• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Formability analysis of tube hydraulic bulge forming

Lin, Yu-kai 26 July 2005 (has links)
Tube hydroforming process is a relatively new technology compared to conventional manufacturing via stamping and welding. However there is not much knowledge available for the product or process designers. The objective of this study will determine the flow stress and forming limit diagram of tubular materials to discuss the formability of tubes. Firstly, a mathematical model is proposed to examine the plastic deformation behavior of a thin-walled tube at different process parameters during the bulge hydroforming process without axial feeding. In the formulation of this mathematical model, an ellipsoidal surface and non-uniform thinning in the free bulged region and sticking friction between the tube and die are assumed. In the sticking friction mode, the elements after contact with the die do not move or slide. The effects of various forming parameters, such as the die entry radius, the bulge length, anisotropy, the initial thickness of the tube, etc., upon the forming pressures are discussed systematically. Secondly, an analytical model combined with hydraulic bulge tests is proposed to evaluate the properties of tubular materials considering anisotropy effect. Annealed AA6011 aluminum tubes and SUS409 stainless steel tubes are used for the bulge test. The tube thickness and radius at the pole and the internal forming pressure are measured simultaneously during the bulge test. The anisotropic values are obtained from tensile tests. From above experimental data, the effective stress - effective strain relations can be derived by this analytical model. The finite element method is used to conduct the simulations of hydraulic bulge forming with the flow stresses obtained by the above-mentioned model. The analytical forming pressures versus bulge heights are compared with the experimental results to validate the approach proposed in this study. Finally, this study also establishes the Forming Limit Diagram (FLD) of aluminum tubular material. An experimental system of tube hydroforming in which axial feed is applied to carry out the hydraulic bulge-forming test of the annealed aluminum alloy tubes. Furthermore, Hill¡¦s new yield criterion is also used to predict the Forming Limit Curves of sheets. The predicted forming limit diagrams are compared with the experimental data. The results of this study can provide useful knowledge for process design. In addition, the process parameters of flow stress and forming limit diagram obtained can improve the accuracy of the simulation results in industrial and academic fields.
12

Hybrid Fuzzy PID Controller for Tube-Hydroforming Processes via Genetic Algorithms

Li, Ren-Jei 30 July 2003 (has links)
In this study, the non-binary coding, elitist strategy, increasing mutation rate, extinction, and immigration strategy are used to improve the simple genetic algorithms. The improved search technique can reduce the possibility of falling into the local optimum due to the premature convergence in a large searching space, and increase the chance of finding out the near-optimal parameters. The hydraulic forming machine used in this thesis, includes a power source of a hydraulic motor and a actuator of two hydraulic cylinders. Both the internal pressure and axial force are controlled to hydroform the tubes into the shapes we want. The PID fuzzy logic controller is implemented to control the proportional direction valve and pressure reducing valve of this dual-cylinder electro-hydraulic system so that the loading path can follow the optimal forming curve of axial-feeding and pressure prescribed. From the experimental results, it is clear that the near-optimal PIDFLC controller designed via modified genetic algorithms can make the loading path follow the prescribed curve, and effective for reducing system uncertainty caused by the varying loads and system unstability resulting from the nonlinear characteristics of the hydraulic system.
13

Study on Formability of Warm Hydraulic Bulging of Magnesium Alloy AZ61 Tubes

Chuang, Han-chieh 03 September 2008 (has links)
Weight reduction is a hot topic in automotive industry. Both the applications of tube hydroforming technique and magnesium alloys offer a large potential for reducing the weight of automotive components. In this research, the relationship between forming pressure and bulge height, the maximum forming pressure and the forming limit during the tube hydraulic bulging process are first analysed. A self-designed warm hydraulic bulge forming equipment and the seamlessly extruted magnesium alloy AZ61 tubes, are used for carrying out a series of warm hydraulic bulge tests, and discussing the formalibility of the magnesium tubes at various temperatures. Furthermore, the flow stress curves are determined by the mathematical model in this paper with the bulge forming test results. Then the validity of the analytical model is verified by comparing the forming pressure and bulge height between analytical and experimental values.
14

In-plane plane strain testing to evaluate formability of sheet steels used in tubular products

Kilfoil, Leo Joseph 28 September 2007 (has links)
In order to effectively and efficiently hydroform new automotive components, the formability of new tubular steels must be evaluated. Standard forming limit diagrams have been used for decades to evaluate and predict the formability of sheet steel formed along linear strain paths. However, tube hydroforming can present a problem since the pre-bending stage used in many hydroforming operations causes multiple non-linear strain paths. This thesis has modified a formability test method that deforms small-scale sheet steel samples in a single plane. The sample geometries were designed such that the strain paths achieved at the center of the samples were very near the plane strain condition. The four steels chosen for this study were: a deep drawing quality (DDQ), a high strength low alloy (HSLA) and two dual phase steels (DP600 and DP780). The plane strain formability for each of the four steels was tested in both the rolling and transverse directions. Three objective criteria were employed to evaluate and directly compare the formability of the four steels tested: difference in strain, difference in strain rate and local necking. The DDQ steel showed the highest formability followed in order by the HSLA, DP600 and DP780 steels. The repeatability in determining the forming limit strains using the difference in strain, the difference in strain rate and the local necking criteria for a 95% confidence interval was ± 1.5%, ± 1.2% and ± 3.2% engineering strain, respectively. The forming limit data collected for this thesis has been compared to results from full-scale tube hydroforming operations and free expansion tube burst tests carried out by researchers at the University of Waterloo on the same four materials. It was found that local necking results could be used to predict failure of hydroformed HSLA steel tubes with low levels of end-feed. However, this same method could only predict the failure of hydroformed DP600 steel tubes at higher levels of end-feed. The three objective criteria were not found to be suitable for predicting failure of free expansion tube burst tests. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2007-09-27 15:00:35.873
15

Modelagem experimental e controle do processo de hidroconformação de tubos. / Experimental modeling and control of tube hydroforming process.

Aline Szabo Ponce 07 July 2006 (has links)
O propósito deste trabalho é a modelagem experimental e estudo do controle do processo de hidroconformação de tubos. Assim, o trabalho visa o projeto e a construção de um dispositivo servo-controlado de hidroconformação de tubos com um sistema de controle digital. O trabalho compreende o projeto e a construção de um dispositivo a ser acoplado em uma prensa hidráulica, a instrumentação dos equipamentos usados e a implantação do sistema de controle automático do processo através de um computador PC e de placas de interface A/D e D/A. Os aplicativos de controle foram desenvolvidos em linguagem de alto nível no sistema operacional Windows. No projeto do aplicativo, inicialmente foram realizadas rotinas para testes do sistema em malha aberta. As demais rotinas são aquelas associadas às funções matemáticas do modelo fenomenológico do sistema de hidroconformação, aquelas destinadas ao controlador de malha fechada. O tipo de estratégia de controle a ser utilizada foi definida no decorrer do projeto e foi baseada em um modelo de processo não linear, linearizado em torno de cada ponto de operação. Para fins de obtenção do modelo nominal para o controlador, os atuadores e sensores tiveram suas dinâmicas desprezadas face a dinâmica do processo e suas curvas de processo foram levantadas experimentalmente. / This works aims is the experimental modeling of a tube hydroforming (THF) “T” branch, and de THF process automatic control study. Thus, the design and the construction of a servo-controlled hydraulic device for THF, with a automatic digital control system, is embedded in our objectives. Design and construction of device to append on a hydraulic press, implantation of the measurement equipment and implementation of the control system algorithms through a PC with I/O interface boards is necessary. Control algorithms were developed in Hi-level language for windows operating system. The application design was based on experimental initial tests performed with no feed-backing controlling mode. Routes related to phenomenological mathematical model of the THF process were validate against the literature database, and were devoted to the feed-backing controller mode. Control strategy to employ in final application was defined during the process calibration, based on the non-linear characteristics of the “T” branch THF. To obtain the final load path model sensors and cylinders had their dynamics neglected because the THF dynamic is very much higher, and had their behavior curves experimentally raised.
16

Advanced methods for finite element simulation for part and process design in tube hydroforming

Jirathearanat, Suwat 03 February 2004 (has links)
No description available.
17

Uma contribuição à modelagem experimental e teórica do processo de conformação hidrostática de tubos de aço inoxidável AISI 316 L. / A contribution to the experimental and theoretical modeling of AISI 316 L stainless steel tube hidroforming.

Abrantes, Jorge Paiva 25 May 2009 (has links)
O uso da simulação via método de elementos finitos (MEF) tem sido de suma importância para o desenvolvimento de processos de conformação hidrostática de tubos (CHT). Sua utilização reduz o método de tentativa e erro na definição do processo e grandes ganhos de produtividade são auferidos. Neste trabalho, a simulação via MEF em conjunto com o desenvolvimento analítico existente na literatura foi utilizada para o desenvolvimento de um método projeto de uma ferramenta simples para a CHT em matriz aberta e para uso em prensa comum. Obtida a ferramenta, foi possível a um baixo custo ser determinado experimentalmente os limites de conformação, o caminho de deformação e as dimensões do tubo expandido sendo possível compara-los com os resultados simulados via MEF. Esta comparação de resultados experimentais e simulados validou o procedimento de simulação e o método de projeto da ferramenta. Quanto ao carregamento, com a ferramenta obtida foram expandidos tubos por dois carregamentos distintos: só pressão e pressão e carga axial simultâneos permitindo assim comprovar a eficácia do segundo carregamento para a obtenção de razões de expansão maiores. Quanto às simulações, executadas em um programa comercial, elas foram desenvolvidas também para ambos os carregamentos. Ainda nestas simulações duas maneiras de aplicar-se a pressão foram avaliadas. Para a determinação dos limites de conformação do tubo fez-se uso da técnica denominada Circle Grid Analisys. Foi escolhido para estudo um tubo extrudado de aço inoxidável AISI 316 L submetido a tempera de solubilização. O método de projeto desenvolvido, numa primeira tentativa, utilizou como dado de entrada as propriedades do Aço AISI 316 L obtidos para chapas o que levou a diferenças entre os resultados simulados e experimentais. Assim foi necessário determinar-se as propriedades do aço AISI 316 L para a condição de tubo extrudado. Para a direção circunferencial utilizou-se o método de ensaios denominado Ring Hoop Tension Test, e para o sentido longitudinal o foi utilizado um ensaio de tração usual. Foram determinados inclusive os coeficientes de anisotropia. Com estes dados novas simulações, considerando a anisotropia do material, foram realizadas. Um aprimoramento do método de projeto foi realizado, sendo construída uma segunda versão da ferramenta para a CHT. Assim os novos resultados simulados foram obtidos e foram comparados com os resultados experimentais e os erros diminuíram significativamente. Como resultado final, para esta segunda versão de simulações, de projeto e ferramenta, os erros dos valores obtidos via simulação via MEF, no diâmetro e na espessura ficaram ao redor de 10%, assumindo o resultado experimental como padrão. Quanto ao limite de conformação os resultados simulados diferiram dos experimentais, porém o estado de deformação e os caminhos de deformação situaram-se no mesmo quadrante no plano das deformações (Curva CLC) para os dois carregamentos. Finalmente, quanto ao diâmetro externo do tubo para os dois carregamentos, o tubo em aço Inoxidável AISI 316 L atingiu diâmetros até 12,9% maiores para expansão por pressão e carga axial em relação àqueles expandidos somente por pressão, os quais foram assumidos como padrão. / The simulation using the finite elements method (FEM) has been of utmost importance for the tube hydroforming (THF) processes development. It reduces the try and error method in the process definition and great profits are gained. In this work, the FEM simulation together with the existing analytical THF theory in the literature was used to develop a process and a simple tool design for the THF, in open die arrangement and to be used in a common press. Gotten this tool, it was possible in a low cost, determine experimentally the forming limits, the strain paths and the evolution of geometry for a tube and then make it possible compares these experimental results with the simulated results obtained by FEM. This comparison of experimental and simulated results validated the simulation procedure and the tool design method. Relate the loads applied during the THF, two distinct load cases were possible: only pressure and simultaneous pressure and axial load, thus allowing proving the effectiveness of the second load case in obtain bigger expansion ratios. Relate to the simulations, they were run in commercial software and also the two load cases were simulated. Additionally in these simulations, two ways to apply the pressure had been evaluated. In the experiments, in the forming limits determination, the Circle Grid Analysis technique was used. A seamless stainless cold finished AISI 316 L solution annealed and quenched tube was chosen for evaluation. The tool design method, in a first attempt, uses the AISI 316 L steel properties obtained from sheets. Big differences between the FEM simulated and experimental results was gotten. Thus, it was necessary execute tensile tests in order to obtain the AISI 316 L steel properties for the seamless stainless cold finished, solution annealed condition. In such a way, a tensile tube test method called Ring Hoop Tension Test was used, to determined AISI 316 L steel properties in the transversal direction and a common tensile test was used for the longitudinal direction. Also, for both directions, anisotropy coefficients were also determined. With these new material properties set, new simulations including the anisotropy and a new improved tool design method were carried through, resulting in a new and improved tool version. Thus, new experiments were performed and compared with the new simulated results and the errors had diminished significantly. As final result, the errors in the diameter and in the thickness had been around of 10%, assuming the experimental result as standard. Relate the forming limits the results had differed, however the strain state and the strain path had been placed the same quadrant in a strain plane graphic (FLD diagram) for both load cases. Finally, relate to the tube expansion ratio, the tube external diameter increase 12,9% greater for tube expansion under pressure and axial load assuming the tube expansion under only pressure as standard.
18

Analysis of Hydraulic Tube Expansion Forming in a Rectangular Cross-sectional Die

Chen, Wen-Chih 29 July 2002 (has links)
The objective of this study uses the plasticity theory of the slab method and the numerical analysis of the finite difference method to construct a mathematical model. And a computer program will be developed to evaluate the quality of the tubes formed by hydraulic expansion. Considering sticking and sliding modes, a mathematical model is proposed to predict the forming pressure needed to hydroform a circular tube into square and rectangular cross-sections and the thickness distribution of the product. In the sticking friction mode, it is assumed that the elements after contact with the die do not move or slide. Whereas, in the sliding friction mode, the element in contact with the die will continue to deform with the stress variation in the subsequent forming process. A series of FE simulations on tube expansion by a commercial FE code¡§DEFORM¡¨have been carried out. In addition, the experiment employing aluminum alloy AA 6063 that has been annealed to proceed the hydraulic expansion experiment. The comparisons between analysis and the result of forming pressure, corner radius and thickness distribution by experiment are verified the validity of this mathematical model. The effects of the forming parameters such as the die geometry, the material property of the tube, friction coefficient between the die and tube, etc., upon the expansion results, such as the forming pressure, corner radius, the tube contact distance with the die, thickness distribution after expansion, etc., are systematically discussed.
19

Uma contribuição à modelagem experimental e teórica do processo de conformação hidrostática de tubos de aço inoxidável AISI 316 L. / A contribution to the experimental and theoretical modeling of AISI 316 L stainless steel tube hidroforming.

Jorge Paiva Abrantes 25 May 2009 (has links)
O uso da simulação via método de elementos finitos (MEF) tem sido de suma importância para o desenvolvimento de processos de conformação hidrostática de tubos (CHT). Sua utilização reduz o método de tentativa e erro na definição do processo e grandes ganhos de produtividade são auferidos. Neste trabalho, a simulação via MEF em conjunto com o desenvolvimento analítico existente na literatura foi utilizada para o desenvolvimento de um método projeto de uma ferramenta simples para a CHT em matriz aberta e para uso em prensa comum. Obtida a ferramenta, foi possível a um baixo custo ser determinado experimentalmente os limites de conformação, o caminho de deformação e as dimensões do tubo expandido sendo possível compara-los com os resultados simulados via MEF. Esta comparação de resultados experimentais e simulados validou o procedimento de simulação e o método de projeto da ferramenta. Quanto ao carregamento, com a ferramenta obtida foram expandidos tubos por dois carregamentos distintos: só pressão e pressão e carga axial simultâneos permitindo assim comprovar a eficácia do segundo carregamento para a obtenção de razões de expansão maiores. Quanto às simulações, executadas em um programa comercial, elas foram desenvolvidas também para ambos os carregamentos. Ainda nestas simulações duas maneiras de aplicar-se a pressão foram avaliadas. Para a determinação dos limites de conformação do tubo fez-se uso da técnica denominada Circle Grid Analisys. Foi escolhido para estudo um tubo extrudado de aço inoxidável AISI 316 L submetido a tempera de solubilização. O método de projeto desenvolvido, numa primeira tentativa, utilizou como dado de entrada as propriedades do Aço AISI 316 L obtidos para chapas o que levou a diferenças entre os resultados simulados e experimentais. Assim foi necessário determinar-se as propriedades do aço AISI 316 L para a condição de tubo extrudado. Para a direção circunferencial utilizou-se o método de ensaios denominado Ring Hoop Tension Test, e para o sentido longitudinal o foi utilizado um ensaio de tração usual. Foram determinados inclusive os coeficientes de anisotropia. Com estes dados novas simulações, considerando a anisotropia do material, foram realizadas. Um aprimoramento do método de projeto foi realizado, sendo construída uma segunda versão da ferramenta para a CHT. Assim os novos resultados simulados foram obtidos e foram comparados com os resultados experimentais e os erros diminuíram significativamente. Como resultado final, para esta segunda versão de simulações, de projeto e ferramenta, os erros dos valores obtidos via simulação via MEF, no diâmetro e na espessura ficaram ao redor de 10%, assumindo o resultado experimental como padrão. Quanto ao limite de conformação os resultados simulados diferiram dos experimentais, porém o estado de deformação e os caminhos de deformação situaram-se no mesmo quadrante no plano das deformações (Curva CLC) para os dois carregamentos. Finalmente, quanto ao diâmetro externo do tubo para os dois carregamentos, o tubo em aço Inoxidável AISI 316 L atingiu diâmetros até 12,9% maiores para expansão por pressão e carga axial em relação àqueles expandidos somente por pressão, os quais foram assumidos como padrão. / The simulation using the finite elements method (FEM) has been of utmost importance for the tube hydroforming (THF) processes development. It reduces the try and error method in the process definition and great profits are gained. In this work, the FEM simulation together with the existing analytical THF theory in the literature was used to develop a process and a simple tool design for the THF, in open die arrangement and to be used in a common press. Gotten this tool, it was possible in a low cost, determine experimentally the forming limits, the strain paths and the evolution of geometry for a tube and then make it possible compares these experimental results with the simulated results obtained by FEM. This comparison of experimental and simulated results validated the simulation procedure and the tool design method. Relate the loads applied during the THF, two distinct load cases were possible: only pressure and simultaneous pressure and axial load, thus allowing proving the effectiveness of the second load case in obtain bigger expansion ratios. Relate to the simulations, they were run in commercial software and also the two load cases were simulated. Additionally in these simulations, two ways to apply the pressure had been evaluated. In the experiments, in the forming limits determination, the Circle Grid Analysis technique was used. A seamless stainless cold finished AISI 316 L solution annealed and quenched tube was chosen for evaluation. The tool design method, in a first attempt, uses the AISI 316 L steel properties obtained from sheets. Big differences between the FEM simulated and experimental results was gotten. Thus, it was necessary execute tensile tests in order to obtain the AISI 316 L steel properties for the seamless stainless cold finished, solution annealed condition. In such a way, a tensile tube test method called Ring Hoop Tension Test was used, to determined AISI 316 L steel properties in the transversal direction and a common tensile test was used for the longitudinal direction. Also, for both directions, anisotropy coefficients were also determined. With these new material properties set, new simulations including the anisotropy and a new improved tool design method were carried through, resulting in a new and improved tool version. Thus, new experiments were performed and compared with the new simulated results and the errors had diminished significantly. As final result, the errors in the diameter and in the thickness had been around of 10%, assuming the experimental result as standard. Relate the forming limits the results had differed, however the strain state and the strain path had been placed the same quadrant in a strain plane graphic (FLD diagram) for both load cases. Finally, relate to the tube expansion ratio, the tube external diameter increase 12,9% greater for tube expansion under pressure and axial load assuming the tube expansion under only pressure as standard.
20

Frottement en hydroformage de tube : caractérisation du frottement par le test d'expansion en matrice carrée / Friction tube hydroforming process : friction characterization by pure expansion test in a square section die

Abdelkefi, Abir 21 July 2016 (has links)
L’objectif de cette thèse est d’étudier la possibilité de caractériser le coefficient de frottement par un modèle analytique. Tout d’abord, le modèle analytique (Orban-Hu,2007) a été programmé à l’aide du logiciel « Matlab » puis validé par simulation numérique à l’aide du logiciel « Ls-Dyna ». Ensuite, on a réalisé des essais expérimentaux afin de caractériser les propriétés mécaniques du cuivre d’une part et étudier la mise en forme de tubes par hydroformage de tubes. Par suite, le coefficient de frottement a été caractérisé aussi bien par le modèle analytique que par le test classique ‘pion sur disque’. Les simulations numériques avec les coefficients de frottement obtenus ont permis de valider les résultats issus des essais expérimentaux pour une matrice carrée. Les mêmes résultats ont été également obtenus pour d’autres configurations géométriques (section rectangulaire, trapézoïdale et trapèze.) / The objective of this thesis is to study the possibility of characterizing the friction coefficient by an analytical model. First, the analytical model (Orban-Hu, 2007) has been programmed using "Matlab» software and has been validated by numerical simulation using "LS-Dyna" software. Then, experimental tests were carried out in order i) to characterize the mechanical properties of copper and ii) to study the tube hydroforming in a square section. As a result, the friction coefficient was characterized by the analytical model and the pin-on-disk test. Then, the numerical simulation with the friction coefficients obtained allowed to validate the experimental results for a square section. The same findings were obtained using other die geometries (rectangular, trapezoidal and trapezoid-sectional die).

Page generated in 0.1011 seconds