• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 13
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation into the pedestrianisation of city streets : a move towards pedestrain friendly spaces and their economic effects in the City of Cape Town

Moosajee, Naadiya January 2009 (has links)
Includes abstract. / Includes bibliographical references. / During December (2007), Cape Town’s peak tourism season, a pilot pedestrianisation project was run in the City of Cape Town. The 300 year old Greenmarket Square was pedestrianised and stakeholders on the square were surveyed six months after the implementation of the scheme to access the economic benefits, as well as the perception of predestination by the traders. A SATURN dynamic assignment model was used to simulate the effect of certain road closures to traffic as part of an extension to the pedestrian network. These road are vital to start forming a formalise pedestrian network within the CBD. From the results, a pedestrian network for the Cape Town CBD has been proposed.
2

Miesto viešojo transporto maršrutinio tinklo modeliavimas ir plėtra (Vilniaus miesto pavyzdžiu) / Modelling and development of town public transport network (on example of Vilnius city)

Ušpalytė-Vitkūnienė, Rasa 02 November 2006 (has links)
The aim of this paper is to guarantee improved quality of life for inhabitants by modelling the network of public transport routes in Vilnius. To achieve the aim of the paper, the following tasks were formulated: • analysis of measures of modelling the public transport passenger flows, as well as analysis their function, • establish the main criteria of the public transport’s modelling in Vilnius, • modelling of the public transport route networks in accordance with the established criteria, • assessment of the influence of speedy trams on the distribution of passenger flows within the public transport of Vilnius, • proposals on the possibilities of application of the public transport modelling criteria for other Lithuanian towns.
3

How to integrate geochemistry at affordable costs into reactive transport for large-scale systems: Abstract Book

Stockmann, M., Brendler, V. 07 July 2020 (has links)
This international workshop entitled “How to integrate geochemistry at affordable costs into reac-tive transport for large-scale systems” was organized by the Institute of Resource Ecology of the Helmholtz-Zentrum Dresden Rossendorf in Feb-ruary 2020. A mechanistic understanding and building on that an appropriate modelling of geochemical processes is essential for reliably predicting contaminant transport in groundwater systems, but also in many other cases where migration of hazardous substances is expected and consequently has to be assessed and limited. In case of already present contaminations, such modelling may help to quantify the threads and to support the development and application of suitable remediation measures. Typical application areas are nuclear waste disposal, environmental remediation, mining and milling, carbon capture & storage, or geothermal energy production. Experts from these fields were brought together to discuss large-scale reactive transport modelling (RTM) because the scales covered by such pre-dictions may reach up to one million year and dozens of kilometers. Full-fledged incorporation of geochemical processes, e.g. sorption, precipitation, or redox reactions (to name just a few important basic processes) will thus create inacceptable long computing times. As an effective way to integrate geochemistry at affordable costs into RTM different geochemical concepts (e.g. multidimensional look-up tables, surrogate functions, machine learning, utilization of uncertainty and sensitivity analysis etc.) exist and were extensively discussed throughout the workshop. During the 3-day program of the workshop keynote and regular lectures from experts in the field, a poster session, and a radio lab tour had been offered. In total, 40 scientists from 28 re-search institutes and 8 countries participated.
4

Development of predictive models of flow induced and localized corrosion

Heppner, Kevin L 20 September 2006
Corrosion is a serious industrial concern. According to a cost of corrosion study released in 2002, the direct cost of corrosion is approximately $276 billion dollars in the United States approximately 3.1% of their Gross Domestic Product. Key influences on the severity of corrosion include: metal and electrolyte composition, temperature, turbulent flow, and location of attack. In this work, mechanistic models of localized and flow influenced corrosion were constructed and these influences on corrosion were simulated.<p>A rigourous description of mass transport is paramount for accurate corrosion modelling. A new moderately dilute mass transport model was developed. A customized hybrid differencing scheme was used to discretize the model. The scheme calculated an appropriate upwind parameter based upon the Peclet number. Charge density effects were modelled using an algebraic charge density correction. Activity coefficients were calculated using Pitzers equations. This transport model was computationally efficient and yielded accurate simulation results relative to experimental data. Use of the hybrid differencing scheme with the mass transport equation resulted in simulation results which were up to 87% more accurate (relative to experimental data) than other conventional differencing schemes. In addition, when the charge density correction was used during the solution of the electromigration-diffusion equation, rather than solving the charge density term separately, a sixfold increase in the simulation time to real time was seen (for equal time steps in both simulation strategies). Furthermore, the charge density correction is algebraic, and thus, can be applied at larger time steps that would cause the solution of the charge density term to not converge.<p>The validated mass transport model was then applied to simulate crevice corrosion initiation of passive alloys. The cathodic reactions assumed to occur were crevice-external oxygen reduction and crevice-internal hydrogen ion reduction. Dissolution of each metal in the alloy occurred at anodic sites. The predicted transient and spatial pH profile for type 304 stainless steel was in good agreement with the independent experimental data of others. Furthermore, the pH predictions of the new model for 304 stainless steel more closely matched experimental results than previous models.<p>The mass transport model was also applied to model flow influenced CO2 corrosion. The CO2 corrosion model accounted for iron dissolution, H+, H2CO3, and water reduction, and FeCO3 film formation. The model accurately predicted experimental transient corrosion rate data.<p>Finally, a comprehensive model of crevice corrosion under the influence of flow was developed. The mass transport model was modified to account for convection. Electrode potential and current density in solution was calculated using a rigourous electrode-coupling algorithm. It was predicted that as the crevice gap to depth ratio increased, the extent of fluid penetration also increased, thereby causing crevice washout. However, for crevices with small crevice gaps, external flow increased the cathodic limiting current while fluid penetration did not occur, thereby increasing the propensity for crevice corrosion.
5

Development of predictive models of flow induced and localized corrosion

Heppner, Kevin L 20 September 2006 (has links)
Corrosion is a serious industrial concern. According to a cost of corrosion study released in 2002, the direct cost of corrosion is approximately $276 billion dollars in the United States approximately 3.1% of their Gross Domestic Product. Key influences on the severity of corrosion include: metal and electrolyte composition, temperature, turbulent flow, and location of attack. In this work, mechanistic models of localized and flow influenced corrosion were constructed and these influences on corrosion were simulated.<p>A rigourous description of mass transport is paramount for accurate corrosion modelling. A new moderately dilute mass transport model was developed. A customized hybrid differencing scheme was used to discretize the model. The scheme calculated an appropriate upwind parameter based upon the Peclet number. Charge density effects were modelled using an algebraic charge density correction. Activity coefficients were calculated using Pitzers equations. This transport model was computationally efficient and yielded accurate simulation results relative to experimental data. Use of the hybrid differencing scheme with the mass transport equation resulted in simulation results which were up to 87% more accurate (relative to experimental data) than other conventional differencing schemes. In addition, when the charge density correction was used during the solution of the electromigration-diffusion equation, rather than solving the charge density term separately, a sixfold increase in the simulation time to real time was seen (for equal time steps in both simulation strategies). Furthermore, the charge density correction is algebraic, and thus, can be applied at larger time steps that would cause the solution of the charge density term to not converge.<p>The validated mass transport model was then applied to simulate crevice corrosion initiation of passive alloys. The cathodic reactions assumed to occur were crevice-external oxygen reduction and crevice-internal hydrogen ion reduction. Dissolution of each metal in the alloy occurred at anodic sites. The predicted transient and spatial pH profile for type 304 stainless steel was in good agreement with the independent experimental data of others. Furthermore, the pH predictions of the new model for 304 stainless steel more closely matched experimental results than previous models.<p>The mass transport model was also applied to model flow influenced CO2 corrosion. The CO2 corrosion model accounted for iron dissolution, H+, H2CO3, and water reduction, and FeCO3 film formation. The model accurately predicted experimental transient corrosion rate data.<p>Finally, a comprehensive model of crevice corrosion under the influence of flow was developed. The mass transport model was modified to account for convection. Electrode potential and current density in solution was calculated using a rigourous electrode-coupling algorithm. It was predicted that as the crevice gap to depth ratio increased, the extent of fluid penetration also increased, thereby causing crevice washout. However, for crevices with small crevice gaps, external flow increased the cathodic limiting current while fluid penetration did not occur, thereby increasing the propensity for crevice corrosion.
6

Numerical Simulation of Reactive Transport Problems in Porous Media Using Global Implicit Approach

Zolfaghari, Reza 25 February 2016 (has links) (PDF)
This thesis focuses on solutions of reactive transport problems in porous media. The principle mechanisms of flow and reactive mass transport in porous media are investigated. Global implicit approach (GIA), where transport and reaction are fully coupled, and sequential noniterative approach (SNIA) are implemented into the software OpenGeoSys (OGS6) to couple chemical reaction and mass transport. The reduction scheme proposed by Kräutle is used in GIA to reduce the number of coupled nonlinear differential equations. The reduction scheme takes linear combinations within mobile species and immobile species and effectively separates the reaction-independent linear differential equations from coupled nonlinear ones (i.e. reducing the number of primary variables in the nonlinear system). A chemical solver is implemented using semi-smooth Newton iteration which employs complementarity condition to solve for equilibrium mineral reactions. The results of three benchmarks are used for code verification. Based on the solutions of these benchmarks, it is shown that GIA with the reduction scheme is faster (ca. 6.7 times) than SNIA in simulating homogeneous equilibrium reactions and (ca. 24 times) in simulating kinetic reaction. In simulating heterogeneous equilibrium mineral reactions, SNIA outperforms GIA with the reduction scheme by 4.7 times. / Diese Arbeit konzentriert sich auf die numerische Berechnung reaktiver Transportprobleme in porösen Medien. Es werden prinzipielle Mechanismen von Fluidströmung und reaktive Stofftransport in porösen Medien untersucht. Um chemische Reaktionen und Stofftransport zu koppeln, wurden die Ansätze Global Implicit Approach (GIA) sowie Sequential Non-Iterative Approach (SNIA) in die Software OpenGeoSys (OGS6) implementiert. Das von Kräutle vorgeschlagene Reduzierungsschema wird in GIA verwendet, um die Anzahl der gekoppelten nichtlinearen Differentialgleichungen zu reduzieren. Das Reduzierungsschema verwendet Linearkombinationen von mobilen und immobile Spezies und trennt die reaktionsunabhngigen linearen Differentialgleichungen von den gekoppelten nichtlinearen Gleichungen (dh Verringerung der Anzahl der Primärvariablen des nicht-linearen Gleichungssystems). Um die Gleichgewichtsreaktionen der Mineralien zu berechnen, wurde ein chemischer Gleichungslaser auf Basis von ”semi-smooth Newton-Iterations” implementiert. Ergebnisse von drei Benchmarks wurden zur Code-Verifikation verwendet. Diese Ergebnisse zeigen, dass die Simulation homogener Equilibriumreaktionen mit GIA 6,7 mal schneller und bei kinetischen Reaktionen 24 mal schneller als SNIA sind. Bei Simulationen heterogener Equilibriumreaktionen ist SNIA 4,7 mal schneller als der GIA Ansatz.
7

Incorporation of Departure Time Choice in a Mesoscopic Transportation Model for Stockholm

Kristoffersson, Ida January 2009 (has links)
<p>Travel demand management policies such as congestion charges encourage car-users to change among other things route, mode and departure time. Departure time may be especially affected by time-varying charges, since car-users can avoid high peak hour charges by travelling earlier or later, so called peak spreading effects. Conventional transport models do not include departure time choice as a response. For evaluation of time-varying congestion charges departure time choice is essential.</p><p>In this thesis a transport model called SILVESTER is implemented for Stockholm. It includes departure time, mode and route choice. Morning trips, commuting as well as other trips, are modelled and time is discretized into fifteen-minute time periods. This way peak spreading effects can be analysed. The implementation is made around an existing route choice model called CONTRAM, for which a Stockholm network already exists. The CONTRAM network has been in use for a long time in Stockholm and an origin-destination matrix calibrated against local traffic counts and travel times guarantee local credibility. On the demand side, an earlier developed departure time and mode choice model of mixed logit type is used. It was estimated on CONTRAM travel times to be consistent with the route choice model. The behavioural response under time-varying congestion charges was estimated from a hypothetical study conducted in Stockholm.</p><p>Paper I describes the implementation of SILVESTER. The paper shows model structure, how model run time was reduced and tests of convergence. As regards run time, a 75% cut down was achieved by reducing the number of origin-destination pairs while not changing travel time and distance distributions too much.</p><p>In Paper II car-users underlying preferred departure times are derived using a method called reverse engineering. This method derives preferred departure times that reproduce as well as possible the observed travel pattern of the base year. Reverse engineering has previously only been used on small example road networks. Paper II shows that application of reverse engineering to a real-life road network is possible and gives reasonable results.</p> / Silvester
8

Methodologies for capture zone delineation for the Waterloo Moraine well fields

Muhammad, Dawood January 2000 (has links)
The Region of Waterloo relies mainly (75 %) on local groundwater resources for its drinking water supply. The water demand is increasing with the growth of the population and there is a need to enhance the present water supplies. The Regional Municipality of Waterloo (RMOW), which is the governing body in charge of providing the drinking water supply, is conducting an extensive program to protect the groundwater resources of the Waterloo Moraine aquifer. The focus of that work is defining the wellhead protection areas of the existing production wells as well as the investigation of potential further water supply. The main goal of the work presented here is to delineate the capture zones for the major well fields of the Region. To achieve that goal, the flow for the expected pumping conditions is simulated using a fully 3D finite element model (WATFLOW) which has been proven to be highly flexible to represent the natural boundaries and the highly irregular stratigraphy by previous researchers and scholars. The modified version of this model which includes a pseudo-unsaturated module is used for the solution of flow equation. For the delineation of capture zones, a new particle tracking code (WATRAC) as well as two advective-dispersive transport models are used by using a probabilistic approach presented by Neupauer and Wilson [1999]. For the probabilistic approach (Wilson's method), two transport models, a conventional time-marching code (WTC) and a time-continuous code (LTG) are usedand their results are compared. The LTG is computationally more efficient than the WTC, but it gives oscillatory results close to the steady state condition. A combined used of LTG and WTC istherefore recommended to obtain the steady state capture zones. The 0. 25 probability contour agrees very well with the particle tracks, except for somewhat greater transverse spreading due tothe dispersion which is not considered by the particle tracking algorithm. Both methods, backward particle tracking and probabilistic advective-dispersive modelling are clearly more informative and give better insight when considered together than each by itself.
9

GIS in Transport Modelling

Berglund, Svante January 2001 (has links)
No description available.
10

Mobilization and natural attenuation of arsenic in acid mine drainage ( AMD )

Asta Andrés, María Pilar 12 June 2009 (has links)
L’anomenat drenatge àcid de mina (AMD) ve generat per l’oxidació de sulfurs i és causa major de contaminació d’aigües a nivell mundial. L’arsènic és un del princiapls contaminants laconcentració del qual pot assolir centenars de mgL-1, és a dir, de 5 a 6 ordres de magnitud més gran que el límit de potabilitat per a l’aigua (10μg L-1) establert per la UE en 1998. En aquesta tesi, s’estudia l’impacte de la mobilització de l’arsènic al llarg de descàrregues de drenatge àcid de mina. L’oxidació de sulfurs que contenen arsènic (tal com l’arsenopirita (AsFeS), la pirita rica en arsènic (FeS2) o la marcassita (FeS2) és una de les principals fonts d’alliberament d’arsènic a l’aigua. En la primera part de la tesi, s’ha estudiat la cinètica de dissolució de l’arsenopirita i de la marcassita a pHs àcids i neutre, utilitzant reactors de flux continu, i s’han valorat els efectes del pH, de l’oxigen dissolt i de la temperatura en la dissolució d’ambdós sulfurs. A partir de les velocitats en estat estacionari establertes, es proposen les respectives lleis de dissolució que tenen en compte el lleu i el fort efecte del pH i de l’oxigen dissolt, respectivament, en llur dissolució. La incorporació d’aquestes lleis cinètiques en les bases de dades del codis geoquímics i de transport reactitu permeten fer prediccions molt més realistes. L’impacte mediambiental causat per l’arsènic alliberat a les aigües depèn de la seva atenuació natural. El principal procés que controla el destí i la mobilitat de l’arsènic aquós és l’adsorció de l’arsenat en fases de ferro precipitades. Per tant, cal tenir en compte el paper que juga l’estat d’oxidació de l’arsènic. En la segona part de la tesi, shan estudiat tant l’oxidació de l’arsènic com l’adsorció de l’arsènic. L’oxidació s’estudia en condicions abiòtiques i biòtiques a pH i composició típics d’aigües àcides de mina, fent servir experiments de tipus batch. S’hi mostra com en condicions biòtiques tenen lloc simultàniament l’oxidació de Fe(II) a Fe (III) i d’arsenit a arsenat, de manera que mentre els bacteris governen la primera, el contingut de Fe(III) domina la segona. En condicions abiòtiques, l’oxidació d’arsenit a arsenat en presència de Fe(III) és lenta, tot i que augmenta augmentant la presència de Fe(III) i de clorur amb llum de dia. L’adsorció d’arsènic en llocs d’AMD, i per tant l’atenuació d’arsènic, ocorre mitjançant l’adsorció d’arsenat en precipitats formats per oxi-hidròxids i oxi-hidròxid-sulfats de ferro (principalment schwertmannita (Fe8O8(OH)5.5(SO4)1.25), K-jarosita (KFe3(SO4)2(OH)6) i goetita (FeOOH)). S’han estudiat les capacitats d’adsorció de la jarosita i de la goetita i s’han comparat amb la de la schwertmannita. Amb aquest propòsit es van fer experiments de tipus batch a pH molt àcid i amb mostres sintetitzades de K-jarosita i de goetita. Sense la competència d’altres anions, la capacitat de la jarosita per eliminar arsenat és més alta que la de la goetita. També s’ha vist que la força iònica té un escàs efecte en l’adsorció d’ambdós minerals, però que la presència de sulfat, que és l’anió més abundant en aigües àcides de mina, minva llurs capacitas d’adsorció. Cal conèixer bé els mecanismes dominants que controlen el contingut d’arsènic en les aigües, no només en condicions de laboratori, sinó també en les condicions de camp. Per tant, en la tercera part de la tesi s’han estudiat el processos d’atenuació de l’arsènic en un sistema natural. Amb aquest objetiu s’han caracterizat exhaustivament l’aigua i els sediments del rieron provinent de la mina abandonada Tinto Santa Rosa, situada a la Faixa Pirítica Ibèrica (IPB). La característica dominant de l’aigua del rierol és un descens del pH aigües avall que va acompanyat d’un decreixement sistemàtic de les concentracions de ferro ferrós i de ferro total, d’arsenit i d’arsenat, així com d’arsènic total. A més a més, els sediments de llit mostren contiguts alts d’arsènic. Els principals mecanismes que dominen el destí i la mobilitat de l’arsènic en aquestes aigües de camp són l’oxidació del ferro i de l’arsènic i la precipitatió de compostos de Fe(III) que adsorbeixen l’arsenat. S’ha proposat un model unidimensional de trasnport reactiu, utilitzant el codi PHREEQC, per explicar i quantificar els processos mencionats que han estat estudiats en condicions de laboratori. / Acid mine drainage (AMD) generated by sulfide oxidative dissolution is a major cause of water contamination world-wide. Arsenic is one of the main AMD pollutants whose concentration can reach up to hundreds of mg L-1, i.e. 5-6 orders of magnitude higher than the limit of 10 μg L-1 for potable water established by the European Union in 1998. This thesis is concerned with the impact of arsenic mobilization along AMD discharges. Oxidation of As-bearing sulfides such as arsenopyrite (AsFeS), As-rich pyrite (FeS2) or marcasite (FeS2) is one of the main sources of arsenic release. The first part of this thesis is focused on the dissolution kinetics of arsenopyrite and marcasite at acidic to neutral pH using long term flow-through experiments. The effects of pH, dissolved oxygen and temperature on their dissolution were assessed. The respective dissolution rate laws were proposed on the basis of the steady-state rates, taking into consideration the slight pH effect and the strong dissolved oxygen effect on dissolution. The incorporation of these rate laws into the kinetic databases of geochemical and reactive transport codes allows us to obtain better realistic simulations. The environmental impact of released arsenic into waters depends on its natural attenuation. The arsenic oxidation state is considered given that the main process that controls the fate and mobility of aqueous arsenic is arsenate sorption onto precipitated Fe-phases. The second part of the thesis discusses arsenic oxidation and arsenic sorption. Oxidation was studied by means of batch experiments under abiotic and biotic conditions at typical AMD water pH and water composition. Simultaneous oxidation of Fe(II) to Fe(III) and arsenite to arsenate occurs under biotic conditions, the former mediated by bacteria, and the latter by the presence of Fe(III). Under abiotic conditions, oxidation of arsenite to arsenate in the presence of Fe(III) is slow, but is enhanced by increasing dissolved Fe(III) and chloride concentrations in the presence of light. Arsenic sorption at AMD sites, and hence arsenic attenuation, occurs via arsenate sorption on new iron-oxyhydroxide and iron-oxyhydroxide-sulphate precipitates (mainly, schwertmannite (Fe8O8(OH)5.5(SO4)1.25), jarosite (KFe3(SO4)2(OH)6) and goethite (FeOOH)). The sorption capacity of goethite and jarosite was studied and compared with the one reported for schwertmannite. To this end, batch experiments were conducted using synthetic powders of K-jarosite and goethite at highly acidic pH. In the absence of competitive effects of other anions, K-jarosite presented better removal efficiency for arsenate, and ionic strength and pH had little effect on the sorption capacity of the two minerals. In contrast, these sorption capacities diminished considerably in the presence of sulfate, which is the main anion in AMD waters. A deeper understanding of the dominant mechanisms controlling arsenic content in waters demands the study of the processes not only under laboratory but also under natural conditions. Accordingly, the third part of this thesis deals with the arsenic attenuation processes in a natural system. To this end, the acidic water and sediments of the abandoned Tinto Santa Rosa mine discharge, located in the Iberian Pyritic Belt, were studied. The most striking feature of the water was a pH decrease accompanied by a systematic decrease in ferrous iron, total iron, arsenite, arsenate and total arsenic concentration. Additionally, bed-stream sediments showed high arsenic contents. The main processes that control the fate and mobility of arsenic in waters in the field were iron and arsenic oxidation, precipitation of Fe(III)- minerals and sorption of As(V) onto them. A 1-D reactive transport model using the PHREEQC code was used to explain and quantify the aforementioned processes that had been studied previously under laboratory conditions.

Page generated in 0.0867 seconds