• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 261
  • 30
  • 19
  • 19
  • 18
  • 11
  • 10
  • 8
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 769
  • 264
  • 131
  • 90
  • 86
  • 83
  • 81
  • 60
  • 57
  • 52
  • 52
  • 50
  • 47
  • 47
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Investigating the effects of chemotherapy and radiation therapy in a prostate cancer model system using SERS nanosensors

Camus, Victoria Louise January 2016 (has links)
Intracellular redox potential (IRP) is a measure of how oxidising or reducing the environment is within a cell. It is a function of numerous factors including redox couples, antioxidant enzymes and reactive oxygen species. Disruption of the tightly regulated redox status has been linked to the initiation and progression of cancer. However, there is very limited knowledge about the quantitative nature of the redox potential and pH gradients that exist in cancer tumour models. Multicellular tumour spheroids (MTS) are three-dimensional cell cultures that possess their own microenvironments, similar to those found in tumours. From the necrotic core to the outer proliferating layer there exist gradients of oxygen, lactate, pH and drug penetration. Tumours also have inadequate vasculature resulting in a state of hypoxia. Hypoxia is a key player in metabolic dysregulation but can also provide cells with resistance against cancer treatments, particularly chemotherapy and radiation therapy. The primary hypoxia regulators are HIFs (Hypoxia Inducible Factors) which under low O2 conditions bind a hypoxia response element, inhibiting oxidative phosphorylation and upregulating glycolysis which has two significant implications: the first is an increase in levels of NADPH/NADH, the main electron donors found in cells which impacts the redox state, whilst the second is a decrease in intracellular pH (pHi) because of increased lactate production. Thus, redox state and intracellular pHi can be used as indicators of metabolic changes within 3D cultures and provide insight into cellular response to therapy. Surface-Enhanced Raman Spectroscopy (SERS) provides a real-time, high resolution method of measuring pHi and IRP in cell culture. It allows for quick and potentially portable analysis of MTS, providing a new platform for monitoring response to drugs and therapy in an unobtrusive manner. Redox and pH-active probes functionalised to Au nanoshells were readily taken up by prostate cancer cell lines and predominantly found to localise in the cytosol. These probes were characterised by density functional theory and spectroelectrochemistry, and their in vitro behaviour modelled by the chemical induction of oxidative and reductive stress. Next, targeting nanosensors to different zones of the MTS allowed for spatial quantification of redox state and pHi throughout the structure and the ability to map the effects of drug treatments on MTS redox biology. The magnitude of the potential gradient can be quantified as free energy (ΔG) and used as a measurement of MTS viability. Treatment of PC3 MTS with staurosporine, an apoptosis inducer, was accompanied by a decrease in free energy gradients over time, whereas treatment of MTS with cisplatin, a drug to which they are resistant, showed an increase in viability indicating a compensatory mechanism and hence resistance. Finally, using this technique the effects of ionising radiation on IRP and pHi in the tumour model was explored. Following exposure to a range of doses of x-ray radiation, as well as single and multi-fractionated regimes, IRP and pHi were measured and MTS viability assessed. Increased radiation dosage diminished the potential gradient across the MTS and decreased viability. Similarly, fractionation of a single large dose was found to enhance MTS death. This novel SERS approach therefore has the potential to not only be used as a mode of drug screening and tool for drug development, but also for pre-clinical characterisation of tumours enabling clinicians to optimise radiation regimes in a patient-specific manner.
382

Characterisation of the tumour microenvironment in ovarian cancer

Jiménez Sánchez, Alejandro January 2019 (has links)
The tumour microenvironment comprises the non-cancerous cells present in the tumour mass (fibroblasts, endothelial, and immune cells), as well as signalling molecules and extracellular matrix. Tumour growth, invasion, metastasis, and response to therapy are influenced by the tumour microenvironment. Therefore, characterising the cellular and molecular components of the tumour microenvironment, and understanding how they influence tumour progression, represent a crucial aim for the success of cancer therapies. High-grade serous ovarian cancer provides an excellent opportunity to systematically study the tumour microenvironment due to its clinical presentation of advanced disseminated disease and debulking surgery being standard of care. This thesis first presents a case report of a long-term survivor (>10 years) of metastatic high-grade serous ovarian cancer who exhibited concomitant regression/progression of the metastatic lesions (5 samples). We found that progressing metastases were characterized by immune cell exclusion, whereas regressing metastases were infiltrated by CD8+ and CD4+ T cells. Through a T cell - neoepitope challenge assay we demonstrated that pre- dicted neoepitopes were recognised by the CD8+ T cells obtained from blood drawn from the patient, suggesting that regressing tumours were subjected to immune attack. Immune excluded tumours presented a higher expression of immunosuppressive Wnt signalling, while infiltrated tumours showed a higher expression of the T cell chemoattractant CXCL9 and evidence of immunoediting. These findings suggest that multiple distinct tumour immune microenvironments can co-exist within a single individual and may explain in part the hetero- geneous fates of metastatic lesions often observed in the clinic post-therapy. Second, this thesis explores the prevalence of intra-patient tumour microenvironment het- erogeneity in high-grade serous ovarian cancer at diagnosis (38 samples from 8 patients), as well as the effect of chemotherapy on the tumour microenvironment (80 paired samples from 40 patients). Whole transcriptome analysis and image-based quantification of T cells from treatment-naive tumours revealed highly prevalent variability in immune signalling and distinct immune microenvironments co-existing within the same individuals at diagnosis. ConsensusTME, a method that generates consensus immune and stromal cell gene signatures by intersecting state-of-the-art deconvolution methods that predict immune cell populations using bulk RNA data was developed. ConsensusTME improved accuracy and sensitivity of T cell and leukocyte deconvolutions in ovarian cancer samples. As previously observed in the case report, Wnt signalling expression positively correlated with immune cell exclusion. To evaluate the effect of chemotherapy on the tumour microenvironment, we compared site-matched and site-unmatched tumours before and after neoadjuvant chemotherapy. Site- matched samples showed increased cytotoxic immune activation and oligoclonal expansion of T cells after chemotherapy, unlike site-unmatched samples where heterogeneity could not be accounted for. In addition, low levels of immune activation pre-chemotherapy were found to be correlated with immune activation upon chemotherapy treatment. These results cor- roborate that the tumour-immune interface in advanced high-grade serous ovarian cancer is intrinsically heterogeneous, and that chemotherapy induces an immunogenic effect mediated by cytotoxic cells. Finally, the different deconvolution methods were benchmarked along with ConsensusTME in a pan-cancer setting by comparing deconvolution scores to DNA-based purity scores, leukocyte methylation data, and tumour infiltrating lymphocyte counts from image analysis. In so far as it has been benchmarked, unlike the other methods, ConsensusTME performs consistently among the top three methods across cancer-related benchmarks. Additionally, ConsensusTME provides a dynamic and evolvable framework that can integrate newer de- convolution tools and benchmark their performance against itself, thus generating an ever updated version. Overall, this thesis presents a systematic characterisation of the tumour microenvironment of high grade serous ovarian cancer in treatment-naive and chemotherapy treated samples, and puts forward the development of an integrative computational method for the systematic analysis of the tumour microenvironment of different tumour types using bulk RNA data.
383

Pancreatic Endocrine Tumourigenesis : Genes of potential importance

Johansson, Térèse A. January 2008 (has links)
Understanding signalling pathways that control pancreatic endocrine tumour (PET) development and proliferation may reveal novel targets for therapeutic intervention. The pathogenesis for sporadic and hereditary PETs, apart from mutations of the MEN1 and VHL tumour suppressor genes, is still elusive. The protein product of the MEN1 gene, menin, regulates many genes. The aim of this thesis was to identify genes involved in pancreatic endocrine tumourigenesis, with special reference to Notch signalling. Messenger RNA and protein expression of NOTCH1, HES1, HEY1, ASCL1, NEUROG3, NEUROD1, DLK1, POU3F4, PDX1, RPL10, DKK1 and TPH1 were studied in human PETs, sporadic and MEN 1, as well as in tumours from heterozygous Men1 mice. For comparison, normal and MEN1 non-tumourous human and mouse pancreatic specimens were used. Nuclear expression of HES1 was consistently absent in PETs. In mouse tumours this coincided with loss of menin expression, and there was a correlation between Men1 expression and several Notch signalling factors. A new phenotype consisting of numerous menin-expressing endocrine cell clusters, smaller than islets, was found in Men1 mice. Expression of NEUROG3 and NEUROD1 was predominantly localised to the cytoplasm in PETs and islets from MEN 1 patients and Men1 mice, whereas expression was solely nuclear in wt mice. Differences in expression levels of Pou3f4, Rpl10 and Dlk1 between islets of Men1 and wt mice were observed. In addition, combined RNA interference and microarray expression analysis in the pancreatic endocrine cell line BON1 identified 158 target genes of ASCL1. For two of these, DKK1 (a negative regulator of the WNT/β-catenin signalling pathway) and TPH1, immunohistochemistry was performed on PETs. In concordance with the microarray finding, DKK1 expression showed an inverse relation to ASCL1 expression. Altered subcellular localisation of HES1, NEUROD1 and NEUROG3 and down-regulation of DKK1 may contribute to tumourigenesis.
384

Head and Neck Cancer : Factors Affecting Tumour Growth

Sundelin, Kaarina January 2007 (has links)
Head and neck cancer is the fifth most common cancer worldwide with an estimated annual global incidence of over 500 000 cases. These malignant tumours develop in the mucosal linings of the upper respiratory tract or in the salivary glands. The most common sites are in the oral cavity and larynx. Treatment modalities comprising surgery and chemoradiotherapy have improved significantly during the last 20 years, but not the long-term survival of patients. The aim of this thesis was to study the different factors affecting tumour growth in head and neck cancer that may have clinical implications in the future. Factors involving apoptosis, cell cycle activity, inflammation, and enzyme activity were of special interest. The results of the thesis indicate that patients with malignant salivary gland tumours having the lowest level of actively replicating cells have the best prognosis. The largest amount of replicating cells in tongue cancer specimens was found in the peripheral areas of tumour nests. Metallothionein, a protein that can hinder apoptosis, was found in excess in the same areas, whereas apoptosis activity was considerably lower. Taken together, these results indicate that the most aggressive cancer cells are found in the peripheral areas of tumours where apoptosis may be hindered. The expression of the death receptor Fas was higher in tongue cancer specimens than in normal mucosa. The expression of this receptor was studied further in two cell lines established from oral cancers. When a low dose of cisplatin was added to cell cultures, the Fas expression was enhanced in both cell lines and, furthermore, the Fas-induced apoptosis was increased in one of the cell lines. The results show that a common chemotherapeutic drug given in a low, less toxic dose may enhance receptor-mediated apoptosis of cancer cells. Malignant solid tumours are often distinguished by an increased proteolytic activity resulting in invasive growth, neo-angiogenesis, and metastases. This activity is conducted by enzymes that are secreted from tumour cells, or from normal cells in the tumour microenvironment. The regulation of enzyme secretion may be mediated by cytokines, small signalling molecules also present in cancer tissue. The results of this thesis show that two cytokines can synergistically induce enzyme secretion (matrix metalloproteinase-1 and -9) from oral cancer cells. Cytokine tumour necrosis factor-alpha and hepatocyte growth factor added alone to cell cultures strongly stimulated secretion of these enzymes. Thus, the tested cytokines, which are commonly secreted by fibroblasts and immune cells, may promote tumour growth. This thesis has contributed to an increased understanding of factors affecting tumour growth in head and neck cancer. The upcoming cancer therapies will be based on the increasing knowledge of these and other aberrant cellular mechanisms that may vary between different cancer forms.
385

Role of the bone morphogenetic protein signalling in skin carcinogenesis. Effect of transgenic overexpression of BMP antognist Noggin on skin tumour development; molecular mechanisms underlying tumour suppressive role of the BMP signalling in skin.

Mardaryev, Andrei N. January 2009 (has links)
Bone morphogenetic protein (BMP) signalling plays key roles in skin development and also possesses a potent anti-tumour activity in postnatal skin. To study mechanisms of the tumour-suppressive role of BMPs in the skin, a transgenic (TG) mouse model was utilized, in which a transgenic expression of the BMP antagonist Noggin was targeted to the epidermis and hair follicles (HFs) via Keratin 14 promoter. K14-Noggin mice developed spontaneous HF-derived tumours, which resembled human trichofolliculoma. Initiation of the tumours was associated with a marked increase in cell proliferation and an expansion of the hair follicle stem/early progenitor cells. In addition, the TG mice showed hyperplastic changes in the sebaceous glands and the interfollicular epidermis. The epidermal hyperplasia was associated with an increase in the susceptibility to chemically-induced carcinogenesis and earlier malignant transformation of chemically-induced papillomas. Global gene expression profiling revealed that development of the trichofolliculomas was associated with an increase in the expression of the components of several pro-oncogenic signalling pathways (Wnt, Shh, PDGF, Ras, etc.). Specifically, expression of the Wnt ligands and (¿-catenin/Lef1 markedly increased at the initiation stage of tumour formation. In contrast, expression of components of the Shh pathway was markedly increased in the fully developed tumours, compared to the tumour placodes. Pharmacological treatment of the TG mice with the Wnt and Shh antagonists resulted in the stage-dependent inhibition of the tumour initiation and progression, respectively. Further studies revealed that BMP signalling antagonizes the activity of the Wnt and Shh pathways via distinct mechanisms, which include direct regulation of the expression of the tumour suppressor Wnt inhibitory factor 1 (Wif1) and indirect effects on the Shh expression. Thus, tumour suppressor activity of the BMPs in skin epithelium depends on the local concentrations of Noggin and is mediated, at least in part, via stage-dependent antagonizing of the Wnt and Shh signalling pathways. / University of Bradford, NIH and BBSRC.
386

MMP-10 is overexpressed, proteolytically active and a potential target for therapeutic intervention in human lung carcinomas

Gill, Jason H., Kirwan, Ian G., Seargent, Jill M., Martin, Sandie W., Tijani, S., Anikin, V.A., Mearns, A.J., Bibby, Michael C., Anthoney, Alan, Loadman, Paul January 2004 (has links)
No / Matrix metalloproteinase (MMP)-mediated degradation of the extracellular matrix is a major factor for tumor development and expansion. This study analysed MMP-10 protein expression and activity in human lung tumors of various grade, stage, and type to address the relationship between MMP-10 and tumor characteristics and to evaluate MMP-10 as a therapeutic target in non small cell lung carcinoma (NSCLC). Unlike the majority of MMPs, MMP-10 was located in the tumor mass as opposed to tumor stroma. MMP-10 protein was observed at low levels in normal human lung tissues and at significantly higher levels in all types of NSCLC. No correlation was observed between MMP-10 protein expression and tumor type, stage, or lymph node invasion. To discriminate between active and inactive forms of MMP-10 in samples of human NSCLC, we have developed an ex vivo fluorescent assay. Measurable MMP-10 activity was detected in 42 of 50 specimens of lung cancer and only 2 of 10 specimens of histologically normal lung tissue. No relationship was observed between MMP-10 activity levels and clinicopathologic characteristics. Our results suggest that MMP-10 is expressed and active at high levels in human NSCLC compared to normal lung tissues, and, as such, is a potential target for the development of novel therapeutics for lung cancer treatment.
387

Mathematical modelling of the stages of solid tumours growth and the nonlocal interactions in cancer invasion

Onana Eloundou, Jeanne Marie 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: For solid tumours to grow and metastise, they need to pass through two distinct stages: the avascular growth phase in which the tumour remains in a limited diffusion size and the vascular growth phase where the invasion may take place. In order to accomplish the transition from the former to the latter growth phase, a solid tumour may secrete a substance known as tumour angiogenesis factor (TAF) into the surrounding tissues to stimulate its own blood vessels. Once the tumour has its own blood supply, it can invade other parts of the body destroying healthy tissues organs by secreting the matrix degrading enzymes (MDE). During the invasion, the adhesion both cell-cell and cell-matrix play an extremely important role. In this work, we review some mathematical models dealing with various stages of development of solid tumours and the resulting reaction diffusion equations are solved using the Crank-Nicolson finite differences scheme. We also present a system of reaction-diffusion-taxis partial differential equations, with nonlocal (integral) terms describing the interactions between cancer cells and the host tissue. We then investigate the local and global existence of the solution of the previous model using the semigroup method and Sobolev embeddings. / AFRIKAANSE OPSOMMING: Daar is twee afsonderlike fases nodig vir soliede kanker gewasse om te groei en kwaadaardig te word: die avaskulêre groeifase waarin die gewas tot ’n sekere diffusie grootte beperk word en die vaskulêre groei fase waar die indringing plaasvind. Ten einde die oorgang tussen die twee fases te bewerkstellig, skei die soliede gewas ân stof in die omliggende weefsel af wat bekend staan as âtumor angiogenese factorâ (TAF). Dit stimuleer die vorming van die gewas se eie bloedvate. Wanneer die gewas sy eie bloedtoevoer het, kan dit ander dele van die liggaam indring en gesonde orgaanweefsel vernietig deur die afskeiding van die âmatrix degrading enzymesâ (MDE). Gedurende hierdie proses speel die sel-sel en sel-matriks interaksies ân belangrike rol. In hierdie werk het ons ân paar wiskundige modelle vergelyk wat die verskillende stadiums van die ontwikkeling van soliede gewasse beskryf. Die gevolglike diffusiereaksie vergelykings is opgelos deur gebruik te maak van die âCrank-Nicolson finite differences schemeâ. Ons bied ook ’n stelsel van âreaction-diffusion-taxisâ, met nie-lokale (integrale) terme wat die interaksies tussen kankerselle en die gasheerweefsel beskryf. Ons stel dan ondersoek in na die lokale en globale bestaan van die oplossing van die vorige model, met behulp van die semi-groep metode en die Sobolev ingebeddings.
388

Germ cell development in the human and marmoset fetal testis and the origins of testicular germ cell tumours

Mitchell, Roderick T. January 2010 (has links)
Normal germ cell development in the human testis is crucial for subsequent fertility and reproductive health. Disruption of testis development in fetal life can result in deleterious health consequences such as testicular dysgenesis syndrome (TDS), which includes disorders, such as cryptorchidism, hypospadias, infertility and testicular germ cell tumours (TGCT). A rat model of TDS in which rats are exposed to phthalates in utero has been validated, but does result in the development of TGCT. In humans, TGCTs result from transformation of pre-neoplastic carcinoma in-situ (CIS) cells and these CIS cells are believed to arise from human fetal germ cells during their transition from gonocyte to spermatogonia, based on their morphology and protein expression profile. It has been proposed asynchronous differentiation of germ cells in the human fetal testis may predispose fetal germ cells to become CIS cells. Studying the development of these tumours in humans is difficult because of their fetal origins and prolonged duration from initiation of impaired development to invasive disease. For this reason the use of relevant animal models that can mimic normal and abnormal germ cell development may provide new insight into how TGCT develop. The Common Marmoset monkey, a New World primate exhibits many similarities to the human in terms of reproductive biology and could represent such a model. This thesis aimed to further characterise the origins of CIS cells in the human testis by investigating the protein expression profile of CIS cells in patients with TGCT and comparing them to established markers of human fetal germ cell types using immunohistochemistry and immunofluorescence. Quantification of the various subpopulations of CIS and proliferation within these populations was performed. The thesis also investigated the Common Marmoset monkey as a potential model of normal testis and germ cell development by comparing the differentiation and proliferation profile of germ cells with those of the human during fetal and early postnatal life. During the present studies methods were successfully developed that enabled us to use testicular xenografts to recapitulate normal development of immature testes from marmoset and human. This involved grafting pieces of testis tissue subcutaneously under the dorsal skin of immunodeficient mice and retrieving them several weeks later to investigate their development during the grafting period. Xenografts using tissue from fetal, neonatal and juvenile marmosets were performed in addition to testes from first and second trimester human fetuses. Finally the present studies aimed to use the marmoset and the xenografting approach as systems in which to examine the effects of gonadotrophin suppression and phthalate treatment on germ cell differentiation and proliferation, with particular attention to the potential for development of CIS and TGCT. Heterogeneous phenotypes of CIS cells were identified, mostly consistent with those seen in the normal human fetal testis, however some of these CIS cells did not exhibit the same phenotype as germ cells identified in normal fetal testes. In addition it was shown that some of the proteins considered to be ‘classical’ markers of CIS cells, such as the pluripotent transcription factor OCT4, were not expressed in a proportion of the CIS cells. The proliferation index of CIS cells is also significantly higher in those subpopulations with the most ‘undifferentiated’ phenotype (i.e. OCT4+/VASA-). The present studies have generated novel data showing that the marmoset is a good model of fetal and neonatal germ cell development, with similarities to the human in terms of an asynchronous and prolonged period of differentiation and proliferation of germ cells from gonocyte to spermatogonia. This feature is also common to the human, but not a characteristic of the rodent. Fetal, neonatal and pre-pubertal germ cell development can be re-capitulated by xenografting tissue from marmoset and human testes into nude mouse hosts. Human fetal testis grafts produced testosterone and were responsive to hCG stimulation. First trimester human testis xenografts that have not developed fully formed seminiferous cords prior to grafting can complete the process of cord formation whilst grafted in host mice. In addition, germ cells in fetal human and marmoset xenografts can differentiate and proliferate in a similar manner to that seen in the intact non-grafted testis. In the intact neonatal marmoset, suppression of gonadotrophins resulted in a 30% decrease in proliferation, however differentiation of gonocytes is not affected. In-utero treatment of neonatal marmosets with mono-n-butyl phthalate was associated with unusual ‘gonocyte’ clusters, however, di-n-butyl phthalate treatment of mice carrying fetal marmoset xenografts resulted in no visible effects on germ cell differentiation or proliferation and did not result in the development of CIS or TGCT. In conclusion, this thesis has shown that there are many subpopulations of CIS cells of which many have not been previously described. These subpopulations have different characteristics, such as variable proliferation rates and this may indicate the potential for progression or invasiveness. These subpopulations have similar protein expression phenotypes to normal human fetal germ cells although the present studies have identified some CIS cells with phenotypes that are not found in the normal human testis. This thesis has demonstrated that the marmoset is a comparable model to the human in terms of asynchronous fetal germ cell development, which may predispose this species to the development of CIS/TGCT. In addition to the use of intact marmosets, these studies have also demonstrated for the first time that testis xenografting provides a comparable system for testis cord formation, germ cell differentiation and proliferation in fetal/postnatal marmosets and fetal human testis. In addition the marmoset and xenografting models have indicated that phthalates may have minor effects on testis development in the human and marmoset but do not result in CIS or TGCT. These model systems are suitable for further investigation of normal and disrupted testis development.
389

Targeted Therapy of Colorectal Cancer : Preclinical Evaluation of a Radiolabelled Antibody

Almqvist, Ylva January 2008 (has links)
<p>Targeted radiotherapy (TRT) of cancer is a promising approach that enables selective treatment of tumour cells, while sparing normal tissue. The humanized monoclonal antibody A33 (huA33) is a potential targeting agent for TRT of colorectal cancer, since its antigen is expressed in more than 95 % of all colorectal carcinomas. The aim of this thesis was to evaluate the therapeutic potential of the two huA33-based TRT-conjugates, <sup>177</sup>Lu-huA33, and <sup>211</sup>At-huA33.</p><p>The conjugates <sup>177</sup>Lu-huA33, and <sup>211</sup>At-huA33, bound specifically to colorectal cancer cells, both <i>in vitro</i> and <i>in vivo</i>. A dose dependent cytotoxic effect of <sup>211</sup>At-huA33 was also demonstrated <i>in vitro</i>. From a therapeutic perspective, both conjugates had a favourable biodistribution in tumour-bearing nude mice, with high tumour uptake and a low uptake in normal organs (with the exception of an expected thyroid uptake of <sup>211</sup>At). After injection of <sup>211</sup>At-huA33, the blood absorbed a slightly higher dose than the tumour, but for <sup>177</sup>Lu-huA33, the tumour received a 12 times higher dose than blood. Two days after intravenous injection of <sup>177</sup>Lu-huA33 in tumour-bearing mice, the tumours could be clearly visualised by gamma camera imaging, with very low interference from normal tissue radioactivity. In an experimental therapy study, also performed in tumour-bearing mice, there was an excellent therapeutic effect of <sup>177</sup>Lu-huA33. About 50 % of the treated animals were tumour free 140 days after injection of <sup>177</sup>Lu-huA33, while none of the non-radioactive controls survived beyond 20 days after injection of treatment substances.</p><p>In conclusion, this thesis demonstrates that the therapeutic conjugates <sup>177</sup>Lu-huA33, and <sup>211</sup>At-huA33, are promising targeting agents that might help improve therapy of colorectal cancer.</p>
390

Investigating the use of protein-targeted pegylated gold nanoparticle probes in the surface-enhanced Raman spectroscopy of cells

Shaw, Conor 02 January 2015 (has links)
Currently, it is very challenging to accurately monitor the response of patients to radiation therapy over the course of treatment. The initial response to ionizing radiation occurs in the cells at a molecular level, and effects of the response are not typically noticeable on short time scales. Surface-enhanced Raman Spectroscopy, or SERS, has proven to be a useful technique in the analysis of tissues and cells at a molecular level. Specifically, the use of targeted SERS probes allows for the detection of specific proteins on the cell membrane. The work presented here looks to assess the feasibility of using targeted SERS probes and two-dimensional SERS microscopy to measure the response of tumour cells to ionizing radiation, by identifying changes in the distribution of membrane proteins following exposure to clinically relevant doses of ionizing radiation (≤ 60Gy). Two different types of targeted SERS probes were investigated, based on the work of Grubisha et al. ([1]; Type I) and Qian et al. ([2]; Type II), both containing a gold nanoparticle core. In a simplified cellular experiment, biotin on the surface of biotinylated OVCAR5 cells was targeted with streptavidin-SERS probes, and the Type-II SERS probes showed the most promising results. However, SERS maps still provided less characteristic spectral signal than expected, and challenges remain in the development of a reproducible cellular imaging technique. Despite difficulties in cellular imaging, the functionality of the Type-II SERS probes was verified separately, using gold slides with a biotin monolayer in place of cells. Following verification, the SERS intensities provided by differently sized clusters of the SERS probes were characterized. To begin, both SERS maps and scanning electron microscope (SEM) images of gold slides were acquired after incubation with Type-II SERS probes for multiple times (1hr, 2hr, 3hr, 12hr). Data analysis of the SEM images provided a measure of the physical distribution of the SERS probes on the surface of the slide, while analysis of the SERS maps provided information about the spectral distribution of the probes. By relating the information provided by the SEM images and SERS maps, a simple polynomial relationship between SERS intensity and the number of clustered SERS probes providing the enhancement was determined, providing a framework for quantifiable SERS imaging. Finally, an independent experiment was devised to ensure that exposure to clinically relevant doses of ionizing radiation would affect the ability of the targeted protein to bind to SERS probes, thus leading to measurable differences in SERS maps of irradiated and unirradiated cells. A series of experiments utilizing the enzyme-linked immunosorbant assay (ELISA) was performed to test the effect of ionizing radiation-induced damage on the ability of streptavidin to bind to biotin, and the results confirmed that a noticeable reduction in binding could be detected at doses as low as 10 Gy. The results of this work demonstrate that following the development of a suitable cell/SERS probe incubation technique, Type-II SERS probes would be appropriate for use in quantifiable SERS imaging. Also, it is suggested that a measurable change in protein function will be present when comparing SERS maps of control cells to those of cells irradiated to clinically relevant doses. / Graduate

Page generated in 0.0629 seconds