in high pressures can cause pipe failures by damaging valves and fittings. In this study, basic equations for solving transient analysis problems are derived using method of characteristics. Two example problems are presented. One, a single pipe system which is solved by developing an excel spreadsheet. Second, a pipe network problem is solved using transient analysis program called TRANSNET. A transient analysis program is developed in Java. This program can handle suddenly-closing valves, gradually-closing valves, pump power failures and sudden demand changes at junctions. A maximum of four pipes can be present at a junction. A pipe network problem is solved using this java program and the results were found to be similar to that obtained from TRANSNET program. The code can be further extended, for example by developing java applets and graphical user interphase to make it more user friendly. A two dimensional (2D) numerical model is developed using MATLAB to analyze gaseous cavitation in a single pipe system. The model is based on mathematical formulations proposed by Cannizzaro and Pezzinga (2005) and Pezzinga (2003). The model considers gaseous cavitation due to both thermic exhange between gas bubbles and surrounding liquid and during the process of gas release. The results from the model show that during transients, there is significant increase in fluid temperature along with high pressures. In literature pipe failures and noise problems in premise plumbing are atributed to gaseous cavitation. / Master of Science
32

An Experimental Study on Soil Water Characteristics and Hydraulic Conductivity of Compacted Soils

Cuceoglu, Faik 23 September 2016 (has links)
The importance of applying unsaturated soil mechanics concepts to geotechnical engineering design has been widely recognized. Soil water characteristic curve (SWCC) and hydraulic conductivity function (HCF) are vital soil properties that govern engineering behavior of unsaturated soils. In this study, a transient water release and imbibitions method (TRIM) is used to measure the SWCC and HCF under drying and wetting states, which accommodates integrated experimental and modeling techniques. The results of saturated hydraulic conductivity tests through flexible wall method are then used as input parameters for simulating experimental data. In general, the model provides a satisfactory fit to experimental data. Soil water characteristic curves (SWCCs) and hydraulic conductivity functions (HCFs) are presented for a variety of soils that were prepared at different molding water contents and compactive efforts. The influences of dry density, molding water content, and hysteresis have been investigated. Dry density affects soil-water characteristic in terms of its air-entry value (AEV), rate of drying, and size of the hysteresis loop. The test results indicate that the SWCC and HCF obtained in terms of volumetric water content is more sensitive to the changes in dry density than molding water content. Based on cohesive soil results, some statistical relations are proposed to estimate wetting-path SWCC and HCF parameters from more easily measured drying curves. Changes in the van Genuchten's fitting parameters and residual volumetric water content are investigated for both drying and wetting conditions, with changes in the kaolin clay content. / Master of Science
33

Um método para previsão de sobrecarga transiente em sistemas computacionais por meio de modelos dinâmicos obtidos empiricamente / A method for transient overload prediction in computer systems from empirically obtained dynamical models

Luz, Helder Jefferson Ferreira da 01 October 2014 (has links)
Este trabalho apresenta um método empírico para previsão de sobrecargas transientes em sistemas computacionais por meio de modelagem dinâmica. A técnica, baseada em aproximações lineares e invariantes no tempo, tem como objetivo identificar a capacidade de um sistema computacional absorver variações na carga de trabalho. Experimentalmente, a identificação dessa capacidade do sistema pode ser feita por meio de técnicas de avaliação de desempenho, em que a abordagem prevalente é a estimação da capacidade estática em regime estacionário de operação, observando-se o desempenho sob demanda constante. Entretanto, essa avaliação não considera o regime transiente do sistema, i.e durante o período de restabelecimento ao regime estacionário após uma perturbação, e durante o qual, o esforço exigido pode ser bastante diverso, e potencialmente acima daquele apurado sob condições de regime estacionário. A proposta deste trabalho é a formulação de uma metodologia para avaliação de desempenho em regime transiente em sistemas computacionais sob carga de trabalho variável e que forneça informação para o dimensionamento de recursos e políticas de controle de admissão que evitem sobrecargas por efeitos transitórios. A metodologia baseia-se na parametrização de um modelo dinâmico a partir de ensaios experimentais, considerando perturbações bruscas e de longa duração, e os resultados são avaliados por comparação das predições do modelo em relação aos objetivos por simulação ou aferição. / This research work introduces an empirical method for the prediction of transient overloads in computer systems by means of dynamical modeling. The technique, based on linear time-invariant approximations, aims at identifying the computer systems capacity in absorbing variations on the workload. Experimentally, this capacity identification can be carried out from performance evaluation methods, whose prevalent approach is the estimation of the static capacity under stationary operational regime, by observing the performance under constant demand. Nevertheless, this kind of evaluation does not take into account the systems transient regime, i.e. the period during of the restablishment to the stationary regime after the perturbation, and within which, the effort required from the systems may be diverse and potentially superior to that measured under the stationary condition. This work proposes the formulation of a methodology for performance evaluation in transient regime of computer systems submitted to variable workloads, aimed at providing information for dimensioning or resources and design of admission control policies capable of avoiding overloads due to transitory effects. The methodology relies on the parametrization of a dynamical model obtained from experimental procedures, considering abrupt, long-lasting distrubances, and the results are evaluated through comparison of the model prediction with the simulated system.
34

Transient Analysis of Complex Dynamical Systems in the Context of Sustainability

Kittel, Tim 14 March 2018 (has links)
Ein wichtiger Aspekt der Analyse von dynamischen Systemen ist die Transiente einer Trajektorie. Im Kontext der Nachhaltigkeitsforschung bearbeite ich diesbezüglich zwei Fragen: (i) ”Wie kann man die Zeit zum Erreichen des Attraktors quantifizieren?“ und (ii) ”Kann man es verhindern, bestimmte Grenzen zu überschreiben und somit sicher zu bleiben?“ Bzgl. (i) analysiere ich mehrere Probleme, welche bei der Quantifizierung solcher transienter Zeiten auftreten, und definiere vier Bedingungen, die eine Antwort auf Frage (i) erfüllen soll. Weiterhin führe ich zwei Metriken, Area under Distance Curve und Regularized Reaching Time, ein, die verschiedene Aspekte der transienten Dynamik einfangen. Frage (ii) bezieht sich auf Systeme mit sowohl erwünschten und unerwünschten Zuständen als auch Möglichkeiten zur Beeinflussung. Ich stelle ”Topology of Sustainable Management“ als ein Werkzeug zur Analyse solcher Modelle vor. Diese baut auf ”Viabilitätstheorie“ auf, um den dazugehörigen Saint-Pierre Algorithmus (SPA) verwenden zu können. Ich erweitere den Algorithmus zur Schätzung von ”implicitly-defined Capure Basins“ und löse zwei substanzielle Probleme, welche häufig bei der Anwendung von SPA vorkommen. Zur Demonstration verwende ich ein Beispielmodell, das auf Klimawandel, Wirtschaftsleistung und die Transformation des Energiesystems fokussiert. Danach nutze ich funktionale Klimanetzwerke, um zu analysieren, wie sich die transien- te Phase nach großen Klimastörungen – die El Niño- und La Niña-Phasen von ENSO und die drei größten Vulkaneruptionen seit 1950 – die Telekonnektionsstruktur der globalen Oberflächentemperatur auswirkt. Die Resultate bestätigen den globalen Einfluss von ENSO durch das Zusammenbrechen der modularen Struktur des global SAT-Feldes. Dies zeigt die Emergenz starker Telekonnektionen. Weiterhin habe ich deutlich, qualitative Unterschiede zwischen diesen global Klimaextremsituationen identifizieren können. / An important feature of dynamical systems is the transient phase of a trajectory that I approach with two question: (i) “How can we properly quantify the time to reach a system’s attractor?” and (ii) “Can we avoid transgressing certain boundaries and stay safe (& just)?” In particular, I consider these questions in the context of sustainability science. Concerning (i), I analyze several problems that come up when quantifying such transient times and define four conditions that a metric answering question (i) should fulfill. Further, I introduce two metrics, Area under Distance Curve and Regularized Reaching Time, capturing two complementary aspects of the transient dynamics. Question (ii) concerns with systems having distinctions of the state space in desirable and undesirable, e.g. defined by “planetary boundaries”, and some sort of influencing/managing it. I present Topology of Sustainable Management as a tool to analyze such models. It is built on concepts from viability theory (VT) in order to use the Saint-Pierre algorithm (SPA). I extend the SPA to compute so-called implicitly defined capture basins and solve two substantial problems repeatedly occuring when using the SPA. For Demonstration, I use a three-dimensional model focusing on climate change, economic output and energy transformation. Finally, I use functional climate networks to analyze how the transient phase after major climate perturbations – the El Niño and La Niña phases of ENSO and three largest recent volcanic eruptions – influence the teleconnectivity structure of the surface area temperature field (SAT). The results confirm the existence of global effects of ENSO by breaking down the modular structure of the global SAT field, and I have identified distinct qualitative differences between theses two global climate extreme situation.
35

Simulating hydraulic interdependence between bridges along a river corridor under transient flood conditions

Trueheart, Matthew Everett 01 January 2019 (has links)
The interactions between rivers, surrounding hydrogeological features, and hydraulic structures such as bridges are not well-established or understood at the network scale, especially under transient conditions. The cascading hydraulic effects of local perturbations up- and downstream of the site of perturbation may have significant, unexpected, and far-reaching consequences, and therefore often cause concern among stakeholders. The up- and downstream hydraulic impacts of a single structural modification may extend much farther than anticipated, especially in extreme events. This work presents a framework and methodology to perform an analysis of interdependent bridge-stream interactions along a river corridor. Such analysis may help prioritize limited resources available for bridge and river rehabilitations, allow better-informed cost/benefit analysis, facilitate holistic design of bridges, and address stakeholder concerns raised in response to planned bridge and infrastructure alterations. The stretch of the Otter Creek from Rutland to Middlebury, VT, is used as a test bed for this analysis. A two-dimensional hydraulic model is used to examine the effects individual structures have on the bridge-stream network, particularly during extreme flood events. Results show that, depending on their characteristics, bridges and roadways may either attenuate or amplify peak flood flows up- and downstream, or have little to no impact at all. Likewise, bridges may or may not be sensitive to any changes in discharge that result from perturbation of existing structures elsewhere within the network. Alterations to structures that induce substantial backwaters may result in the most dramatic impacts to the network, which can be either positive or negative. Structures that do not experience relief (e.g., roadway overtopping) may be most sensitive to network perturbations.
36

Transient Response of Grounding Systems Caused by Lightning: Modelling and Experiments

Liu, Yaqing January 2004 (has links)
<p>In order to achieve better lightning protection and electromagnetic compatibility (EMC) requirements, the needs for a proper grounding system and the knowledge of its transient behaviour become crucial. </p><p>The present work is focused towards developing engineering models for transient analysis of grounding system with sufficient accuracy and simplicity for lightning studies. Firstly, the conventional uniform transmission line approach for a single grounding conductor is modified and extended to grounding grids. Secondly, in order to overcome the drawbacks of all the existing transmission line approaches, for the first time, a non-uniform transmission line approach is developed for modelling the transient behaviour of different types of grounding systems. The important feature of such an approach is in its capability to include the electromagnetic couplings between different parts of the grounding system using space and time dependent per-unit length parameters.</p><p>High voltages and currents induced in the grounding systems due to lightning always produce ionization in the soil. This phenomenon should be included during the transient analysis of grounding systems. In the present work, an improved soil ionization model including residual resistivity in ionization region is developed. The fact that there exists residual resistivity in ionization region (7 % of the original soil resistivity) can be proved by the experiments reported in the literature and the experiments carried out at the high voltage lab of Uppsala University. The advantage of including residual resistivity is that the beneficial influence of soil ionization in reducing the potential rise of grounding system will not be overestimated, especially in high resistivity soil.</p><p>Finally, the transmission line approaches are adopted for studying the response of grounding systems due to lightning for different applications. These are, influence of soil parameters on the transient behaviour of grounding systems, transient analysis of grounding structures in stratified soils, investigation of the validity of existing definitions for effective length/area of different grounding structures, current distribution in the shields of under ground cables associated with communication tower, and influence of insulator flashover and soil ionization around the pole footing on surge propagation in Swedish railway system.</p>
37

Bandwidth-reduced Linear Models of Non-continuous Power System Components

Persson, Jonas January 2006 (has links)
Denna avhandling är fokuserad på modellering av elkraftsystemkomponenter och deras representation vid simuleringar av elkraftsystem. Avhandlingen jämför olika linjäriseringstekniker. Dessa tekniker är såväl numeriska som analytiska och används vid linjärisering av ett dynamiskt system. Efter en linjärisering är det möjligt att beräkna egenvärdena av det linjäriserade systemet samt använda andra verktyg ämnade för studier av linjära system. I avhandlingen visas hur olika linjäriseringtekniker influerar egenvärdesberäkningen av det linjära systemet. I avhandlingen tas fram bandviddsreducerade linjära modeller av en kraftsystemkomponent med hjälp av två tekniker. Senare görs simuleringar med de linjära modellerna tillsammans med ett introducerat gränssnitt. Den studerade kraftsystemkomponenten är en tyristorstyrd seriekondensator (TCSC). En fördel med att använda en linjär representation av en kraftsystemkomponent är att det förenklar simuleringarna. Storleken på komplexiteten av en simulering vid lösandet av ekvationerna minskar och den konsumerade fysiska tiden att simulera minskar. En nackdel med en linjär modell är att dess giltighet kan vara begränsad. Behovet av att bygga linjära modeller av kraftsystemkomponenter torde även finnas i framtiden. Med dagens horisont (år 2006) finns behov av att bygga linjära modeller utgående från detaljerade modeller av bl a högspända likströmslänkar (HVDC-länkar), reaktiva effektkompensatorer (SVC) samt tyristorstyrda seriekondensatorer (TCSC). Hur skall dessa representeras när vi vill studera dynamiken av ett helt kraftsystem och det då är nödvändigt att reducera deras komplexitet? Denna frågeställning uppkommer när vi vill genomföra tidsdomänsimuleringar på en inte alltför detaljerad nivå av de individuella kraftsystemkomponenterna eller när vi vill linjärisera kraftsystemet för att studera dess stabilitet med hjälp av småsignalanalys. / This thesis is focused in modelling of power system components and their representation in simulations of power systems. The thesis compares different linearization techniques. These techniques are both numerical as well as analytical and are utilized when linearization of a dynamic system is desired. After a linearization it is possible to calculate the eigenvalues of the linearized system as well as to perform other applicable activities on a linear system. In the thesis it is shown how the linearization techniques influence the calculation of eigenvalues of the linear system. In the thesis bandwidth-reduced linear models of a power system component are developed using two techniques. The simulations with the linear models are done with an introduced interface system. The studied power system component is a Thyristor-Controlled Series Capacitor (TCSC). One advantage with using a linear representation of a power system component is that it simplifies the simulations. The size of the complexity of a simulation when solving the equations decreases and the consumed physical time to simulate becomes shorter. A disadvantage of a linear model is that its validity might be limited. The need of building linear models of power systems will continue to attract interest in the future. With the horizon of today (year 2006) there is a need of among other models to build linear models of detailed models of High Voltage Direct Current-links (HVDC-links), Static Var Compensators (SVCs), as well as Thyristor-Controlled Series Capacitors (TCSCs). How should these be represented when we want to study the dynamics of a whole power system and it is necessary to reduce their complexity? This question rises when we want to perform time-domain simulations with a not too detailed level of complexity of each individual power system component or if we want to linearize the power system and study it within small-signal stability analysis. / QC 20100915
38

Transient Response of Grounding Systems Caused by Lightning: Modelling and Experiments

Liu, Yaqing January 2004 (has links)
In order to achieve better lightning protection and electromagnetic compatibility (EMC) requirements, the needs for a proper grounding system and the knowledge of its transient behaviour become crucial. The present work is focused towards developing engineering models for transient analysis of grounding system with sufficient accuracy and simplicity for lightning studies. Firstly, the conventional uniform transmission line approach for a single grounding conductor is modified and extended to grounding grids. Secondly, in order to overcome the drawbacks of all the existing transmission line approaches, for the first time, a non-uniform transmission line approach is developed for modelling the transient behaviour of different types of grounding systems. The important feature of such an approach is in its capability to include the electromagnetic couplings between different parts of the grounding system using space and time dependent per-unit length parameters. High voltages and currents induced in the grounding systems due to lightning always produce ionization in the soil. This phenomenon should be included during the transient analysis of grounding systems. In the present work, an improved soil ionization model including residual resistivity in ionization region is developed. The fact that there exists residual resistivity in ionization region (7 % of the original soil resistivity) can be proved by the experiments reported in the literature and the experiments carried out at the high voltage lab of Uppsala University. The advantage of including residual resistivity is that the beneficial influence of soil ionization in reducing the potential rise of grounding system will not be overestimated, especially in high resistivity soil. Finally, the transmission line approaches are adopted for studying the response of grounding systems due to lightning for different applications. These are, influence of soil parameters on the transient behaviour of grounding systems, transient analysis of grounding structures in stratified soils, investigation of the validity of existing definitions for effective length/area of different grounding structures, current distribution in the shields of under ground cables associated with communication tower, and influence of insulator flashover and soil ionization around the pole footing on surge propagation in Swedish railway system.
39

Qualifizierung des Kernmodells DYN3D im Komplex mit dem Störfallcode ATHLET als fortgeschrittenes Werkzeug für die Störfallanalyse von WWER-Reaktoren - Teil 2

Kliem, S., Grundmann, U., Rohde, U. 31 March 2010 (has links) (PDF)
Benchmark calculations for the validation of the coupled neutron kinetics/thermohydraulic code complex DYN3D-ATHLET are described. Two benchmark problems concerning hypothetical accident scenarios with leaks in the steam system for a VVER-440 type reactor and the TMI-1 PWR have been solved. The first benchmark task has been defined by FZR in the frame of the international association "Atomic Energy Research" (AER), the second exercise has been organised under the auspices of the OECD. While in the first benchmark the break of the main steam collector in the sub-critical hot zero power state of the reactor was considered, the break of one of the two main steam lines at full reactor power was assumed in the OECD benchmark. Therefore, in this exercise the mixing of the coolant from the intact and the defect loops had to be considered, while in the AER benchmark the steam collector break causes a homogeneous overcooling of the primary circuit. In the AER benchmark, each participant had to use its own macroscopic cross section libraries. In the OECD benchmark, the cross sections were given in the benchmark definition. The main task of both benchmark problems was to analyse the re-criticality of the scrammed reactor due to the overcooling. For both benchmark problems, a good agreement of the DYN3D-ATHLET solution with the results of other codes was achieved. Differences in the time of re-criticality and the height of the power peak between various solutions of the AER benchmark can be explained by the use of different cross section data. Significant differences in the thermohydraulic parameters (coolant temperature, pressure) occurred only at the late stage of the transient during the emergency injection of highly borated water. In the OECD benchmark, a broader scattering of the thermohydraulic results can be observed, while a good agreement between the various 3D reactor core calculations with given thermohydraulic boundary conditions was achieved. Reasons for the differences in the thermohydraulics were assumed in the difficult modelling of the vertical once-through steam generator with steam superheating. Sensitivity analyses which considered the influence of the nodalisation and the impact of the coolant mixing model were performed for the DYN3D-ATHLET solution of the OECD benchmark. The solution of the benchmarks essentially contributed to the qualification of the code complex DYN3D-ATHLET as an advanced tool for the accident analysis for both VVER type reactors and Western PWRs.
40

Numerical Simulations of Heat Transfer Processes in a Dehumidifying Wavy Fin and a Confined Liquid Jet Impingement on Various Surfaces

Elsheikh, Mutasim Mohamed Sarour 01 January 2011 (has links)
This thesis consists of two different research problems. In the first one, the heat transfer characteristic of wavy fin assembly with dehumidification is carried out. In general, fin tube heat exchangers are employed in a wide variety of engineering applications, such as cooling coils for air conditioning, air pre-heaters in power plants and for heat dissipation from engine coolants in automobile radiators. In these heat exchangers, a heat transfer fluid such as water, oil, or refrigerant, flows through a parallel tube bank, while a second heat transfer fluid, such as air, is directed across the tubes. Since the principal resistance is much greater on the air side than on the tube side, enhanced surfaces in the form of wavy fins are used in air-cooled heat exchangers to improve the overall heat transfer performance. In heating, ventilation, and air conditioning systems (HVAC), the air stream is cooled and dehumidified as it passes through the cooling coils, circulating the refrigerant. Heat and mass transfer take place when the coil surface temperature in most cooling coils is below the dew point temperature of the air being cooled. This thesis presents a simplified analysis of combined heat and mass transfer in wavy-finned cooling coils by considering condensing water film resistance for a fully wet fin in dehumidifier coil operation during air condition. The effects of variation of the cold fluid temperature (-5˚C - 5˚C), air side temperature (25˚C - 35˚C), and relative humidity (50% - 70%) on the dimensionless temperature distribution and the augmentation factor are investigated and compared with those under dry conditions. In addition, comparison of the wavy fin with straight radial or rectangular fin under the same conditions were investigated and the results show that the wavy fin has better heat dissipation because of the greater area. The results demonstrate that the overall fin efficiency is dependent on the relative humidity of the surrounding air and the total surface area of the fin. In addition, the findings of the present work are in good agreement with experimental data. The second problem investigated is the heat transfer analysis of confined liquid jet impingement on various surfaces. The objective of this computational study is to characterize the convective heat transfer of a confined liquid jet impinging on a curved surface of a solid body, while the body is being supplied with a uniform heat flux at its opposite flat surface. Both convex and concave configurations of the curved surface are investigated. The confinement plate has the same shape as the curved surface. Calculations were done for various solid materials, namely copper, aluminum, Constantan, and silicon; at two-dimensional jet. For this research, Reynolds numbers ranging from 750 to 2000 for various nozzle widths channel spacing, radii of curvature, and base thicknesses of the solid body, were used. Results are presented in terms of dimensionless solid-fluid interface temperature, heat transfer coefficient, and local and average Nusselt numbers. The increments of Reynolds numbers increase local Nusselt numbers over the entire solid-fluid interface. Decreasing the nozzle width, channel spacing, plate thickness or curved surface radius of curvature all enhanced the local Nusselt number. Results show that a convex surface is more effective compared to a flat or concave surface. Numerical simulation results are validated by comparing them with experimental data for flat and concave surfaces.

Page generated in 0.0969 seconds