• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 7
  • 6
  • 6
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 95
  • 95
  • 29
  • 25
  • 21
  • 20
  • 16
  • 13
  • 13
  • 13
  • 12
  • 11
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Energetická bilance tvarů kmitání lopatky poslední řady parní turbíny / Energy balance the blade of the last stage steam turbine

Horák, Petr January 2012 (has links)
Created methodology for calculating the potential deformation energy parts is described in this thesis. Calculation method uses the outputs of modal analysis, which is performed using computational modelling. The potential deformation energy parts are calculated for three cases. Two benchmark problems and one case of blade model. Blade geometry is received by 3D scanning and reconstruction of given specimen. Results of the potential deformation energy parts calculations are analyzed and conclusions are formulated.
62

Prediktivt underhåll för turbinblad till vindkraftverk / Predictive maintenance of turbine blades for wind turbines

Skilje, Kristoffer January 2023 (has links)
Rapporten behandlar problemen med drift- och underhåll på vindkraftverk och hur man kan minska behovet av dessa genom övervakning av vindkraftverkens tillstånd. Målet med rapporten är att undersöka om det går att förutse när och hur ett vindkraftverk kommer behöva underhållas, samt beskriva de metoder som används för att förhindra slitage av turbinbladen. Forskningsfrågor som behandlas inkluderar tillståndsövervakning av vindturbiner och vilka metoder som används för att undvika slitage på turbinbladen. Arbetet kommer att utföras som en litteraturstudie eftersom det inte är möjligt med fältstudier av vindkraftverk. Viktiga frågor som besvaras är vilka faktorer som orsakar erosion och hur det leder till minskad effektivitet och produktionskapacitet hos vindkraftsparker. Vidare tas det upp hur underhåll utförs på vindkraftverken idag och hur det kan komma att ske i framtiden, med fokus på tillståndsövervakande system och olika skyddslösningar. Även skillnaden mellan landbaserad och havsbaserad vindkraft tas upp, samt olika stadier av erosionsutbredningen på turbinbladen och hur de påverkar energiproduktionen. Slutligen diskuteras olika lösningar för att minska sannolikheten för erosion, såsom att minska maxhastigheten under otjänligt väder. För havsbaserade vindkraftverk finns det svårigheter vad gäller byggande och underhåll, men fördelar som bättre vindförhållanden och möjlighet att bygga på djupare vatten. Flytande vindkraftverk används för att möjliggöra placering på djupare vatten och längre bort från land. Framtida vindkraftverk kommer ha större turbiner och högre torn, samtidigt som minskningar av energikostnaderna för både land- och havsbaserad vindkraft är trolig. SeaTwirl har en revolutionerande design där bladet roterar genom vertikalplanet, vilket minskar effekterna av erosionsbaserade skador som regndroppar och partiklar kan påföra. Dessa flytande vindkraftverk som är tänkta att placeras på havsytan har en relativt låg kostnad, lägre underhållsbehov och lägre materialåtgång, vilket gör dem konkurrenskraftiga. Framtida utveckling finns i form av exempelvis SR Energy som börjat dela ut "vindbonus" till de som bor nära vindkraftsparker. Ytterligare ett exempel är Modvion som använder trälaminat istället för stålkonstruktioner, vilket möjliggör enklare konstruktion, kräver färre inspektioner och material kan vid avveckling återanvändas vid husbyggen. / The report addresses the issues of operation and maintenance of wind turbines and how their need can be reduced through monitoring the condition of wind turbines. The aim of the report is to investigate whether it is possible to predict when and how a wind turbine will need to be maintained, as well as describe the methods used to prevent wear of the turbine blades. Research questions that are addressed include condition monitoring of wind turbines and the methods used to avoid wear on turbine blades. The work will be carried out as a literature study since it is not possible to do field studies of wind turbines. Important questions that are answered include what factors cause erosion and how it leads to reduced efficiency and production capacity of wind farms. Furthermore, it is discussed how maintenance is currently carried out on wind turbines and how it may be done in the future, with a focus on condition monitoring systems and various protective solutions. Also, the difference between land-based and offshore wind power is discussed, as well as different stages of blade erosion and how they affect energy production. Finally, different solutions to reduce the likelihood of erosion are discussed, such as reducing the maximum speed during inclement weather. For offshore wind turbines, there are difficulties with construction and maintenance, but advantages such as better wind conditions and the ability to build in deeper water. Floating wind turbines are used to enable placement in deeper water and farther from shore. Future wind turbines will have larger turbines and higher towers, while reducing energy costs for both land and offshore wind power is likely. SeaTwirl has a revolutionary design where the blade rotates through the vertical plane, which reduces the effects of erosion-based damage that raindrops and particles can cause. These floating wind turbines that are intended to be placed on the ocean surface have a relatively low cost, lower maintenance needs, and lower material consumption, making them competitive. Future developments include, for example, SR Energy, which has started to distribute "wind bonuses" to those who live near wind farms. Another example is Modvion, which uses wooden laminate instead of steel structures, enabling simpler construction, requiring fewer inspections, and allowing material reuse in building construction.
63

The Effects of Vortex Generator Jet Frequency, Duty Cycle, and Phase on Separation Bubble Dynamics

Bloxham, Matthew J. 20 March 2007 (has links) (PDF)
Vortex generator jets (VGJs) have proven to be effective in minimizing the separation losses on low-pressure turbine blades at low Reynolds numbers. Experimental data collected using phase-locked particle image velocimetry and substantiated with a hot-film anemometer were used to answer fundamental questions about the influence of VGJs on a separated boundary layer. The data were collected on the suction surface of the Pack B blade profile, which has a non-reattaching separation bubble beginning at 68% axial chord. Two VGJ pulse histories were created with different frequencies, jet durations, and duty cycles. The mechanisms responsible for boundary layer separation control were shown to be a combination of boundary layer transition and streamwise vortical structures. Jet duration and relaxation time were important VGJ characteristics in determining the extent of control. The unsteady environment characterisitic of the low-pressure turbine section in a gas turbine engine effectively reduces the time-averaged separation zone by as much as 35%. Upstream blade rows create unsteady flow disturbances (wakes) that transition the flow. This transitioned flow propagates downstream, re-attaching the separation bubbles on the subsequent blade row. Phase-locked PIV and hot-film measurements were used to document the characteristics of this separation zone when subjected to synchronized unsteady wakes and VGJs. The phase difference between VGJ actuation and the wake passing, blowing ratio, and VGJ duration were optimized to achieve the greatest time-averaged control of the separation zone. The experimental data were used to identify the important characteristics of the wake/jet interaction. Phase-locked PIV measurements were taken to isolate the wake event (wake only), the VGJ event (jets only), and the synchronized combination of unsteady wakes and jets. The synchronized conditions achieved maximum separation bubble control. The presence of wake and jet induced calmed zones are also noted.
64

End of Life Wind Turbine Blade Recycling : Challenges From an Environmental, Economic and Practical Viewpoint

Hagfeldt, Daniel January 2022 (has links)
The goal of the European Union is to make strides towards a circular economy. This means recycling or re-using as much of the material in the economic system as possible. The wind industry faces a great challenge in the years to come as huge quantities of increasingly larger wind turbines reach the end of their service-life. When old wind turbines have been decommissioned, most parts are scrapped and recycled into other applications. The turbineblades however are made from glass- and carbon fibre polymers and are not as easily recycled. Recent bans of putting the blades into landfills steer the industry toward finding new applicationfor the old wind turbine blades. Re-purposing the blades as bridges, shelters, houses and towers has been suggested, as well as re-cycle the material or recover the blades as energy. Regardless of what method is preferred, the wind turbine blades need to be transported to a re-purpose or recycling facility. Because of the distribution of wind turbines within countries, the optimal location of such facilities can be hard to evaluate. The centre-of-gravity method (evaluating the centre-of-mass) has been suggested as a way of evaluating the optimal location of such facilities. The method is built upon the assumption that the wind turbine blade can be easily downsized, transported and accommodated in a single transport. In order to achieve this, the present thesis has compared and evaluated different methods of segmenting the wind turbine blade (mechanical, thermal and chemical) as well as different loading and compressing methods. The mechanical separation methods tend to be more suitable than the thermal and chemical counterparts. The choice of loading methods is dictated by the resulting fraction size of the wind turbine blade after separation. The mass density of the resulting blade could be increased with a suitable way of compression (hydraulic or gravity).
65

Experimental substructuring of an A600 wind turbine blade  : A study of the influence of interface loading

Santos, Judas, Al-Mahdi, Nidaa January 2016 (has links)
Dynamic Substructuring is a powerful tool for simplification of the analysis of complex structures and it has been well established along the years in analytical calculations by means of the Craig-Bampton technique. Recently, a new branch of substructuring, the Experimental Dynamic Substrucuring, appeared as a promising field of research for the engineering community. This area presents several intrinsic difficulties, evincing a need to develop the traditional substructuring methods towards obtaining better results using the experimental approach. In this scenery, the Transmission Simulator technique emerges as an instrument for potential improvement of the achieved results. This work represents a study on the use of the Transmission Simulator technique in the analysis of an Ampair A600 wind turbine blade subjected to loads at the interface to the hub, and it is a part of the benchmarking studies of SEM (Society of Experimental Mechanics). The work consisted of collecting experimental data via vibration tests of a single blade connected to different sizes of transmission simulators. After that, a mathematical representation of the blade was obtained via subtraction of the effect of the transmission simulators via substructuring technique. The computed model was subsequently coupled to a model of the remainder of the wind turbine (the hub plus two blades), and the results were compared to data acquired in tests of the whole assembly. The final findings did not reflect the theory prospects and further investigation is necessary to evaluate the effectiveness of the used methodology.
66

Développement expérimental et modélisation d’un essai de fatigue avec gradient thermique de paroi pour application aube de turbine monocristalline / Experimental development and modelling of a thermal gradient mechanical fatigue test for single crystal turbine blade application

Degeilh, Robin 19 June 2013 (has links)
Les aubes de turbine haute pression en superalliage monocristallin sont refroidies, à la fois par un réseau de canaux internes, ainsi que par des perforations débouchantes. Soumises à des cycles thermo-mécaniques complexes, elles subissent des endommagements de type fatigue, fluage et oxydation. Pour valider les chaînes de prévision de durée de vie en conditions réelles d'utilisation, il a été nécessaire d’étudier des configurations d’essais technologiques reproduisant les conditions d'un cycle moteur en laboratoire. Pour cela, une installation d'essai de fatigue à gradient thermique de paroi est développée. Le gradient thermique est généré par chauffage de la surface externe et refroidissement interne par une circulation d’air. L’installation a ainsi permis la réalisation d'essais selon une complexité croissante, allant de l’essai isotherme jusqu'au cycle thermo-mécanique complexe, sur éprouvette tubulaire lisse ou multi-perforée. Afin d’analyser finement ces essais, deux méthodes de mesures sont étudiées. La méthode du potentiel électrique pour la détection et le suivi de fissure appliquée à des géométries complexes et la corrélation d’images, dont l’utilisation est étendue à la haute température. Le point-clé de la modélisation de ces essais est l'estimation du champ thermique. L'impossibilité de le mesurer sur éprouvette, a conduit à le déterminer numériquement, notamment par des simulations couplées aéro-thermiques. La chaîne de prévision de durée de vie intégrant l'aspect non-local, a ainsi pu être confrontée aux mesures expérimentales en termes de réponse mécanique, localisation de l'endommagement et durée de vie à amorçage. / Monocrystalline high pressure turbine blades are booth cooled by an internal channel network and side-wall crossing holes. As they undergo complex thermo-mechanical cycles they suffer fatigue, creep and oxidation damages. In order to validate lifetime prediction chain under real conditions of use, the study of technological test configurations reproducing turbine cycle conditions was necessary. For that, a thermal gradient mechanical fatigue facility is developed. Thermal gradient is generated through an external surface heating and an internal air cooling. As a result, tests could be conducted following a growing complexity on smooth and multi-perforated tubular specimens going from isothermal test up to thermo-mechanical complex cycle. The need of in-depth analysis of these tests led to the study of two measurement methods. The electrical potential drop method for crack detection and crack following applied to complex shapes and digital image correlation which use was extended to high temperatures. Simulation key issue is the thermal field estimation. Measurement complexity led us to numerically determine it by various methods including aero-thermal coupled calculations. Finally lifetime prediction chain including non-local coverage was confronted with experimental measurements in terms of mechanical response, damage localisation and crack initiation lifetime.
67

Flexural Testing of Molybdenum-Silicon-Boron Alloys Reacted from Molybdenum, Silicon Nitride, and Boron Nitride

Rockett, Chris H. 16 May 2007 (has links)
MoSiB alloys show promise as the next-generation turbine blade material due to their high-temperature strength and oxidation resistance afforded by a protective borosilicate surface layer. Powder processing and reactive synthesis of these alloys has proven to be a viable method and offers several advantages over conventional melt processing routes. Microstructures obtained have well-dispersed intermetallics in a continuous matrix of molybdenum solid-solution (Mo-ss). However, bend testing of pure Mo and Mo-ss samples has shown that, while the powder processing route can produce ductile Mo metal, the hardening effect of Si and B in solid-solution renders the matrix brittle. Testing at elevated temperatures (200°C) was performed in order to determine the ductile-to-brittle transition temperature of the metal as an indication of ductility. Methods of ductilizing the Mo-ss matrix such as annealing and alloying additions have been investigated.
68

Single Jet Impingement Cooling in a Stationary and Rotating Square Duct

Huang, Jung-Tai 25 August 2003 (has links)
Abstract The influence of rotating and cross flow effect on local heat transfer coefficient and flow visualization for a single confined air/water jet with jet-to-wall spacing from 5 to 11.4, jet Reynolds number from 6500 to 26000, rotational Reynolds number from 0 to 112000, curvature ratio from 150 to , ratio of crossflow massflux to jet mass flux from 0 to 2, and the heat flux from 1430 to 12890W/m2 were reported. The local heat transfer coefficient for air/water along the surface is measured and the effect of the rotation, the jet-to-wall spacing, the surface curvature, local and average Nusselt number, are presented and discussed. Furthermore, flow visualization was made in the present study. Based on the experimental result, it is found that the rotation will induce the centrifugal and coriolis force. It also shows that the heat transfer response will be decreased when the impinging direction parallel to the rotating direction, and increased when impinging direction perpendicular to the rotating direction. Crossflow effect will make Nusselt number decrease to 48% when M=2. Moreover, the roughen surface will increase the heat transfer coefficient up to 22% due to the secondary flow. The flow visualization is used to observe the transition of laminar to turbulence flow and to calculate the boundary layer thickness.
69

Experimental investigation of film cooling and thermal barrier coatings on a gas turbine vane with conjugate heat transfer effects

Kistenmacher, David Alan 19 November 2013 (has links)
In the United States, natural gas turbine generators account for approximately 7% of the total primary energy consumed. A one percent increase in gas turbine efficiency could result in savings of approximately 30 million dollars for operators and, subsequently, electricity end-users. The efficiency of a gas turbine engine is tied directly to the temperature at which the products of combustion enter the first stage, high-pressure turbine. The maximum operating temperature of the turbine components’ materials is the major limiting factor in increasing the turbine inlet temperature. In fact, current turbine inlet temperatures regularly exceed the melting temperature of the turbine vanes through advanced vane cooling techniques. These cooling techniques include vane surface film cooling, internal vane cooling, and the addition of a thermal barrier coating (TBC) to the exterior of the turbine vane. Typically, the performance of vane cooling techniques is evaluated using the adiabatic film effectiveness. However, the adiabatic film effectiveness, by definition, does not consider conjugate heat transfer effects. In order to evaluate the performance of internal vane cooling and a TBC it is necessary to consider conjugate heat transfer effects. The goal of this study was to provide insight into the conjugate heat transfer behavior of actual turbine vanes and various vane cooling techniques through experimental and analytical modeling in the pursuit of higher turbine inlet temperatures resulting in higher overall turbine efficiencies. The primary focus of this study was to experimentally characterize the combined effects of a TBC and film cooling. Vane model experiments were performed using a 10x scaled first stage inlet guide vane model that was designed using the Matched Biot Method to properly scale both the geometrical and thermal properties of an actual turbine vane. Two different TBC thicknesses were evaluated in this study. Along with the TBCs, six different film cooling configurations were evaluated which included pressure side round holes with a showerhead, round holes only, craters, a novel trench design called the modified trench, an ideal trench, and a realistic trench that takes manufacturing abilities into account. These film cooling geometries were created within the TBC layer. Each of the vane configurations was evaluated by monitoring a variety of temperatures, including the temperature of the exterior vane wall and the exterior surface of the TBC. This study found that the presence of a TBC decreased the sensitivity of the thermal barrier coating and vane wall interface temperature to changes in film coolant flow rates and changes in film cooling geometry. Therefore, research into improved film cooling geometries may not be valuable when a TBC is incorporated. This study also developed an analytical model which was used to predict the performance of the TBCs as a design tool. The analytical prediction model provided reasonable agreement with experimental data when using baseline data from an experiment with another TBC. However, the analytical prediction model performed poorly when predicting a TBC’s performance using baseline data collected from an experiment without a TBC. / text
70

Πειραματική και υπολογιστική διερεύνηση αεροδυναμικής συμπεριφοράς πτερύγων σε διφασική ροή αέρα – νερού και εφαρμογή σε πτερύγια ανεμοκινητήρων

Δουβή, Ελένη 17 July 2014 (has links)
Αντικείμενο της παρούσας διδακτορικής διατριβής είναι η πειραματική και υπολογιστική διερεύνηση αεροδυναμικής συμπεριφοράς πτερύγων σε διφασική ροή αέρα–νερού και η εφαρμογή σε πτερύγια ανεμοκινητήρων. Αρχικά, γίνεται πειραματική και υπολογιστική μελέτη μονοφασικής ροής αέρα γύρω από αεροτομές, πτέρυγες και πτερύγιο ανεμοκινητήρα και στη συνέχεια μελέτη διφασικής ροής αέρα-νερού γύρω από τα ίδια σώματα. Η σύγκριση μεταξύ των αποτελεσμάτων της μονοφασικής ροής με τα αντίστοιχα της διφασικής ροής αέρα-νερού είναι αναγκαία ώστε να μελετηθούν οι επιπτώσεις της διφασικής ροής αέρα–νερού στην αεροδυναμική απόδοση. Η πειραματική ανάλυση αφορά τη διεξαγωγή πειραμάτων για τη μελέτη της αεροδυναμικής συμπεριφοράς αεροτομών και πτερύγων σε συνθήκες μονοφασικής και διφασικής ροής. Για την προσομοίωση συνθηκών διφασικής ροής αέρα-νερού τροποποιείται η αεροσήραγγα που διαθέτει ήδη το Εργαστήριο με την προσαρμογή ειδικών ακροφυσίων ψεκασμού νερού (συνθήκες βροχής). Για τις ανάγκες των πειραμάτων χρησιμοποιούνται τα μοντέλα αεροτομών και πτερύγων NACA 0012 που συνοδεύουν την αεροσήραγγα και κατασκευάζονται αεροτομή και πτέρυγες S809. Τα πειράματα μονοφασικής και διφασικής ροής γίνονται για την ίδια ταχύτητα αέρα. Για τη διφασική ροή αέρα-νερού εξετάστηκαν τέσσερις διαφορετικές πυκνότητες περιεχόμενης βροχής. Η υπολογιστική ανάλυση γίνεται με το υπολογιστικό πακέτο ANSYS CFD-Fluent. Αρχικά, γίνονται προσομοιώσεις για μονοφασική ροή αέρα γύρω από την αεροτομή NACA 0012, για την οποία υπάρχει πλήθος δημοσιευμένων αποτελεσμάτων, με τρία διαφορετικά μοντέλα τύρβης ώστε να βρεθεί το καταλληλότερο. Ο συντελεστής άνωσης υπολογίζεται με μεγάλη ακρίβεια, σε αντίθεση με το συντελεστή αντίστασης. Το πρόβλημα αυτό οφείλεται στην αδυναμία του Fluent να υπολογίσει το σημείο μετάβασης του οριακού στρώματος από στρωτό σε τυρβώδες. Κρίνεται επομένως αναγκαίο να γίνει σύγκριση του συντελεστή αντίστασης με πειραματικά δεδομένα για πλήρως τυρβώδες οριακό στρώμα. Για ακόμα πιο ακριβή αποτελέσματα αναπτύσσεται αλγόριθμος για τον υπολογισμό του σημείου μετάβασης από στρωτό σε τυρβώδες οριακό στρώμα και γίνονται προσομοιώσεις ορίζοντας την περιοχή αριστερά από το σημείο μετάβασης ως στρωτή και δεξιά από αυτό ως τυρβώδη. Υπολογίζονται οι κατανομές πίεσης και ταχύτητας γύρω από την αεροτομή, καθώς επίσης και τα σημεία ανακοπής, μέγιστης ταχύτητας, αποκόλλησης και επανακόλλησης του οριακού στρώματος. Παρουσιάζονται επίσης οι ροϊκές γραμμές και τα διανύσματα της ταχύτητας γύρω από την αεροτομή. Αντίστοιχες προσομοιώσεις γίνονται και για την αεροτομή S809. Για τη μελέτη του τρισδιάστατου χαρακτήρα της ροής, γίνονται προσομοιώσεις γύρω από πτέρυγα S809. Υπολογίζονται οι συντελεστές άνωσης και αντίστασης, τα σημεία ανακοπής, μέγιστης ταχύτητας, αποκόλλησης και επανακόλλησης του οριακού στρώματος. Επίσης παρουσιάζονται κατανομές της έντασης της τύρβης στην άνω επιφάνεια της πτέρυγας και της συνισταμένης ταχύτητας, της ταχύτητας στη z-διεύθυνση, της έντασης της τύρβης και της επιτάχυνσης της ροής πίσω από την πτέρυγα. Για τη μελέτη της ροής γύρω από περιστρεφόμενο πτερύγιο γίνονται προσομοιώσεις γύρω από το πτερύγιο Phase IV της NREL. Γίνεται μελέτη της κατανομής της αξονικής ταχύτητας πίσω από το δρομέα, της κατανομής της στατικής πίεσης και της έντασης της τύρβης πάνω στην επιφάνεια του πτερυγίου και της κατανομής της στατικής πίεσης σε διάφορα σημεία πάνω στο πτερύγιο. Η υπολογιστική μελέτη της διφασικής ροής αέρα-νερού γίνεται αρχικά για την αεροτομή NACA 0012 με πυκνότητα περιεχόμενης βροχής LWC=30 g/m³, επειδή υπάρχουν αντίστοιχα έγκυρα πειραματικά αποτελέσματα ώστε να γίνει σύγκριση για την εγκυρότητα της διαδικασίας της προσομοίωσης. Στη συνέχεια γίνονται προσομοιώσεις για διφασική ροή αέρα-νερού γύρω από την αεροτομή S809, την πτέρυγα S809 και το περιστρεφόμενο πτερύγιο Phase IV της NREL. Προσομοιώσεις γίνονται επίσης για διαφορετικές πυκνότητες περιεχόμενης βροχής για τη ροή γύρω από τις αεροτομές σε χαμηλό αριθμό Reynolds. Τα αποτελέσματα της διφασικής ροής αέρα-νερού συγκρίνονται με τα αντίστοιχα της μονοφασικής ροής ώστε να προκύψουν συμπεράσματα για τις επιπτώσεις της βροχής στην αεροδυναμική απόδοση. Γίνεται επίσης υπολογισμός του συντελεστή ισχύος του ανεμοκινητήρα σε συνθήκες μονοφασικής ροής αέρα και διφασικής ροής αέρα-νερού. Σε συνθήκες διφασικής ροής αέρα-νερού παρατηρείται υποβάθμιση της αεροδυναμικής απόδοσης, συγκεκριμένα μείωση της άνωσης με παράλληλη αύξηση της αντίστασης. Δυο είναι οι βασικοί μηχανισμοί που επικρατούν και έχουν ως αποτέλεσμα την υποβάθμιση αυτή. Στην επιφάνεια της αεροτομής δημιουργείται ανομοιόμορφο φιλμ νερού που αυξάνει την τραχύτητα και το πάχος της αεροτομής. Τα σταγονίδια καθώς προσκρούουν πάνω στο φιλμ νερού δημιουργούν «κρατήρες» αυξάνοντας την τραχύτητα της αεροτομής. Επίσης, τα σωματίδια νερού διασπώνται κατά την πρόσκρουσή τους πάνω στην αεροτομή σε άλλα σταγονίδια μικρότερης διαμέτρου και μειωμένης ταχύτητας. Αυτό έχει ως αποτέλεσμα τα σταγονίδια αυτά, επαναεπιταχυνόμενα από τη ροή του αέρα να αποσπούν ποσό ενέργειας από το οριακό στρώμα καθιστώντας το πιο ευάλωτο σε αποκόλληση. Στόχος της μελέτης της αεροδυναμικής συμπεριφοράς των πτερυγίων σε διφασική ροή αέρα-νερού είναι η κατασκευή ανεμοκινητήρων υψηλού βαθμού απόδοσης και η παραγωγή φθηνής ενέργειας από την όσο το δυνατόν καλύτερη αξιοποίηση της αιολικής ενέργειας. / The aim of the present doctoral thesis is the experimental and computational study of the aerodynamic behavior of wings in two-phase flow and the application on wind turbine blades. First of all, experimental and computational study of one-phase flow over airfoils, wings and wind turbine blade and afterwards study of two-phase flow over the same bodies is conducted. The comparison of the results between dry and wet conditions is necessary in order to show the effects of two-phase flow at the aerodynamic performance. Wind tunnel tests were conducted to show the aerodynamic behavior of airfoils and wings in one-phase and two-phase flows. To simulate two-phase flow, the wind tunnel of the Fluid Mechanics Laboratory has to be configured with adding commercial rain simulated nozzles. For the experiments NACA 0012 airfoils and wings which come along the wind turbine are utilized and airfoil and wings S809 are constructed. The experiments of one-phase flow and two-phase flow are conducted for the same air velocity. For the two-phase flow four different Liquid Water Contents are examined. For the computational analysis the commercial CFD code ANSYS Fluent is used. In first place, simulations of one-phase flow over the NACA 0012 airfoil are done with three different turbulence models. The NACA0012 airfoil is chosen because it has been studied in depth and has a precise data base to compare the results of the simulation with. The lift coefficients are computed with accuracy in contrast to the drag coefficient. The overprediction of drag is expected since the actual airfoil has laminar flow over the forward half. The turbulence models cannot calculate the transition point from laminar to turbulent and consider that the boundary layer is turbulent throughout its length. Therefore, it is necessary to compare the computational results with experimental data of a fully turbulent boundary layer. In order to get more accurate results, the computational domain could be split into two different domains to run mixed laminar and turbulent flow. The contours of pressure and velocity over the airfoil are presented, as well as stagnation, maximum velocity, detachment and reattachment points of the boundary layer are computed. Streamlines and velocity vectors over the airfoil are also presented. Similar simulations are conducted for the S809 airfoil. In order to study the tree-dimensional effects of the flow, simulations over the S809 wing are made. Lift and drag coefficients, stagnation, maximum velocity, detachment and reattachment points of the boundary layer are computed. Moreover, contours of turbulent intensity on the upper surface of the wing and velocity, z-velocity, turbulence intensity and helicity behind the wing are presented. Simulations over the Phase IV blade of NREL are also conducted. The axial velocity behind the rotor, the static pressure and the turbulence intensity contribution on the blade’s surface and the static pressure contours at several blade cross-sections are studied. First of all, the computational study of the two-phase flow over a NACA 0012 airfoil and Liquid Water Content LWC=30 g/m3 is conducted, because there are published experimental data for comparison, in order to validate the CFD developed model. After that, simulations of two-phase flow over the S809 airfoil, S809 wing and Phase IV blade are made. In addition, computational study of the effects of different Liquid Water Content on the aerodynamic performance of NACA 0012 and S809 airfoil at low Reynolds number is made. The results from two-phase flow are compared with the corresponding results from one-phase flow in order to show the effects of two-phase flow at the aerodynamic performance. The influence of two-phase flow on the power coefficient of a wind turbine is also investigated. The results show that the aerodynamic performance degrades when encountering rain, especially lift is degreased and drag is increased. The aerodynamic degradation is caused by the water film formation on the airfoil’s surface and the cratering effects from the raindrops impact. The presence of uneven water film on the airfoil surface roughens the airfoil surface and increases the airfoil thickness. The cratering effects from the water droplets impact on the water film layer increase also the airfoil thickness. Moreover, the droplets splash-back when they impact the airfoil and as a result droplets with smaller diameter and velocity are formed. The acceleration of the splashed-back droplets by the air flowfield acts as a momentum sink, deenergizing the boundary layer and leaving it more susceptible to separation. The aim of the study of the aerodynamic behavior of blades in two-phase flow is the construction of wind turbines with greater efficiency and the production of energy from wind with low cost.

Page generated in 0.0728 seconds