Spelling suggestions: "subject:"troncature dipolar"" "subject:"troncatures dipolar""
1 |
RMN cristallographique : mesure de distances internucléaires sur des échantillons de poudre par RMN du solide / NMR crystallography : internuclear distance measurement on powder samples on natural abundance using solid-state NMRDekhil, Myriam 17 November 2016 (has links)
La mesure de couplage dipolaire permet d’accéder à la structure tridimensionnelle d’un composé solide. Cependant, en présence d’une forte densité de spins couplés, le phénomène de troncature dipolaire rend difficile l’obtention de ces informations par RMN du solide. Ce problème peut être affranchi par l’étude de spins rares en abondance naturelle. En effet, avec une abondance naturelle de 1.1 %, la probabilité que trois 13C soient couplés, et avec elle la troncature dipolaire, devient négligeable. Une méthodologie basée sur la séquence de recouplage dipolaire POST-C7 permet d’accéder à des informations structurales d’échantillons en abondance naturelle sensibles à la fois à la conformation moléculaire et à l’empilement cristallin par mesure de couplages dipolaires 13C-13C. La sensibilité de détection des signaux RMN 13C est augmentée à l’aide la polarisation dynamique nucléaire ce qui permet de réduire considérablement les temps d’expériences. De plus, la séquence de recouplage R20_9_2 aidée de supercycles s’est montrée être plus robustes que POST-C7 face à de fortes anisotropies de déplacement chimique ou de forts couplages hétéronucléaires 1H-13C. La seconde problématique abordée concerne l’attribution de signaux 13C. En effet, il existe seulement quelques exemples de détermination de connectivités 13C -13C en abondance naturelle. Nous montrons ici que des spectres de corrélations dipolaires 13C-13C peuvent être obtenus en quelques jours à l’aide de la séquence de recouplage R20_9_2. Contrairement aux méthodologies basées sur le couplage J, notre séquence requiert un temps d’excitation DQ plus court ce qui la rend adaptée à l’étude de solides désordonnés. / Measurment of dipolar coupling provides 3D structural information of powder samples. However, in practice, the high density of spins in organic compounds prevents the measurements of long-range dipolar couplings in solid-state NMR by the so-called dipolar truncation effect. The study of rare spins on natural abundance allows to overcome this problem. In fact, with a natural abundance of 1.1 %, the probability for three 13C to be coupled is negligible. We developed a methodology based either on the dipolar recoupling NMR pulse sequence POST-C7 or on the dramatic increase in sensitivity provided by dynamic nuclear polarization. We demonstrated that its methodology provides a measure of 13C-13C dipolar couplings in natural abundance powder samples and that the so-obtained distance information is sensitive to both molecular conformation and crystal packing of powder samples. Moreover, we show that the recoupling pulse sequence R20_9_2 is more robust to strong chemical shift anisotropy and also to strong 1H-13C heteronuclear dipolar couplings than POST-C7. The second challenge involves 13C signal assignment for natural abundance. In fact, there are only a few examples of 13C-13C correlation spectra obtained for natural abundance samples. Here, we show that 13C-13C correlation spectra sequence based on the reintroduction of 13C−13C dipolar couplings can be obtained with standard MAS probe and within few days using R20_9_2 pulse sequence. Contrary to pulse sequences based on 13C-13C J coupling, our pulse sequence requires shorter DQ excitation time and hence, is more suitable for samples having short T2 relaxation times such as amorphous solids.
|
Page generated in 0.0602 seconds