Spelling suggestions: "subject:"transimpedance amplifier"" "subject:"transimpedances amplifier""
1 |
Design of Power-Efficient Optical Transceivers and Design of High-Linearity Wireless Wideband ReceiversZhang, Yudong January 2021 (has links)
The combination of silicon photonics and advanced heterogeneous integration is promising for next-generation disaggregated data centers that demand large scale, high throughput, and low power. In this dissertation, we discuss the design and theory of power-efficient optical transceivers with System-in-Package (SiP) 2.5D integration. Combining prior arts and proposed circuit techniques, a receiver chip and a transmitter chip including two 10 Gb/s data channels and one 2.5 GHz clocking channel are designed and implemented in 28 nm CMOS technology.
An innovative transimpedance amplifier (TIA) and a single-ended to differential (S2D) converter are proposed and analyzed for a low-voltage high-sensitivity receiver; a four-to-one serializer, programmable output drivers, AC coupling units, and custom pads are implemented in a low-power transmitter; an improved quadrature locked loop (QLL) is employed to generate accurate quadrature clocks. In addition, we present an analysis for inverter-based shunt-feedback TIA to explicitly depict the trade-off among sensitivity, data rate, and power consumption. At last, the research on CDR-based clocking schemes for optical links is also discussed. We introduce prior arts and propose a power-efficient clocking scheme based on an injection-locked phase rotator. Next, we analyze injection-locked ring oscillators (ILROs) that have been widely used for quadrature clock generators (QCGs) in multi-lane optical or wireline transceivers due to their low power, low area, and technology scalability. The asymmetrical or partial injection locking from 2 phases to 4 phases results in imbalances in amplitude and phase. We propose a modified frequency-domain analysis to provide intuitive insight into the performance design trade-offs. The analysis is validated by comparing analytical predictions with simulations for an ILRO-based QCG in 28 nm CMOS technology.
This dissertation also discusses the design of high-linearity wireless wideband receivers. An out-of-band (OB) IM3 cancellation technique is proposed and analyzed. By exploiting a baseband auxiliary path (AP) with a high-pass feature, the in-band (IB) desired signal and out-of-band interferers are split. OB third-order intermodulation products (IM3) are reconstructed in the AP and cancelled in the baseband (BB). A 0.5-2.5 GHz frequency-translational noise-cancelling (FTNC) receiver is implemented in 65nm CMOS to demonstrate the proposed approach. It consumes 36 mW without cancellation at 1 GHz LO frequency and 1.2 V supply, and it achieves 8.8 MHz baseband bandwidth, 40dB gain, 3.3dB NF, 5dBm OB IIP3, and −6.5dBm OB B1dB. After IM3 cancellation, the effective OB-IIP3 increases to 32.5 dBm with an extra 34 mW for narrow-band interferers (two tones). For wideband interferers, 18.8 dB cancellation is demonstrated over 10 MHz with two −15 dBm modulated interferers. The local oscillator (LO) leakage is −92 dBm and −88 dB at 1 GHz and 2 GHz LO respectively. In summary, this technique achieves both high OB linearity and good LO isolation.
|
2 |
CMOS systems and circuits for sub-degree per hour MEMS gyroscopesSharma, Ajit 14 November 2007 (has links)
The objective of our research is to develop system architectures and CMOS circuits that interface with high-Q silicon microgyroscopes to implement navigation-grade angular rate sensors. The MEMS sensor used in this work is an in-plane bulk-micromachined mode-matched tuning fork gyroscope (M² – TFG
), fabricated on silicon-on-insulator substrate. The use of CMOS transimpedance amplifiers (TIA) as front-ends in high-Q MEMS resonant sensors is explored. A T-network TIA is proposed as the front-end for resonant capacitive detection. The T-TIA provides on-chip transimpedance gains of 25MΩ, has a measured capacitive resolution of 0.02aF /√Hz at 15kHz, a dynamic range of 104dB in a bandwidth of 10Hz and consumes 400μW of power. A second contribution is the development of an automated scheme to adaptively bias the mechanical structure, such that the sensor is operated in the mode-matched condition. Mode-matching leverages the inherently high quality factors of the microgyroscope, resulting in significant improvement in the Brownian noise floor, electronic noise, sensitivity and bias drift of the microsensor. We developed a novel architecture that utilizes the often ignored residual quadrature error in a gyroscope to achieve and maintain perfect mode-matching (i.e.0Hz split between the drive and sense mode frequencies), as well as electronically control the sensor bandwidth. A CMOS implementation is developed that allows mode-matching of the drive and sense frequencies of a gyroscope at a fraction of the time taken by current state of-the-art techniques. Further, this mode-matching technique allows for maintaining a controlled separation between the drive and sense resonant frequencies, providing a means of increasing sensor bandwidth and dynamic range. The mode-matching CMOS IC, implemented in a 0.5μm 2P3M process, and control algorithm have been interfaced with a 60μm thick M2−TFG to implement an angular rate sensor with bias drift as low as 0.1°/hr ℃ the lowest recorded to date for a silicon MEMS gyro.
|
3 |
Detection and Pulse Shaping of Continuous Wave and Pulsed Broadband LightBolatbek, Zhanibek 18 May 2021 (has links)
No description available.
|
Page generated in 0.0742 seconds