Spelling suggestions: "subject:"tribocorrosion"" "subject:"tribocorrosión""
1 |
Caractérisation des mécanismes d'usure par tribocorrosion d'alliages modèles Ni-Cr / Characterization of wear mechanism by tribocorrosion of nickel base alloysIonescu, Claudiu Constantin 19 November 2012 (has links)
Les alliages à base nickel sont utilisés dans les centrales nucléaires pour la fabrication des tubes générateurs de vapeur, parce qu’ils présentent une bonne résistance aux sollicitations mécaniques élevées dans un milieu corrosif à haute température. La résistance au milieu corrosif est attribuée à une couche protectrice très fine de Cr2O3 qui se forme à la surface de l’alliage. Les tubes générateurs de vapeur comptent parmi les composants les plus délicats à entretenir, d’une part, du fait de leur importance pour la sûreté et, d’autre part, parce que les tubes d’échange sont soumis à de nombreux mécanismes de dégradation à cause de conditions sévères de fonctionnement.. L’objectif de cette étude a été d’évaluer et de comparer le comportement en tribocorrosion de deux alliages modèles Ni – 15%Cr et Ni – 30%Cr. Ces alliages ont été utilisés pour mettre en évidence, évaluer et comparer l’influence de la teneur en chrome sur la formation de la couche d'oxyde superficielle et le rôle de cette dernière sur les mécanismes et cinétiques d'usure par tribocorrosion. L’étude de la tribocorrosion a été effectuée à l’aide d’un tribomètre pion – disque par application d’un frottement unidirectionnel, en régime continu et intermittent en milieu aqueux boré – lithié à la température ambiante. La dégradation de la couche protectrice formée à la surface des deux alliages a été suivie en mettant en œuvre un protocole expérimental en trois étapes. Dans la première étape du protocole, le suivi de l’évolution du potentiel libre et l’enregistrement des diagrammes d’impédance électrochimique ont été utilisés pour analyser le comportement électrochimique des deux alliages en absence de frottement. Lors de la deuxième étape, les mêmes techniques électrochimiques ont été employées en présence d’un frottement continu et pour différentes pressions de contact. Durant l’étape trois du protocole, des essais de tribocorrosion en régime de frottement intermittent ont été réalisés pour mettre en évidence la capacité d’auto cicatrisation de la surface des deux alliages modèles. Pour les deux alliages Ni - Cr, les essais de tribocorrosion ont mis en évidence une augmentation de l’usure totale avec la pression de contact appliquée. Quel que soit la force normale appliquée, la principale composante de l’usure totale est l’usure mécanique du substrat mis à nu. L’usure purement corrosive du substrat diminue avec l’augmentation de la teneur en chrome. Du point de vue qualitatif, le principal mécanisme d’usure identifié a été l’usure abrasive par micro - labourage. Dans cette étude a été effectuée une étude de l’usure d’alliages modèles Ni – Cr, dans les conditions de tribocorosion, ainsi que une analyse du mécanisme et la cinétique d’usure. Le comportement de la couche superficielle d’oxyde de chrome et son effet sur la résistance à la tribocorrosion ont été évalués. Ces résultats peuvent servir de base à la compréhension de l’origine des problèmes qui peuvent apparaître pendant la vie d’un alliage inoxydable à base nickel soumis à des efforts mécaniques en milieu agressifs et permettre une sélection plus pertinente des matériaux métalliques pour diverses applications industrielles, particulièrement dans le domaine nucléaire. / Some components of nuclear power plants, as steam generator tubes are made from Ni base alloys. These components are exposed to severe environment of high temperature and high pressure and submitted to contact mechanical stresses. These Ni – based alloys properties are determined by their ability to form on their surface an inner protective barrier film mainly composed of Cr2O3. The steam generator tubes are among the most difficult components to maintain, on the hand, because of their safety importance and secondly, the exchange tubes are subject to various degradation mechanisms, because of the harsh conditions of work. Wear by tribocorrosion is a physicochemical aging mechanism which occurs in the management of the nuclear power plants life time.Tribocorrosion is an irreversible process which involves mechanical and chemical / electrochemical interactions between surfaces in relative motion, in the presence of a corrosive environment. The goal of this study was to quantify in terms of quantity and quality the wear generated by tribocorrosion process on Ni – Cr model alloys. Two model alloys: Ni -15Cr and Ni -30Cr were used to highlight, evaluate and compare the influence of the chromium content on the formation of the protective oxide layer and the role played by the latter one on the kinetics and mechanisms of wear by tribocorrosion. The tribocorrosion experiments were performed by using a pin -on–disc tribometer under controlled electrochemical conditions in LiOH – H3BO3 solution. The corrosion – wear degradation of the protective layer during continuous and intermittent unidirectional sliding tests was investigated by a three-stage tribocorrosion protocol. In the first stage, electrochemical techniques (open circuit potential measurements and electrochemical impedance measurements) were used without applying unidirectional sliding to monitor and evaluate the characteristics of protective oxide layer formed on the surface of the two model alloys. In the second stage, the same electrochemical techniques were employed during the application of the unidirectional sliding test to evaluate the total material loss for different applied contact pressures. In the last stage of the experimental procedure the self healing process was investigated by intermittent unidirectional sliding tests.The total material loss after a tribocorrosion experiment, determined by profilometric measurements, is the sum of two components: the material loss due to corrosion of active material in the wear track, which can be calculated fro, the corrosion current values given by impedance measurements; applying Faraday’s law, and the material loss due to mechanical wear, the difference between total material loss and the material loss due to corrosive wear. Experiments proved that the total material loss increases with the increase of the contact pressure in both cases of Ni – Cr model alloys. The prevailing contribution in the total volumetric material loss is the material loss due to mechanical wear of active material in the sliding track. Nevertheless, the increase of the chromium content improves the resistance to the corrosive wear of active material in the sliding track. From qualitative viewpoint, a mechanism of abrasive wear by micro-ploughing was revealed in the sliding tracks.
|
2 |
Effects of Chemical and Structural Heterogeneity on the Tribocorrosion Resistance of Metals in Aqueous SolutionsWang, Wenbo 27 June 2022 (has links)
The corrosion-wear resistance tradeoff in conventional metals imposes a great challenge to their reliable long-term performance under extreme conditions where surface stress and corrosive environment coexist (i.e., tribocorrosion). In this work, strategies to introduce chemical and structural heterogeneity with controlled length-scale at nanometers were proposed and studied in three metallic systems (i.e., Zr-based, Al-based and Mg-based), in order to enhance their tribocorrosion resistance.
In the first study, ZrCuNiAl thin film metallic glasses (TFMG) with either homogeneous or heterogeneous local composition were deposited by magnetron sputtering through controlling processing conditions (i.e., argon (Ar) pressure). It was found that the mechanical properties, wear, corrosion and tribocorrosion resistance of ZrCuNiAl TFMG were significantly affected by nanoscale chemical heterogeneity. As a result, nanoscale chemical heterogeneity promoted ductility but reduced hardness, which in turn weakened wear resistance. While, in the 0.6 M NaCl solution, the resistance to pitting corrosion and tribocorrosion was improved because the presence of nanoscale chemical heterogeneity facilitates to generate more protective passive layer with lower defect density and faster repassivated capability, compared to their homogenous counterparts.
In the second study, nanoscale chemical and structural heterogeneity were introduced in Al by forming Al/X nanostructured metallic multilayers (NMMs), where X=Mg, Cu, and Ti. Compared to the respective monolithic films, the alternating nanolayer configuration not only increased strength due to the presence of abundant interfaces but also reduced surface activity and pitting susceptibility. The electrochemical performance was significantly affected by the interaction, i.e., galvanic effect, between Al layer and underlayer constituents, which in turn led to different tribocorrosion behaviors, Specifically, transmission electron microscopy revealed that the materials loss in Al/Mg and Al/Cu NMMs primarily resulted from corrosion, while Al/Ti was dominated by severe plastic deformation during tribocorrosion as a result of sustained surface passivity.
Lastly, in the bulk biodegradable Mg alloys system, the surface was treated by femtosecond laser shock peening (fs-LSP) technique with ultra-low pulse energy to introduce structural heterogeneity. Treatment conditions (e.g., power density, direct ablation and confined ablation) significantly affected the ultimate peening effect and further surface performance. In this work, the optimized peening effect was obtained at 28 GW/cm2 laser power density in the confined ablation with the assistance of the adsorption layer and confining medium. Combined with transmission electron microscopy and finite element analysis, the improvement of surface performance was attributed to high dislocation density near the surface, rather than compressive residual stress. The existence of structural heterogeneity not only reduced corrosion kinetics but simultaneously improved the self-repassivation in the blood bank buffered saline solution at body temperature. / Doctor of Philosophy / In various industrial applications such as marine infrastructure, nuclear power plants, and biomedical devices, the synergistic effect of wear and corrosion, known as tribocorrosion, is an inevitable material degradation phenomenon. To resist such aggressive degradation and prolong the service life of metals in complex environments, it is crucial to simultaneously enhance the wear and corrosion resistance, i.e., tribocorrosion resistance of metals. Unfortunately, the corrosion-wear resistance tradeoff in conventional metals imposes a great challenge. For example, most precipitation-hardened Al alloys impart high strength and wear but exhibit low resistance against localized corrosion as a sacrifice owing to the micro-galvanic coupling between the matrix and precipitates.
Several previous works pointed out that compositional and structural heterogeneity, even at the nanoscale, could simultaneously affect the mechanical properties and corrosion resistance of metals. However, few works have been performed to understand the effects of such heterogeneity and their length-scale during tribocorrosion of metals. In this dissertation, by combining materials processing, advanced characterization, and tribocorrosion testing, the effects of chemical and structural heterogeneity, as well as their length-scale, on the deformation and degradation mechanisms of metals were studied using model systems of Zr-, Al- and Mg-based alloys, where the chemical and/or structural heterogeneity were introduced by tuning the materials processing conditions. Firstly, the nanoscale chemical heterogeneity was introduced into ZrCuNiAl thin film metallic glasses (TFMG) by adjusting argon (Ar) pressure during magnetron sputtering. Compared with the homogeneous composition, heterogenous local composition in ZrCuNiAl TFMG improved ductility but sacrificed hardness and wear resistance. In 0.6 M NaCl solution, higher pitting corrosion and tribocorroison resistance can be observed due to the generation of low defect density protective passive film with low defect density and with fast repassivation rates in heterogeneous ZrCuNiAl TFMG. Secondly, the architecture of nanostructured metallic multilayer in Al-based with different constituents, from noble to active metals (e.g., Cu, Ti and Mg), were studied the effects of chemical and structural heterogeneity on wear, corrosion and tribocorrosion performance. The results showed that the deformation and corrosion behaviors significantly depended on the distinct interfaces and chemical modulation at the nanoscale, caused by different constituents, which ultimately resulted in various tribocorrosion resistance in 0.6 M NaCl solution at room temperature. Transmission electron microscopy of deformed and degraded sample surfaces showed characteristic different deformation and degradation modes of all samples, governed by the synergistic effects of the mechanical and corrosion properties of the constituting materials. Specifically, severe plastic deformation mainly led to material loss in Al/Ti NMMs owing to the noble surface reactivity, while corrosion was the dominant factor for material loss in Al/Mg and Al/Cu NMMs during tribocorroison. Lastly, the ultra-low pulse energy femtosecond laser shock peening technique was successfully applied to introduce structural heterogeneity in the bulk biodegradable Mg alloys since in some cases the deposition is not feasible for bulk metals. The optimizing peening effect was firstly investigated and was achieved at confined ablation conditions under 28 GW/cm2 laser power density. Results show that the high dislocation density near the surface was contributing to the surface strengthening effect, high corrosion and tribocorrosion resistance in a simulated body environment via transmission electron microscopy observation. The finite element analysis method investigated the compressive residual stress in current work that did not significantly affect the surface performance of Mg alloys. In summary, the study of this dissertation contributes to a good basis and design strategy of conventional metals for applications under complex environments.
|
3 |
Multiphysics Modelling on the Effects of Composition and Microstructure during Tribocorrosion of Aluminum-based Metals and StructuresWang, Kaiwen 24 August 2022 (has links)
Wear and corrosion are two major threats to material integrity in multiple real-life circumstances, including oil and gas pipelines, marine and offshore infrastructures and transportations and biomedical implants. Furthermore, the synergistic effects between the two, named tribocorrosion, could cause, most of the time, severer material degradation to jeopardize materials' long-term sustainability and structural integrity. A representative case is aluminum (Al) and its alloys, which exhibit good corrosion resistance in aqueous solution due to the protection provided by the passive layer. However, these naturally formed layers are thin and delicate, leaving the materials vulnerable to simultaneous mechanical and corrosion damage, which in turn, compromise their resistance to tribocorrosion.
Past research in tribocorrosion mainly relies on costly and trial-and-error experimental methods to study the materials' deformation and degradation under simultaneous wear and corrosion. In an attempt to predict tribocorrosion behavior using numerical analysis, this work developed a set of finite-element-based multiphysics models, in combination with experimental methods for parameter input and validation, focusing on different factors influencing the tribocorrosion behavior of materials.
The first study developed a model with the coupling between strain and corrosion potential and investigated the effect of bulk material properties on tribocorrosion. This model was validated by existing tribocorrosion experiments of two Al-Mn alloys, to analyze the synergistic effects of mechanical and corrosion properties on the material degradation mechanisms of tribocorrosion. During consecutive passes of the counter body, significant residual stress was found to develop near the edge of the wear track, leading to highly concentrated corrosion current than elsewhere. Such non-uniform surface corrosion and stress-corrosion coupling led to variations of tribocorrosion rate over time, even though testing conditions were kept constant. Tribocorrosion rate maps were generated to predict material loss as a function of different mechanical and electrochemical properties, indicating a hard, complaint metal with high anodic Tafel slope and low exchange current density is most resistant to tribocorrosion.
Secondly, the influence of microstructural design on the tribocorrosion behavior of Al-based nanostructured metallic multilayers (NMMs) was investigated computationally. Specifically, this model accounts for elastic-plastic mechanical deformation during wear and galvanic corrosion between exposed inner layers after wear. The effects of individual layer thickness (from 10 to 100 nm) and layer orientation (horizontally and vertically aligned) on the tribocorrosion behavior of Al/Cu NMMs was studied. Both factors were found to affect the subsurface stress and plastic strain distribution and localized surface corrosion kinetics, hence affecting the overall tribocorrosion rate. This model and the obtained understanding could shed light on future design and optimization strategies of NMMs against tribocorrosion.
Finally, a combined experimental and computational investigation of the crystallographic effect using Al (100), (110), and (111) single crystals as model systems, to understand the effects of crystallographic orientation on the tribocorrosion kinetics by combining tribocorrosion experiments, materials characterization, and multiphysics modeling. EBSD was exploited to characterize the crystal orientation and dislocation density of the worn samples. The tribocorrosion model was built based on the results of EBSD characterization with the coupling effect of crystal orientation and corrosion. The model successfully predicted the overall tribocorrosion current of single-crystal samples, indicating the important role played by crystal orientation and dislocation density in the acceleration of corrosion. / Doctor of Philosophy / Multiple applications in batteries, aerospace, marine transportation, offshore infrastructure and biomedical implants request metal materials that are both mechanically reliable and corrosion resistant. In addition to pure mechanical wear and corrosion, the synergy of the two, which is called tribocorrosion, also poses major threat to materials' integrity and longevity.
Aluminum is a widely used passive metal due to its advantage of being cheap, light-weighted and corrosion resistant, but is relatively less resistant to wear comparing to other metals. Mechanical damage could strip Al of the protection from the passive layer and also cause stress corrosion. This makes Al susceptible to tribocorrosion. Despite several previous experimental attempts to understand the mechanism of Al tribocorrosion and improve the tribocorrosion resistance of Al by alloying or structural design, there has been little quantitative model on this topic.
In this dissertation, finite element (FE) multi-physics modeling was exploited to investigate the tribocorrosion phenomenon on Al systems in sea water environment. The first model was developed based on strain-electrochemistry coupling and helped study the effect of alloys' composition on the tribocorrosion resistance of the alloy. The second model studied the tribocorrosion of Al/Cu multilayers with the focus on the micro-galvanic coupling between Al and Cu layers and predicted the influence of layer thickness and orientation. The third model exploited the result of crystallographic information from EBSD characterization to study the mechanism of pure Al tribocorrosion on the crystal level. These models provide quantitative explanation to the accelerated corrosion of Al-based metals and structures, as well as guidance to future design of material with optimum wear, corrosion and tribocorrosion resistance.
|
4 |
Tribocorrosion Behavior of Metallic Implants: A Comparative Study of CoCrMo and Ti6AL4V Under the Effect of Normal LoadPatel, Mihir V. 04 June 2019 (has links)
No description available.
|
5 |
Contribution au remplacement des revêtements durs par traitement de surface non conventionnel dans les réacteurs à neutrons rapides / Contribution to the replacement of cobalt-free hardfacing coating by laser cladding in fast neutron reactorsTran, Van De 15 December 2014 (has links)
Cette thèse contribue au remplacement du revêtement de Stellite 6 utilisé aux zones de frottement dans le circuit primaire du réacteur à neutron rapide. Elle comprend trois parties : 1) Une étude bibliographique afin de présider au choix des matériaux de remplacement et du procédé de dépôt. 2) Une étude paramétrique en vue d’obtenir des dépôts sains (bonne adhésion avec le substrat, peu de porosité, absence de fissure, dilution faible). 3) Une étude du comportement tribologique des dépôts réalisée pour deux valeurs de température. Ces essais tribologique ont été réalisés sous atmosphère inerte afin d’évaluer la résistance à l’usure des matériaux choisis sans l’influence d’une éventuelle couche d’oxydation. De l’étude bibliographique il ressort les choix suivants mis en oeuvre dans notre étude : * le procédé projection laser qui présente des avantages tels que :- Bonne adhésion (métallurgique)- Vitesse de refroidissement élevée- Taux de dilution faible- Large plage paramétrique *deux alliages base nickel : le Colmonoy-52 et le Tribaloy-700. Ces alliages présentent un bon comportement tribologique à sec et sont déposables par laser.Pour la partie obtention d’un dépôt sain, tout d’abord nous avons caractérisé la poudre métallique. Ensuite, une recherche paramétrique a été conduite afin de disposer d’un jeu de paramètres qui permette d’obtenir un dépôt sain de Stellite 6 (référence), de Colmonoy-52 et de Tribaloy-700. A cette occasion, les relations entre trois paramètres principaux du procédé de projection laser (puissance du faisceau laser, vitesse de balayage de la surface, débit de poudre) ont été investigués en relation avec la microstructure et la composition chimique finale du dépôt.Lors de l’étude tribologique, un tribomètre de type pion-disque a été utilisé et les essais de frottement ont été réalisés sous atmosphère d’argon, à température ambiante et à 200°C. Les mécanismes d’usure ont été identifiés pour les 3 matériaux et leur contre pièce (bille en AISI 316L). Les volumes usés ont quant à eux été analysés en fonction de la charge appliquée et l’effet de la température. / This thesis contributes to the replacement of the coating of Stellite 6 which is used in friction areas for the primary circuit of the reactor fast neutron.It contains three parts:1) A literature review for selecting the materials and the deposition process2) A parametric study to get healthy deposits (good adhesion with the substrate, little porosity, no cracks, low dilution)3) A study wear behavior of deposits obtained, at high temperature (200°C) under an atmosphere inert gas, to determine the wear resistance of materials selected without the influence of an eventual oxidation layer.From the literature review, it appears the following choices implemented in our study : * the method laser cladding with advantages such as: - Good adhesion (metallurgical) - High cooling speed - Low dilution rate - Wide parametric range * two nickel-based alloys: Colmonoy-52 and Tribaloy-700. These alloys have good dry wear behavior and could be deposited by the laser. In the manufacturing part of the healthy deposit, firstly, we characterized the metal powder. Then, a parametric study was performed to look for a good parametric range that makes us getting a healthy deposit of Stellite 6 (reference) of Colmonoy-52 and Tribaloy-700. In this case, relationships among three main process parameters laser cladding (laser beam power, surface scanning speed, rate of powder) with the microstructure and chemical composition of the deposit are studied. In study the wear behavior, a pin-on-disc type of tribological was used and tests were carried out in argon at room temperature and 200°C. We investigated the wear mechanism of the best deposition of Stellite 6, Colmonoy-52 and Tribaloy-700. The wear resistance of these materials were thourghly compared.
|
6 |
Caractérisation des mécanismes d'usure par tribocorrosion d'alliages modèles Ni-CrIonescu, Claudiu Constantin 19 November 2012 (has links) (PDF)
Les alliages à base nickel sont utilisés dans les centrales nucléaires pour la fabrication des tubes générateurs de vapeur, parce qu'ils présentent une bonne résistance aux sollicitations mécaniques élevées dans un milieu corrosif à haute température. La résistance au milieu corrosif est attribuée à une couche protectrice très fine de Cr2O3 qui se forme à la surface de l'alliage. Les tubes générateurs de vapeur comptent parmi les composants les plus délicats à entretenir, d'une part, du fait de leur importance pour la sûreté et, d'autre part, parce que les tubes d'échange sont soumis à de nombreux mécanismes de dégradation à cause de conditions sévères de fonctionnement.. L'objectif de cette étude a été d'évaluer et de comparer le comportement en tribocorrosion de deux alliages modèles Ni - 15%Cr et Ni - 30%Cr. Ces alliages ont été utilisés pour mettre en évidence, évaluer et comparer l'influence de la teneur en chrome sur la formation de la couche d'oxyde superficielle et le rôle de cette dernière sur les mécanismes et cinétiques d'usure par tribocorrosion. L'étude de la tribocorrosion a été effectuée à l'aide d'un tribomètre pion - disque par application d'un frottement unidirectionnel, en régime continu et intermittent en milieu aqueux boré - lithié à la température ambiante. La dégradation de la couche protectrice formée à la surface des deux alliages a été suivie en mettant en œuvre un protocole expérimental en trois étapes. Dans la première étape du protocole, le suivi de l'évolution du potentiel libre et l'enregistrement des diagrammes d'impédance électrochimique ont été utilisés pour analyser le comportement électrochimique des deux alliages en absence de frottement. Lors de la deuxième étape, les mêmes techniques électrochimiques ont été employées en présence d'un frottement continu et pour différentes pressions de contact. Durant l'étape trois du protocole, des essais de tribocorrosion en régime de frottement intermittent ont été réalisés pour mettre en évidence la capacité d'auto cicatrisation de la surface des deux alliages modèles. Pour les deux alliages Ni - Cr, les essais de tribocorrosion ont mis en évidence une augmentation de l'usure totale avec la pression de contact appliquée. Quel que soit la force normale appliquée, la principale composante de l'usure totale est l'usure mécanique du substrat mis à nu. L'usure purement corrosive du substrat diminue avec l'augmentation de la teneur en chrome. Du point de vue qualitatif, le principal mécanisme d'usure identifié a été l'usure abrasive par micro - labourage. Dans cette étude a été effectuée une étude de l'usure d'alliages modèles Ni - Cr, dans les conditions de tribocorosion, ainsi que une analyse du mécanisme et la cinétique d'usure. Le comportement de la couche superficielle d'oxyde de chrome et son effet sur la résistance à la tribocorrosion ont été évalués. Ces résultats peuvent servir de base à la compréhension de l'origine des problèmes qui peuvent apparaître pendant la vie d'un alliage inoxydable à base nickel soumis à des efforts mécaniques en milieu agressifs et permettre une sélection plus pertinente des matériaux métalliques pour diverses applications industrielles, particulièrement dans le domaine nucléaire.
|
7 |
Tribocorrosion Behavior of Metallic Implants: A Comparative Study of CoCrMo and Ti6Al4V in Simulated Synovial FluidsCudjoe, Edward 27 August 2019 (has links)
No description available.
|
8 |
Corrosion and Tribocorrosion Kinetics of Al-based Concentrated Alloys in Aqueous Sodium Chloride SolutionChen, Jia 30 November 2021 (has links)
Commercial aluminum (Al) alloys are often precipitation strengthened to improve strength and wear resistance. However, localized corrosion due to the galvanic coupling between the precipitates and Al matrix often leads to degraded performance when these alloys are exposed to corrosive environment. In this work, Al-based solid solution was synthesized to simultaneously improve the strength and corrosion resistance of Al alloys, which ultimately led to high tribocorrosion resistance. Specifically, the effects of testing condition (e.g. sliding frequency) and alloying effects (e.g. Mn and Mo) on the corrosion and tribocorrosion behavior of Al-based binary and ternary solid solutions were studied.
To understand the effects of wear condition on the depassivation-repassivation kinetics during tribocorrosion, in the first study, the tribocorrosion behaviors of Al-20 at.%Mn alloys were investigated in simulated seawater by changing the sliding frequency from 0.05 to 1 Hz in reciprocal motion. The results show that the depassivation rate of passive film increased with increasing sliding frequency. Mechanical wear also increased with increasing sliding frequency, which was mainly related to the increase of coefficient of friction and real contact area. Chemical wear tended to increase with scratching frequency, most likely due to faster repassivation kinetics at lower frequency. The surface layer was analyzed by cross-sectional transmission electron microscopy, indicating the passive film was primarily consisted of aluminum oxide where manganese was selectively dissolved.
Despite extensive past research, the fundamental understanding of the alloying effects on the atomistic structure, composition, and chemical state of the passive layer of Al alloys and their formation mechanism is still not well understood. In the second study, the effects of Mn on the aqueous corrosion of Al-Mn alloys were investigated. It was confirmed that Mn alloying could enhance the corrosion resistance of Al without participating in the surface oxidation. Atom probe tomography analysis confirmed the absence of Mn in the anodized and corroded surface of Al-Mn alloys. The selective dissolution of Mn in these alloys was believed to increase the free volume at the metal/oxide interface to facilitate the formation of a denser, thinner oxide layer with closer to stoichiometry composition, leading to its enhanced corrosion resistance than pure Al.
Lastly, to better understand the corrosion and tribocorrosion resistance of Al-based lightweight concentrated alloys and the effects of alloying concentrations on the structure and property of the passive layer, the third study investigated the effects of a passive element (Mo) and non-passive element (Mn) on the corrosion and tribocorrosion behavior of Al-Mn-Mo alloys. Specifically, Al80Mn8Mo12 exhibited higher corrosion resistance than Al80Mn20 due to the formation of a more compact and less defective passive film, as explained by the roles Mo played in both the substrate and the passive film. It was found that the pitting potential and corrosion current density of Al-Mn-Mo increased with Mo%. The effect of Mo alloying concentration on the tribocorrosion behavior of Al-Mn-Mo alloys was investigated as well. Adding Mo to Al-Mn alloys led to a lower wear and tribocorroison resistance of Al-Mn-Mo alloys. In addition, decreasing Mn and Mo concentrations resulted in a reduction of the tribocorrosion resistance in the ternary alloy, which was mainly dominated by the mechanical response under the selected testing conditions. / Doctor of Philosophy / Various critical current and future applications in the fields of aerospace, transportation, energy, and biomedical industries require not only a strong and tough metal, but one that is robust and reliable when interacting with some very corrosive environment. Such corrosive environment is testing the limits of most engineering metals and challenging the current understanding of the underlying degradation mechanism. For example, strength and wear resistance in most precipitation-hardened Al (aluminum) alloys is often achieved at the expense of sacrificed corrosion resistance, mainly due to micro-galvanic coupling between the soft matrix and hard precipitates. In addition, the performance of Al alloys deteriorates dramatically when there is combined wear and corrosion, i.e. tribocorrosion attack at the surface, due to the depassivation on the wear track as a result of mechanical removal of the passive film.
Recent study shows that alloying Al with appropriate transition metals in supersaturated solid solution simultaneously improves the corrosion and wear resistance of Al. In this thesis, Al-Mn and Al-Mn-Mo solid solutions was synthesized and studied to understand the effects of testing condition (e.g. sliding frequency) and alloy composition (e.g. Mn and Mo concentration) on the corrosion and tribocorrosion behavior. First, the depassivation mechanism during tribocorrosion of Al-Mn alloys was investigated by performing tribocorrosion test using different sliding frequency from 0.05 to 1 Hz in 0.6 M NaCl aqueous solution. Results showed that both chemical and mechanical wear increased with increasing frequency. The mechanical wear increased with scratching frequency due to faster depassivation rate and increased real contact area, while chemical wear increased with frequency due to higher repassivation kinetics. Secondly, the effects of Mn on the aqueous corrosion and passivation of Al-Mn solid solution alloys were investigated by electrochemical experiments and advanced surface characterization. It was found that Mn addition enhanced the corrosion resistance of Al without participating in the surface oxidation. A denser, thinner oxide layer was formed on Al-Mn due to the increased free volume at the metal/oxide interface as a result of Mn dissolution. Lastly, the effects of alloying concentration on the aqueous corrosion and tribocorrosion of Al-Mn-Mo alloys were studied experimentally. The pitting potential and corrosion current density of Al-Mn-Mo were found to increase with Mo%. The passive film thickness depended on the total alloy concentration, while its compactness and defect density on the individual ones. The tribocorrosion resistance of Al-Mn-Mo alloys decreased with increasing Mn and Mo concentrations. In summary, the results from this thesis develop mechanistic understanding of the corrosion and tribocorrosion mechanisms of Al-based solid solution alloys, which sheds light on a new alloy design strategy for making lightweight, strong, and corrosion-resistant metals.
|
9 |
Contribution à l’étude de l’endommagement des connexions implantaires en odontologie prothétique / Contribution to the study of the damage in dental implant connectionCorne, Pascale 19 December 2018 (has links)
Cette recherche est basée sur l’étude de deux niveaux d’endommagements de la connexion implantaire : en premier lieu, l’usure liée aux différents cycles d’insertion/désinsertion nécessaire à l’élaboration d’une prothèse sur des échantillons implantaires ; et d’autre part, les endommagements au cours du temps, réalisés à l’aide d’une étude par fretting-corrosion en salive humaine. Lors des différents cycles de serrage/desserrage, des endommagements sur l’ensemble des composants sont présents. La vis implantaire, qui concentre la majorité des complications thérapeutiques, doit être renouvelée après 20 cycles de serrage maximum. L’utilisation de vis de laboratoire permet ainsi de limiter les dégradations sur cette dernière et d’optimiser la valeur de précontrainte lors du serrage d’usage. Lorsque la prothèse est mise en service, les endommagements sont principalement liés à des usures par tribocorrosion. Ce phénomène est à l’origine d’usure synergique et engendre une modification de la microstructure en regard des surfaces frottée / This research based on the study of two levels of damage focused on the implant connection: firstly, the wear associated with the opening/closing cycle dedicated to the manufacturing process; secondly, the damage over the time, that is a fretting-corrosion study of dental implants in human saliva. During the tightening/loosening cycles, damage to all the components is present. The screws that include the majority of the complications have to be changed after 20 tightening cycles. The use of laboratory screws limits the damage and optimizes the preload value. When the prosthesis and the implant are assemblies, the damage appears thanks to fretting/corrosion (tribocorrosion) behavior. This phenomenon does involve synergistic wear and a modification of the microstructure on the fretting surfaces
|
10 |
Surface treated cp-titanium for biomedical applications : a combined corrosion, tribocorrosion and biological approach / Fonctionnalisations d’une surface de titane commercialement pur en vue d’applications biomédicales : une triple approche combinant corrosion, tribocorrosion et biologieYang, Yaqin 16 October 2014 (has links)
La tribocorrosion peut être définie comme l’ étude de l’influence des facteurs environnementaux (chimiques et/ou électrochimiques) et mécanique (frottement) sur le comportement tribologique de surfaces en mouvement relatifs. En raison de leurs caractéristiques particulières: performances mécaniques, associées à une faible densité, bonne tenue à la corrosion, biocompatibilité, le titane et ses alliages sont souvent utilisés dans le domaine médical comme implants dentaires et orthopédiques. Cependant, leur faible résistance vis-À-Vis du frottement en milieu agressif et plus spécifiquement biologique reste un frein à leur usage courant dans le domaine prothétique. Pour améliorer la résistance à la corrosion et à l'usure du titane et de ses alliages, différentes méthodes de modification de la surface ont été proposées durant ces dernières décennies. Dans ce cadre, le but de ce travail est de comparer les comportements en corrosion et tribocorrosion du titane commercialement pur (cp Ti), avec ce même matériau ayant subi au préalable les traitements suivants :- soit une étape d'oxydation thermique à 650 °C à l’air durant 48 h (formation d’un film d'oxyde de titane (TiO2) en surface),- soit un dépôt électrochimique de calcium phosphate (CaP) en surface,- soit un dépôt électrochimique de calcium phosphate (CaP) suivi d’une tape d’oxydation thermique à 650 °C à l’air durant 6 h (formation d’un dépôt de type CaP/TiO2 en surface). Les phases cristallines des films modifiés ont été identifiées par diffraction des rayons X (XRD). La microscopie électronique à balayage (MEB) en combinaison avec la spectroscopie à dispersion d'énergie (EDS) a été utilisée pour caractériser la morphologie et la composition de ces films.Le comportement en corrosion pure des échantillons cp Ti avec ou sans modifications de surface à été étudié in situ à partir des mesures électrochimiques de suivi du potentiel en circuit ouvert (OCP), de la spectroscopie d'impédance électrochimique (EIS) et du tracé de courbes de polarisation potentio-Dynamiques.Le comportement en tribocorrosion à été étudié quant à lui à l'aide d'un tribomètre de type pion-Disque apte à travailler en milieu aqueux et permettant outre l’enregistrement des paramètres tribologiques classiques, la mise en œuvre in situ des techniques électrochimiques utilisées lors de l’étude en corrosion pure. Caractérisation et analyses de la surface(composition, morphologie, rugosité …) sont effectuées avant et après chaque étude de comportement (corrosion et tribocorrosion). Un protocole pour la culture des cellules sur la surface de titane a été validé, en se basant sur les résultats expérimentaux préliminaires. / Tribocorrosion is defined as the study of the interplay between chemical, electrochemical and mechanical processes that leads to a degradation of passivating materials in a corrosive environment. Due to the low density, excellent mechanical properties, high corrosion resistance and good biocompatibility, titanium and its alloys are widely used as dental and orthopedic implants. However, the poor wear resistant and bio-Inert properties limit their further development as more efficient and economic biomedical implants. To improve the corrosion-Wear resistance and even bioactivity of metallic implants, different surface modification methods are imposed in the past decades.The aim of this work is to provide a deep insight in the area of corrosion and tribocorrosion behavior of commercially pure titanium (cp Ti) under the guidance of a tribocorrosion protocol for passivating materials. And then three different surface modification treatments, as:- one-Step thermal oxidation at 650 °C for 48 h in air atmosphere to form a titania (TiO2) film on the surface of cp Ti.- one-Step electrochemical deposition of calcium phosphate (CaP) bioactive film on the surface of cp Ti.- electrochemical deposition of CaP bioactive film followed by thermal oxidation at 650 °C for 6 h in air atmosphere to form a CaP/TiO2 bioceramic film on cp Ti surface.The crystalline phases of the modified films were identified by X-Ray diffraction (XRD). Scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS) was used to characterize the morphology and composition of these films on cp Ti surface. In situ electrochemical measurements, like open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization are used to characterize the corrosion behavior of cp Ti samples without or with surface modification. The tribocorrosion behavior was investigated in an aqueous environment by combining a pin-On-Disc tribometer with the in situ electrochemical equipment. The classical tribological parameters could be also recorded under mechanical loaded condition. Surface characterization and analysis (like chemical composition, morphology, roughness...) are carried out before and after each corrosion and tribocorrosion test. A protocol for the culture of cells on the surface of titanium was validated, basing on the preliminary experimental results.
|
Page generated in 0.0532 seconds