• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 183
  • 24
  • Tagged with
  • 207
  • 189
  • 173
  • 172
  • 172
  • 172
  • 171
  • 171
  • 170
  • 170
  • 170
  • 170
  • 170
  • 38
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Development and Characterization of Multi-scale Polymer Composite Materials for Tribological Applications

Jain, Ayush January 2017 (has links)
With industries aiming at higher efficiencies, lightweight parts, and easier manufacturability there has been a recent trend of replacing the metallic materials with polymeric materials and its composites. Particularly in the automotive industry, there is a demand of replacing metallic material of bushes and bearings with polymer based materials (PBM). For these heavy performance requirements (as in automobiles), the commonly used industrial polymers like Acetal and Nylon fail to provide good mechanical and tribological performance. High-performance polymer like Polyphenylene Sulfide (PPS) is a relatively newer material and shows a potential of being a PBM alternative for metallic bearings in automobiles if their tribological performance can be improved.  One of the ways of improving the tribological performance of the polymer is by the addition of filler material, hence making a polymer composite. In this study, we used Short Carbon Fibre as micro-reinforcement material and Nano-diamonds and Graphene Oxide as nano-reinforcement material to make PPS composites. The varying mechanical and tribological behaviour of PPS composites with different weight percentage of reinforcement materials was investigated. The optimum composition of the reinforcement materials was identified, which resulted in significant improvement in mechanical and tribological properties of the base material.
182

Optimering av glidlager och utveckling av dess konstruktion / Plain bearing optimization and development of its design

Abu Baker Karim, Aria, Schnelzer, Anna January 2012 (has links)
I detta projekt har vi fördjupat oss i en glidlagerkonstruktion som befinner sig i en skruvpress. Skruvpressen kompakterar en okänd massa som är sekretessbelagd. Robustus har ett förslag på överdimensionering av det nuvarande glidlagret. Målet med projektet var att analysera och optimera några glidlager i förhållande till det befintliga glidlagret samt att ta hänsyn till materialval och den miljö som lagret kommer att befinner sig i. Det som analyserna och optimeringen visade var att det befintliga glidlagret hade den bästa geometrin bland alla lösningar men inte det optimala materialet. Projektet befinner sig i ett tidigt stadium och det behövs en del geometriska förändringar. Det viktigaste av allt är att problemet har identifierats med hjälp av det havererade glidlagret och med en excelmodell. / We have in this project become engrossed in a plain bearing design that is located in a screw press. The screw press compact an unknown mass that is confidential. Robustus have a suggestion to over dimensioning the present plain bearing. The aim of this project was to analyze and to do an optimization on some plain bearings and compare them to the present bearing and to take the choice of material and the environment where the bearing is located into account. The analysis and the optimizations showed that the current plain bearing had the best geometry but not the optimal material selection. The project is in an early state and it needs some geometrical changes. The most important of everything is that the problem has been identified with the help of the wrecked plain bearing and with an excel model.
183

Förstudie inför optimering : Av kapningsprocessen vid klingkapen

Theander, David January 2016 (has links)
This thesis has been conducted at Ovako Bar for a period of 10 weeks and is the final part of the bachelor's programme in mechanical engineering. Ovako Bar is a business unit of the European steel concern Ovako which specializes in the manufacturing of engineering steel for applications in various fields of mechanical engineering. The company wants to improve profitability of their sawing centre by reducing the consumption of saw blades and increase productivity at one of their sawing machines. In the current situation the company uses disposable blades which are discarded either when a tool break occurs or when the quality requirements are no longer met for the outgoing material. A literature review was conducted in which various factors affecting the life span of the saw blades were analyzed after their impact on the outcome in which two factors was selected to be used for a design of experiments. The factors selected were feed per tooth and cutting speed in which a total of four experiments were conducted and finally the results showed that the interaction effect was the decisive factor for the outcome. To investigate the tool wear that had arisen a scanning electron microscope was used where a few teeth on each blade were studied for any damages. The conclusions that could be drawn from the experiment is that a high feed rate must be combined with a high cutting speed for best result which has to do with the fact that a higher feed requires a greater heat generation for the best chip formation. The same applies for the lower feed rate which must be combined with a lower cutting speed because a higher cutting speed causes a dominating wear on the clearance face.
184

Tribological testing of top hammer drill buttons

Hassila Karlsson, Carl Johan January 2016 (has links)
In the present work further modifications are implemented to an existing test setup for the evaluation of the wear of cemented carbide drill buttons in rock drilling applications. The test setup has been evaluated in previous diploma works, which has shown that the test successfully mimics the wear seen in rock drilling applications. The new modifications include friction and normal force measurements together with the collection of rock debris. This has been made possible by redesigning the sample holder and by manufacturing equipment making rock debris collection possible. The new modifications to the test setup were evaluated by comparing the wear of three different cemented carbide grades tested against sandstone and granite with two different loads. The data collected from the new modifications were found to be robust with lower than expected spread of data. The coefficient of friction when testing against sandstone was higher than when testing against granite. More adhered material was observed on the wear surface when testing against granite than against sandstone. Load dependence on the wear of the cemented carbide buttons is only seen for the softer cemented carbide grades when testing against sandstone. The wear of the buttons indicates a high dependence on the hardness of the different grades as shouldbe expected. This diploma work has been performed for Sandvik Mining, Rock Tools,a world leading supplier of rock drill equipment.
185

Tribological and Mechanical Behaviour of Lamellar and Compacted Graphite Irons in Engine Applications

Ghasemi, Rohollah January 2015 (has links)
There has been much discussion about the beneficial uses of lamellar graphite iron in piston rings–cylinder liner systems, where a good combinations of both thermal and tribological properties are essential. The excellent tribological performance of lamellar iron under such sliding conditions is principally associated with lubrication behaviour of the graphite particles which are distributed as lamellas throughout the matrix. During sliding, graphite particles are extruded and smeared onto the counterfaces, act as solid lubricating agents and form a thin graphite film between the sliding surfaces. Although this process especially, during the running-in period significantly changes the sliding wear response of the components, the exact mechanism behind of this phenomenon has rarely been discussed in previous studies. It is tribologically beneficial to keep the graphite open, particularly in applications where the scuffing issues do matter. In this thesis, the main causes involved in closing the graphite lamellas are discussed, with a focus on matrix plastic deformation that occurs during sliding. In first step, the relationship between graphite lamellae orientation and plastic deformation was investigated. To do so, two piston rings, belonging to the same two-stroke marine engine operated for different periods of time, were selected and compared to the unworn sample. The worn piston rings displayed a substantial decrease in both frequency and area fraction of the graphite lamellas. Most of the lamellas were closed as a result of plastic deformation of matrix. This happening was caused mainly by the interaction between abrasive particles and metallic matrix. Additionally, it was found that graphite lamellas parallel or near-parallel to the sliding direction exhibited maximum closing tendency under sliding condition. In next step, to have a better understanding of the graphite film formation mechanism and matrix deformation role in closing the graphite lamellas, microindentation and microscratch testing were performed on typical lamellar iron. The qualitative results showed a similar mechanism involving in graphite contribution to lubricate the sliding surfaces. Moreover, microindentations made nearby the graphite lamellas demonstrated that the deformation of the matrix causes the formation of cracks in the centre of the graphite lamellas, compressing and then extruding the graphite from its natural position, irrespective of the lamellas′ size. Furthermore, it was found that subsurface graphite orientation had a large influence on the extrusion behaviour, in that, for graphite lamellas oriented towards the indenter, the effect was observed more pronounced. Furthermore, an improved fully ferritic solution strengthened compacted graphite iron was produced for future wear studies. The effects of different Si levels and section thicknesses on tensile properties and hardness were investigated as well. The influence of Si content and section thickness on mechanical properties was revealed by improving the materials strength and slightly enhancing the hardness through increasing Si content. Besides, Si addition up to 4.5 wt% significantly affected the strength and elongation to failure of cast samples. / Helios / FFI
186

Tribological Performance of Novel Boron Dithiocarbamate Lubricant Additives

Taher, Mamoun January 2011 (has links)
Different lubricant additives such as dialkyldithiophosphates (DTPs) of different metals have been extensively used as multifunctional additives to control wear and friction in mechanical systems. These additives can produce protective films on steel rubbing surfaces and, therefore, control friction and reduce wear. On the other hand, these additives contain large amounts of metals, phosphorus and sulfur, which can adversely affect the environment by degrading catalytic converters in automobiles. Boron based additives are recognized as friction modifiers, corrosion inhibitors, antioxidants, and effective antiwear additives. These additives are emerging as attractive alternatives for the additives already used in lubricants. The aim of the project is to investigate the tribological performance of some novel alkylborate dithiocarbamates.This project was performed in the following steps:1- Chemical synthesis of three different borated dialkyl dithiocarbamate additives with alkyl chains of different lengths.2- Tribological tests of novel compounds using a four ball tribometer.3- Surface analysis using an optical profiler (Veeco WYkO NT 1100) and Scanning Electron Microscopy coupled with X-ray Energy Dispersive Spectroscopy (SEM/EDS).The effect of the alkyl chain length in both DTC and the borate molecular moities of three B-DTC compounds on the tribological performance was studied. An increase in the alkyl chain length at the borate side improves antiwear properties in steel-steel contact. It was found that cyclo-N,N-alkylenedithiocarbamato-S-alkyl-di-n-alkyl-borate previously synthesized and studied [1], has the best antiwear performance compared with the other compounds synthesized in this work. All the novel additives were able to stabilize friction coefficient over a wide concentration range of the additives in the base oil. B-DTC additives with long alkyl chains show greater reduction in friction compared to the one with short alkyl chains. A possible explanation of this phenomenon is that longer chains have improved deposition process of additives on surfaces leading to a thicker and more stable tribofilm. EDS spectra show the presence of sulfur atoms on the rubbing surfaces lubricated by the base oil with B-DTC additives. / <p>Validerat; 20111001 (anonymous)</p>
187

Tribological behaviour of metal sulfides UHMWPE composites in dry lubrication

Pizone Vaz, Bruno January 2021 (has links)
The increasing worldwide demand for more eco-friendly materials with improved tribo- logical properties has expanded the interest in research on polymer as an alternative for conventional metal/metal contacts under dry lubrication. Specifically, UHMWPE, a semi-crystalline polymer, has shown interesting tribological properties for low demanding applications, allied with excellent recyclability, manufacturability and low cost. Though, its limited working temperature range and wear resistance claims reinforcements to modulate these drawbacks. Metal sulfides, such as MoS2 and SnS2 are well-known 2D materials with outstanding thermal, mechanical and tribological properties which have the potential to increase the range of applicability of UHMWPE. Therefore, this work aims to investigate the influence of metal sulfide-based micro-particles on UHMWPE-based composites properties under reciprocating movement and to determine further acknowledgements about the mechanisms involved. The results showed that the incorporation of fillers im- proved in hardness and wettability, whereas thermal properties were conserved. Though, it is noted that chemical degradation processes (oxidation and un-saturation reactions) that occurred during the manufacturing negatively influenced the composite’s tribological response. Higher reinforcement weight percentages (10%) promoted metal-sulfides agglomeration, increased degradation and ultimately diminished wear resistance. Overall, optimizing the amount of filler in the matrix at 5 wt% provided its homogeneous dispersion and a good interface with the matrix, leading to enhancement in wear resistance up to 62%. Indeed, the incorporation of metal-sulfide based materials in the UHMWPE matrix revealed an excellent solution where wear resistance improvements are needed.
188

Tribological and Mechanical Behaviour of 3D Printed Polymeric Bearings

Qazi, Sallar Ali January 2021 (has links)
Plastics contribute 2 GTons to the global carbon footprint, today, several countries have set targets to achieve carbon neutrality. Plastics, being a major contributor to global carbon footprint, would need to be reduced significantly from our daily life to achieve that or a way needs to be devised to recycle them. A big bottleneck in this process is to reduce the consumption of thermosetting plastics or to reduce the emissions associated with plastic and move towards economical and environmentally safe plastics having a longer lifespan and efficient recyclability. Fused filament fabrication (FFF) is the most commonly used 3D printed technology available today. Its applications range from production of prototypes to hollow shafts, and fully functional commercial components. This technology is revolutionary in a sense that it offers advantages such as cheaper raw materials, high degree of customizability, production in smaller batches at lower costs, decrease in material wastage, rapid prototyping, and complex geometry. A number of thermoplastic polymers can be used with FFF technology to produce parts, in addition research is on going to print materials not commonly used for FFF process. Polyoxymethylene (POM) could be a viable option for utilization as FFF basestock for the production of tribologically functional components. POM is an engineering thermoplastic that offers high resistance to wear, low friction, excellent impact resistance, and good chemical resistance. These properties render it suitable for production of gear wheels and low load bearings. It is currently processed using traditional manufacturing methods such as injection and compression moulding, while its printability has received very little attention in the openly available literature. An attempt has been made in this thesis to fill up this research gap by providing insight into POM filament quality, and the thermal, mechanical, and tribological behaviour of POM printed parts. The influence of overfill and layer height on the bulk properties of the printed samples, its play with counterface surface roughness and applied load has also been investigated.
189

Tribology of newly developed EAL versus water in hydropower turbine bearings

Dhakal, Nayan January 2019 (has links)
The increasing demand for more readily bio-degradable, renewable and non-toxic environmentally adaptive lubricants with a lower degree of bioaccumulation has escalated the investigation of water-based lubricants as the potential alternatives for conventional mineral-based oils. Water is an excellent environmentally adapted lubricant; however, it is a low viscous fluid and holds downsides of having corrosive nature and extremely low pressure-viscosity coefficient leading to insufficient load-carrying capacity. These shortcomings make pure water a poor choice for operations involving high load and low speed, for instance, within hydropower applications. Therefore, the choice of appropriate modifiers and additives is crucial to improve the viscosity, friction-reducing performance and anti-wear properties of water as a base lubricant. Appropriate selection and combination of bearing materials also significantly improve the tribological performance of the lubricants. In the presented work, tribological behavior of polyvinylpyrrolidone (PVP) and poly(sodium 4-styrenesulfonate) (PSS) thickening agents with water as a base fluid in the lubrication of pure UHMWPE and SCF reinforced UHMWPE bearing materials has been investigated individually under reciprocating tribometer. The results showed that both PVP and PSS are excellent viscosity modifiers. PVP exhibited excellent friction-reducing and anti-wear performance, while PSS revealed increased wear rates with an insignificant reduction of friction coefficients. This study aims to explore the potential for using newly developed water-based lubricants in the replacement of traditional mineral-based lubricants for hydropower turbine bearings.
190

Wheel-rail contact modelling in vehicle dynamics simulation

Shahzamanian Sichani, Matin January 2013 (has links)
The wheel-rail contact is at the core of all research related to vehicle-track interaction. This tiny interface governs the dynamic performance of rail vehicles through the loads it transmits and, like any high stress concentration zone, it is subjected to serious damage phenomena. Thus, a clear understanding of the rolling contact between wheel and rail is key to realistic vehicle dynamic simulation and damage analyses. In a multi-body-system simulation package, the essentially demanding contact problem should be evaluated in about every millisecond. Hence, a rigorous treatment of the contact is highly time consuming. Simplifying assumptions are, therefore, made to accelerate the simulation process. This gives rise to a trade-off between accuracy and computational efficiency of the contact models in use. Historically, Hertz contact solution is used since it is of closed-form. However, some of its underlying assumptions may be violated quite often in wheel-rail contact. The assumption of constant relative curvature which leads to an elliptic contact patch is of this kind. Fast non-elliptic contact models are proposed by others to lift this assumption while avoiding the tedious numerical procedures. These models are accompanied by a simplified approach to treat tangential tractions arising from creepages and spin. In this thesis, in addition to a literature survey presented, three of these fast non-elliptic contact models are evaluated and compared to each other in terms of contact patch, pressure and traction distributions as well as the creep forces. Based on the conclusions drawn from this evaluation, a new method is proposed which results in more accurate contact patch and pressure distribution estimation while maintaining the same computational efficiency. The experience gained through this Licentiate work illuminates future research directions among which, improving tangential contact results and treating conformal contacts are given higher priority. / <p>QC 20130911</p>

Page generated in 0.0264 seconds