Spelling suggestions: "subject:"tunneling spectroscopy"" "subject:"funneling spectroscopy""
31 |
Tunneling spectroscopy of mono- and di-nuclear organometallic molecules on surfaces / Spectroscopie tunnel de molécules organométalliques mono- et bi-nucléaires sur des surfacesAmokrane, Anis 22 February 2016 (has links)
La recherche actuelle sur les composants électroniques à l'échelle nano s'oriente vers les matériaux organométalliques. Dans ce contexte, le travail présenté ici s'est focalisé sur la molécule de TbPc2 qui a été étudiée sur différents substrats, afin de déterminer l'effet de ses propriétés géométriques, électroniques et magnétiques en fonction de son environnement. Ainsi, il a été observé qu'au-dessus du substrat d'Au (111) la TbPc2 contient un électron excédentaire délocalisé sur le ligand supérieur qui, en intéragissant avec les électrons de surface, produit une résonance Kondo. Lorsqu'il s'agit de domaines moléculaires, une manipulation moléculaire montre qu'une localisation de spin est générée aux intersections produisant une résonance magnétique. Pour aller plus loin dans la détermination de l'effet de voisinage, un second lanthanide (cérium) a été déposé au-dessus de la molécule de TbPc2, la réponse géométrique, électronique et magnétique du nouveau complexe a été examinée sur différents substrats. / Today's research on the best electronic components at the nanoscale has focused on organometallic materials. In this context, the research presented in this thesis has been performed on TbPc2 molecules that were investigated on various substrates, in order to highlight the environment effect on both geometric, electronic and magnetic properties. It has been observed that on Au (111), the TbPc2 has an excedentary electron delocalized over the upper ligand. This electron interacts with the surface electron sea creating a Kondo resonance.When it comes to a molecular domain, it has been demonstrated throughout a molecular manipulation that a spin localization is made at the molecular intersection regions creating also a magnetic resonance. In order to further investigate the environmental modification, a second lanthanide (cerium) has been deposited over the TbPc2 molecule. The properties of the new complex were deeply investigated on various substrates.
|
32 |
On-chip tunneling spectroscopy of colloidal quantum dots / Spectroscopie tunnel de boites quantiques colloidales sur circuitWang, Hongyue 24 November 2015 (has links)
Cette thèse consiste en une étude de jonctions tunnels à Quantum Dot (QD) unique. Le second chapitre présentera une introduction aux concepts fondamentaux nécessaires à la description d’une telle jonction. Dans le troisième chapitre, je décrirais les méthodes de fabrications et de mesures. Dans le quatrième chapitre, je décrirais une étude par spectroscopie tunnel de QDs PbS. Trois signatures distinctes du couplage électron-phonon sont observées dans le spectre tunnel. Dans le régime de « remplissage de couches », la dégénérescence d’ordre 8 des états est levée par les interactions de Coulomb et permet l’observation des sous-bandes de phonons résultant de l’émission de phonons optiques. A faible tension, une bande interdite (gap) est observée dans le spectre, laquelle ne peut être fermée avec la tension de grille, ce qui est une signature caractéristique du blocage de France-Condon. A partir de ces données, un facteur de Huang-Rhys de l’ordre de S~1.7-2.5 est obtenu. Finalement, dans le régime de « shell-tunneling », les phonons optiques apparaissent dans le spectre tunnel inélastique d2I/dV2. Dans le cinquième chapitre, je présente une étude du spectre tunnel de QDs HgSe. En appliquant une tension de grille, différents niveaux d’occupation du QD peuvent être atteints. La valeur de la bande interdite change avec le niveau d’occupation. Une valeur de 0.9 eV est observée pour l’inter-bande (QD vide), une valeur de 0.2 eV est observée pour l’intra-bande (QD occupé par 2 e). Sous illumination, un photocourant peut être mesuré en utilisant une technique de démodulation. De cette mesure, une durée de vide τ ~ 65 μs est extraite pour la paire électron-trou photo-générée. / My PhD work consists in a study of single Quantum Dot (QD) tunnel junctions. Following the introduction chapter, the second chapter will present the fundamental concepts needed to describe a single QD junction, such as quantum confinement and Coulomb blockade. In the third chapter, I will describe the sample fabrication methods and the measurement setups. In the fourth chapter, I will describe a tunneling spectroscopy study of single PbS QDs. Three distinct signatures of strong electron-phonon coupling are observed in the Electron Tunneling Spectrum (ETS) of these QDs. In the shell-filling regime, the 8 times degeneracy of the electronic levels is lifted by the Coulomb interactions and allows the observation of phonon sub-bands that result from the emission of optical phonons. At low bias, a gap is observed in the spectrum that cannot be closed with the gate voltage, which is a distinguishing feature of the Franck-Condon blockade. From the data, a Huang-Rhys factor in the range S~ 1.7 - 2.5 is obtained. Finally, in the shell tunneling regime, the optical phonons appear in the inelastic ETS d2I/dV2. In the fifth chapter, I present a tunnel spectroscopy study of single HgSe QDs. Upon tuning the gate voltage, different occupation levels of the QD can be reached. The gap observed in the ETS changes with the occupation level. A large inter-band gap, 0.9~eV, is observed for the empty QDs, and an intra-band gap 0.2~eV is observed for the doubly occupied QD. Upon illuminating the QD, a photocurrent can be measured using an especially designed demodulation technique. From this measurement, the lifetime τ ~65 μs is extracted for the photogenerated electron-hole in the QD.
|
33 |
Rastertunnelspektroskopie an Schwere-Fermionen-SystemenErnst, Stefan 24 June 2011 (has links)
Gegenstand dieser Dissertation ist die experimentelle Untersuchung von Schwere-Fermionen-Systemen mittels Rastertunnelmikroskopie und –spektroskopie (RTM/S). In diesen Materialien führen starke elektronische Korrelationen zur Ausbildung einer besonderen Art von \"schweren\" Ladungsträgern, deren Natur bislang nicht abschließend aufgeklärt werden konnte. Einige grundlegende Aspekte der Physik der Schwere-Fermionen-Systeme werden eingangs der Arbeit dargestellt. Im Anschluss daran werden die experimentellen Methoden der RTM und RTS eingeführt sowie die verwendeten Messaufbauten vorgestellt. Dies geschieht mit Hinblick auf die experimentellen Voraussetzungen für die RTS an Schwere-Fermionen-Systemen, insbesondere auf das spektrale Auflösungsvermögen.
Die Präparation geeigneter Probenoberflächen von Schwere-Fermionen-Materialien und deren Auswirkung auf RTM-Experimente nehmen eine zentrale Stellung dieser Arbeit ein und werden daher gesondert behandelt. Vorrangig wurde dabei das Spalten einkristalliner Proben untersucht.
In RTS-Untersuchungen des Schwere-Fermionen-Supraleiters CeCoIn5 ist es gelungen, die für einen Supraleiter typische Energielücke im Anregungsspektrum zu messen. Die Daten können über einen weiten Temperaturbereich mit theoretischen Voraussagen für die unkonventionelle Supraleitung in diesem Material verglichen werden. Die Resultate sind im Einklang mit früheren experimentellen Befunden, welche auf einen der Supraleitung vorausgehenden sog. „Precursor“-Zustand hindeuten. Allerdings gibt es, wie auch in anderen untersuchten Schwere-Fermionen-Supraleitern, Hinweise auf Inhomogenitäten der Probenoberfläche.
Im Fall des nicht-supraleitenden Kondogitter-Systems YbRh2Si2 konnte durch Spalten von Einkristallen bei tiefen Temperaturen großflächig atomar geordnete Oberflächen erzeugt werden. Es zeigen sich starke Indikationen darauf, dass die Spektroskopie-Daten die Volumeneigenschaften des Materials reflektieren. Ein Vergleich mit theoretischen Rechnungen deutet darauf hin, dass der Kondoeffekt der magnetischen Yb3+-Ionen sich in der Tunnelleitfähigkeit widerspiegelt - bis hin zum Einfluss der sich ausbildenden räumlichen Kohärenz des Kondogitters bei tiefen Temperaturen. Diese Ergebnisse gewähren wichtige Einblicke in die thermische Entwicklung der elektronischen Korrelationen in Kondogitter-Systemen, und demonstrieren somit das große Potential der Rastertunnel-Spektroskopie für die weitere Erforschung der Schwere-Fermionen-Systeme.
Die im Abschnitt 6.3 'Tunnelspektroskopie-Resultate an YbRh2Si2' dargestellten Ergebnisse sind in ähnlicher Form auch veröffentlicht in Nature Vol. 474 (2011), Seiten 362-366.
|
34 |
An atomistic approach to graphene and carbon clusters grown on a transition metal surfaceWang, Bo January 2011 (has links)
In this thesis, graphene (i.e. monolayer carbon film) and carbon clusters supported on a transition metal surface are systematically studied by local probe techniques, with respect to their structures, electronic properties and formation mechanisms. The main tools used are low-temperature scanning tunnelling microscopy and spectroscopy (STM and STS), which are introduced in Chapter 2. The mechanism of the resonance tunnelling at electron energies higher than the work function of the surface is discussed in detail, and a qualitative explanation of the Gundlach oscillations in the corresponding spectroscopy is presented. Epitaxial graphene synthesised on the Rh(111) surface by ethylene dehydrogenation is investigated by STM in Chapter 4. Such carbon film exhibits a hexagonal Moiré pattern due to a lattice mismatch between graphene and the rhodium substrate. The periodicity and local registries of the graphene/Rh(111) superstructure are carefully analysed. Based on a thorough discussion about the “commensurate vs. incommensurate” nature of the Moiré pattern in surface science field, the graphene/Rh(111) system is identified to have a non-simple-commensurate superstructure. The surface electronic properties and geometric buckling of graphene/Rh(111) are investigated by resonance tunnelling spectroscopy (RTS) and density functional theory (DFT) calculations in Chapter 5. Spectroscopy measurements reveal a modulation of the electronic surface potential (or work function Φ) across the supercell of epitaxial graphene. Based on the microscopy/spectroscopy data and the extended DFT calculations, we examined the electronic coupling of the various local C-Rh registries, and identified both experimentally and theoretically the local atomic configurations of maximum and minimum chemical bonding between graphene and the rhodium substrate. We studied in Chapter 6 the growth mechanism of graphene on Rh(111) at elevated temperatures. This part starts by investigating the dehydrogenation of ethylene into ethylidyne. When the dehydrogenation process is complete, monodispersed carbon species, identified as 7C6, are found to dominate the cluster population on the rhodium terraces. A significant coalescence of the 7C6 clusters into graphene islands occurs at temperatures higher than 873 K. The structural and electronic properties of the 7C6 carbon clusters are examined by high-resolution STM and STS, and compared with coronene molecules, i.e. the hydrogenated analogues of 7C6. DFT calculations are further used to explain the stability of 7C6 supported on the Rh(111) surface, and also the structural characteristics of such magic-sized carbon clusters.
|
35 |
Local measurements of cyclotron states in grapheneKubista, Kevin Dean 04 April 2011 (has links)
Multilayer epitaxial graphene has been shown to contain "massless Dirac fermions" and is believed to provide a possible route to industrial-scale graphene electronics. We used scanning tunneling microscopy (STM) and spectroscopy (STS) in high magnetic fields to obtain local information on these fermions. A new STS technique was developed to directly measure graphene's energy-momentum relationship and resulted in the highest precision measurement of graphene's Dirac cone. STS spectra similar to ideal graphene were observed, but additional anomalies were also found. Extra peaks and an asymmetry between electron and hole states were shown to be caused by the work function difference between the Iridium STM tip and graphene. This tip effect was extracted using modeled potentials and performing a least square fit using degenerate perturbation theory on graphene's eigenstates solved in the symmetric gauge. Defects on graphene were then investigated and magnetic field effects were shown to be due to a mixture of potential effect from defects and the tip potential. New defect states were observed to localize around specific defects, and are believed to interact with the STM tip by Stark shifting in energy. This Stark shift gives a direct measurement of the capacitive coupling between the tip and graphene and agrees with the modeled results found when extracting the tip potential.
|
36 |
Tunneling spectroscopy of highly ordered organic thin films / Tunnelspektroskopie von hochgeordneten organischen DünnschichtenTörker, Michael 23 May 2003 (has links) (PDF)
In this work, a Au(100) single crystal was used as substrate for organic molecular beam epitaxy. Highly ordered organic thin films of the molecules 3,4,9,10-perylenetetracarboxylic-3,4,9,10-dianhydrid (PTCDA) and hexa-peri-hexabenzo-coronene (HBC) as well as organic-organic heterostructures on reconstructed Au(100) were prepared. The molecular arrangement was characterized in Scanning Tunneling Microscopy and Low Energy Electron Diffraction investigations. Scanning Tunneling Spectroscopy data were recorded on monolayer and submonolayer PTCDA films. Measurements on closed PTCDA layers at different fixed tip sample separations revealed a peak +0.95V. Other measurements performed consecutively on a PTCDA island and on uncovered Au(100) areas showed that this peak is indeed caused by the PTCDA molecules. Another set of consecutive measurements on herringbone and square phase PTCDA islands indicates that in the normalized differential conductivity the peak shape and peak position depend on the molecular arrangement. The STS data are compared to UPS and IPES results, already published. In the case of highly ordered films of HBC on Au(100) it was possible to derive the energetic positions of the HBC frontier orbitals and the energies of the molecular states next to these frontier orbitals from Tunneling Spectroscopy measurements. These measurements were performed using two different tip materials. The results are compared to UPS measurements, to theoretical calculations of the electronic conductance based on a combination of the Landauer transport formalism with a density-functional-parametrized tight-binding scheme within the Local Density Approximation (LDA) as well as semiempirical quantum chemistry calculations. / Für die hier dargestelleten Arbeiten wurde ein Au(100) Einkristall als Substrat für die organische Molekularstrahlepitaxie verwendet. Hochgeordnete organische Dünnschichten der Moleküle 3,4,9,10-Perylen-tetracarbonsäure-3,4,9,10-dianhydrid (PTCDA) und Hexa-peri-hexabenzo-coronen (HBC) sowie organisch-organische Heteroschichten wurden auf der Au(100) Oberfläche abgeschieden. Die Struktur der Schichten wurde mittels Rastertunnelmikroskopie (STM) und Niederenergetischer Elektronenbeugung (LEED) untersucht. Tunnelspektroskopiedaten wurden für Monolagen sowie Submonolagen von PTCDA aufgenommen. Messungen an geschlossenen PTCDA Filmen zeigen für verschiedene Probe-Spitze-Abstände ein Maximum in der normierten differentiellen Leitfähigkeit bei +0.95V. Aufeinanderfolgende Messungen auf PTCDA-Inseln und unbedeckten Gebieten der Au(100) Oberfläche zeigen eindeutig, dass dieses Maximum auf die PTCDA Moleküle zurückzuführen ist. Weitere Messungen an PTCDA Inseln unterschiedlicher Struktur (Fischgrätenstruktur bzw. quadratische Struktur) belegen einen Zusammenhang zwischen der Anordnung der Moleküle und der Peakposition bzw. Peakform in der normierten differentiellen Leitfähigkeit. Die STS Daten werden mit UPS und IPES Ergebnissen aus der Literatur verglichen. Im Falle hochgeordneter HBC Schichten auf Au(100) war es möglich, neben dem höchsten besetzten und niedrigsten unbesetzten Molekülorbital auch die energetische Position der jeweils nächsten Orbitale zu bestimmen. Diese Messungen wurden mit zwei unterschiedlichen Spitzenmaterialien durchgeführt. Die Ergebnisse für HBC auf Au(100) werden mit UPS Daten sowie mit theoretischen Rechnungen verglichen.
|
37 |
STM studies of ABP molecules - towards molecular latching for dangling-bond wire circuitsNickel, Anja 14 December 2015 (has links) (PDF)
Das Ziel der vorliegenden Arbeit ist es ein Molekül zu finden und mittels hochauflösender Techniken zu untersuchen, das auf passivierten Halbleiteroberflächen als Schalter in atomaren Schaltkreisen wirken kann. Für diesen Zweck stehen Moleküle zur Verfügung, die aus mindestens einem aromatischen Ring und einer Ankergruppe bestehen, die kovalent auf Silizium bindet. Um einzelne Moleküle auf leitenden Substraten zu untersuchen, hat sich die Nutzung eines Tieftemperatur-Rastertunnelmikroskops (low-temperature scanning tunneling microscope, LT-STM) als geeignetes Werkzeug erwiesen. Zum Einen ist damit die topographische und spektroskopische Charakterisierung von leitenden Proben auf atomarer Ebene möglich, zum Anderen können einzelne Moleküle und Nanostrukturen hochpräzise bewegt oder elektrisch angesprochen werden.
Atomare Schaltkreise können besonders präzise auf passivierten Halbleiteroberflächen hergestellt werden. So ist es zum Beispiel möglich, eine Reihe Wasserstoffatome gezielt mit Hilfe einer STM-Spitze von der Oberfläche zu desorbieren. Durch die Überlappung der dann freien Orbitale entstehen, je nach Richtung auf der Oberfläche, atomare Drähte mit unterschiedlichen elektrischen Eigenschaften. Da die Drähte empfindlich hinsichtlich ihrer chemischen Umgebung sind, können diese auch als logische Schaltelemente verwendet werden. Dafür werden die Drähte mit einzelnen Molekülen angesteuert.
Geeignete Schaltmoleküle wurden zunächst auf der Au(111)-Oberfläche getestet. Dabei konnten grundlegende und interessante Eigenschaften von selbst-assemblierten Strukturen untersucht werden. Am Modellsystem von nicht-kovalent gebundenen 4-Acetylbiphenyl-Nanostrukturen auf Gold (111) wurde eine neue Methode entwickelt diese Molekülgruppen behutsam zu bewegen. Durch Anlegen eines Spannungspulses auf den Nanostrukturen konnten diese auf der Oberfläche über weite Strecken gezielt und ohne Beeinflussung der internen Struktur positioniert werden.
Um Moleküle für zukünftige elektronische Anwendungen zu untersuchen wurde zunächst das Verfahren zur Präparation von sauberen Siliziumoberflächen in die hier verwendeten Anlage implementiert. Es konnten reproduzierbar saubere, (2×1) rekonstruierte Si(100)- Oberflächen präpariert und charakterisiert werden.
Nach der erfolgreichen Präparation von Silizium-Oberflächen und der Entwicklung geeigneter Präparationsrezepte für das Schalter-Molekül 4-Acetylbiphenyl (ABP) wurden beide Systeme vereint. Das Molekül konnte erfolgreich auf die Silizium(100)-Oberfläche aufgebracht und die native Adsorptionskonfiguration durch das Anlegen von Spannungspulsen geändert werden. Das Schalten zwischen zwei Konfigurationen ist reproduzierbar und umkehrbar. ABP ist somit der erste umkehrbare molekulare Schalter, der jemals auf Silizium realisiert werden konnte.
Bei der Untersuchung technomimetischer Moleküle in Radachsen-Form konnte bisher die Rollbewegung nur anhand der Analyse der Manipulationskurven nachvollzogen und belegt werden. In dieser Arbeit wurde das Rollen eines Nano-Radmoleküls bewiesen. Dazu wurde bei der Synthese in einem Teil der Subphthalocyanin-Räder eine Markierung in Form eines Stickstoffatoms gesetzt. Bei der lateralen Manipulation der Räder auf Gold(111) konnte dann durch Vergleich der STM-Bilder die Markierung verfolgt und darauf geschlossen werden, ob das Rad gerollt oder verschoben wurde. / The aim of this thesis is the investigation of switching properties of single organic molecules, which can be used as molecular latches on a passivated silicon surface. Suitable molecules should be composed of an anchor group that can bind covalently to the silicon surface as well as an aromatic ring for the latching effect. For the imaging as well as the manipulation of single molecules on conductive substrates, a low-temperature scanning tunneling microscope, LT-STM, is a versatile and powerful tool. On the one hand, STM provides topographical and spectroscopic characterization of single molecules on conductive surfaces at the atomic level. On the other hand, under the tip of a STM single molecules and nanostructures can be moved with atomic precision or can be addressed by voltage pulses.
Moreover, by STM it is possible to build atomic-scale circuits on passivated semiconducting surfaces as silicon (100). The STM tip is used to extract single hydrogen atoms from the surface to built atomic wires. As the orbitals of the depassivated dangling bonds of the silicon surface overlap differently depending on the direction of the wire in reference to the surface reconstruction, the electrical properties of the wires differ. Moreover, the properties of the wires vary depending on the chemical environment. Taking advantage of these characteristics, the atomic wires can be used as atomic-scale logic elements. However, to bring the input signal to a single logic element, latches are required to controllably passivate and depassivate single dangling-bond pairs.
During preliminary studies on possible molecular latches, interesting experiments could be performed on 4-acetylbiphenyl (ABP) on Au(111). The molecules self assemble in non-covalently bond groups of three or four molecules. These groups can be moved controllably by applying voltage pulses on top of the supramolecular structure. The manipulation is possible over long ranges and without losing the internal structure of the assemblies.
For the investigation of promising candidates for future molecular electronics on silicon, a preparation procedure tailored to the used UHV machine was developed. During this process, clean (2×1) reconstructed Si(100) surfaces could be prepared reproducibly and were characterized by means of STM imaging and spectroscopy.
Switches are essential for electronic circuitry, on macroscopic as well as microscopic level. For the implementation of molecular devices on silicon, ABP is a promising candidate for a latch. In this thesis, ABP was successfully deposited on Si(100) and was switched by applying voltage pulses on top of the molecule. Two stable conformations were found and switching was realized reproducibly and reversibly.
In the last part of this work, the rolling of a double-wheel technomimetic molecule was demonstrated. This thesis shows the rolling of a nanowheel on Au(111) as opposed to pushing, pulling or sliding. For this, the subphthalocyanine wheels were tagged by nitrogen during their synthesis. As this tag has different electronic properties than the rest of the wheel, it can be monitored in the STM images. By comparing the images before and after the manipulation the position of the tag proves the actual rolling.
|
38 |
Atomic and electronic structure of the cleaved non-polar 6H-SiC(11-20) and GaN(1-100) surfaces / Atomic and electronic structure of the cleaved non-polar 6H-SiC(11-20) and GaN(1-100) surfacesBertelli, Marco 30 January 2009 (has links)
No description available.
|
39 |
Scanning Tunnelling Microscopy of Co-impurified Noble Metal Surfaces: Kondo-Effect, Electronic Surface States and Diffusive Atom Transport / Rastertunnelmikroskopie an verdünnt Co-legierten Edelmetalloberflächen: Kondo-Effekt, Oberflächenzustände und diffusiver AtomtransportQuaas, Norbert 10 December 2003 (has links)
No description available.
|
40 |
Scanning tunneling spectroscopy of space charge regions in semiconductors: From single donor to heterostructure systems / Rastertunnelspektroskopie von Raumladungszonen in Halbleitern: Vom einzelnen Donator zu HeterostruktursystemenTeichmann, Karen 17 April 2012 (has links)
No description available.
|
Page generated in 0.0915 seconds