• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 14
  • Tagged with
  • 28
  • 28
  • 12
  • 11
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modélisation de la combustion du gaz naturel par réseaux de réacteurs avec cinétique chimique détaillée

Fichet, Vincent 18 December 2008 (has links) (PDF)
Dans un contexte environnemental fort, la législation Européenne actuelle impose aux centrales thermiques à gaz des limites d'émission à 25 ppmvd pour le monoxyde de carbone (CO) et les oxydes d'azote (NOx). L'exploitant est alors contraint de régler finement ses machines pour éviter l'imposition de pénalités financières. Afin d'orienter les opérateurs vers les réglages optimaux, un outil numérique est développé. Il a pour but de prédire les émissions polluantes avec précision (quelques ppmvd), rapidité (utilisation sur site) et pour toutes sortes de configurations (géométrie, conditions de fonctionnement). Toutefois, modéliser et simuler la formation d'espèces minoritaires dans un écoulement turbulent réactif reste, aujourd'hui encore, un challenge scientifique et numérique en raison des larges spectres spatiaux et temporels mis en jeu. La solution proposée dans cette thèse consiste à réaliser un calcul CFD (Computational Fluid Dynamics) basé sur un mécanisme réactionnel simple en vue de construire un réseau de réacteurs 0D incluant une cinétique chimique détaillée. Une méthodologie générale est présentée pour le découpage de l'écoulement en zones statistiquement homogènes qui, une fois connectées, forment un réseau de réacteurs. Deux modèles de réseaux de réacteurs sont définis et prennent ou non en compte les fluctuations turbulentes (densité de probabilité) et une distribution des temps de séjour dans chaque réacteur. Des études de sensibilité des émissions de NOx à l'hygrométrie, à la variabilité combustible et aux changements de charge sont menées. La comparaison aux mesures sur site souligne la représentativité des modèles proposés. Enfin, une nouvelle modélisation du terme source chimique moyen est introduite (méthode de tabulation du terme source chimique et nouvelle densité de probabilité) pour permettre une prédiction affinée des émissions de NOx dès le calcul CFD.
22

Large Eddy Simulation of thermoacoustic instabilities in annular combustion chambers / Simulation aux Grandes Echelles des instabilités thermoacoustiques dans les chambres de combustion annulaires

Wolf, Pierre 21 November 2011 (has links)
La conception des turbines à gaz est aujourd'hui contrainte par des normes d'émissions de plus en plus draconiennes, couplées à l'urgente nécessité d'économiser les ressources en carburant fossile. Les choix technologiques adoptés pour répondre à ces exigences entraînent parfois l'apparition d'instabilités de combustion. Dans les chambres de combustion annulaires, ces instabilités prennent souvent la forme de modes azimutaux. Prédire ces modes reste un défi à l'heure actuelle et impose de considérer la totalité de la géométrie annulaire, ce qui n'est rendu possible, dans le domaine de la simulation numérique en mécanique des fluides, que par l'avènement très récent des supercalculateurs massivement parallèles. Dans ce travail de thèse, les modes azimutaux pouvant apparaître dans les chambres de combustion annulaires sont abordés avec plusieurs approches: un modèle analytique 1D, un solveur acoustique de Helmholtz 3D et enfin des Simulations aux Grandes Echelles. Combiner ces méthodes permet une meilleure compréhension de la structure de ces modes et peut amener à considérer des solutions innovantes pour concevoir des chambres inconditionnellement stables. / Increasingly stringent regulations and the need to tackle rising fuel prices have placed great emphasis on the design of aeronautical gas turbines. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. Combustion instabilities arise from the coupling of acoustics and combustion. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must consider the full combustion chamber, which, in the numerical simulation domain, remained out of reach until very recently and the development of massively parallel computers. In this work, azimuthal modes that may develop in annular combustors are studied with different numerical approaches: a low order model, a 3D Helmholtz solver and Large Eddy Simulations. Combining these methods allows a better understanding of the structure of the instabilities and may provide guidelines to build intrinsically stable combustion chambers.
23

Development of Analytically Reduced Chemistries (ARC) and applications in Large Eddy Simulations (LES) of turbulent combustion / Développement de Chimies Analytiquement Réduites (CAR) et applications à la Simulation aux Grandes Échelles (SGE) de la combustion turbulente

Felden, Anne 30 June 2017 (has links)
L'impact environnemental du trafic aérien fait maintenant l'objet d'une réglementation qui tend à se sévériser. Dans ce contexte, les industriels misent sur l'amélioration des technologies afin de réduire la consommation de carburant et l'émission de polluants. Ces phénomènes dépendent en grande partie des chemins réactionnels sous-jacents, qui peuvent s'avérer très complexes. La Simulation aux Grandes Échelles (SGE) est un outil intéressant afin d'étudier ces phénomènes pour un coût de calcul qui reste raisonnable. Cependant, les processus chimiques, s'ils sont considérés sans simplification, font intervenir des centaines d'espèces aux temps caractéristiques très différents au sein de processus non-linéaires qui induisent une forte raideur dans le système d'équations, et un coût de calcul prohibitif. Permettant de s'absoudre de ces problèmes tout en conservant une bonne capacité de prédiction des polluants, les Chimies Analytiquement Réduites (CAR) font l'objet d'une attention grandissante au sein de la communauté. Les CAR permettent de conserver la physique du problème considéré, en conservant les espèces et voies réactionnelles les plus importantes. Grâce à l'évolution toujours croissante des moyens de calculs, les CAR sont appliqués dans des configurations de plus en plus complexes. Les travaux de thèse ont principalement portés sur deux sujets. Premièrement, une étude poussée des techniques et outils permettant une réduction efficace et systématique de chimies détaillées. L'outil de réduction multiétapes YARC est retenu et exhaustivement employé dans la dérivation et la validation d'une série de CAR préservant la description de la structure de flamme. Ensuite, une investigation de la faisabilité et des bénéfices qu'apportent l'utilisation de CAR en LES, comparé a des approches plus classiques, sur des cas tests de complexité croissante. La première configuration étudiée est une chambre de combustion partiellement pré-mélangée brûlant de l'éthylène, étudiée expérimentalement au DLR. Différentes modélisations de la chimie sont considérées, dont un CAR développé spécifiquement pour ce cas test, et les résultats démontrent qu'une prise en compte des interactions flamme-écoulement est cruciale pour une prédiction juste de la structure de la flamme et des niveaux de suies. La seconde configuration est un brûleur diphasique, avec une injection directe pauvre, brûlant du Jet-A2. Dans cette étude, une approche novatrice pour la prise en compte de la complexité du fuel réel (HyChem) est considérée, permettant la dérivation d’un CAR. Les résultats sont excellents et valident la méthodologie tout en fournissant une analyse précieuse des interactions flamme-spray et de la formation de polluants (NOx) dans des flammes à la structure complexe. / Recent implementation of emission control regulations has resulted in a considerable demand from industry to improve the efficiency while minimizing the consumption and pollutant emissions of the next generation of aero-engine combustors. Those phenomena are shown to strongly depend upon the underlying complex chemical pathways and their interaction with turbulence. Large Eddy Simulation (LES) is an attractive tool to address those issues with high accuracy at a reasonable computing cost. However, the computation of accurate combustion chemistry remains a challenge. Indeed, combustion proceeds through complex and highly non-linear processes that involve up to hundreds of different chemical compounds, which significantly increases the computational time and often induces stiffness in the resolved equations. As a mean to circumvent these drawbacks while retaining the necessary kinetics for the prediction of pollutants, Analytically Reduced Chemistry (ARC) has recently received high interest in the Computational Fluid Dynamics (CFD) community. ARC is a strategy for the description of combustion chemistry where only the most important species and reactions are retained, in a "physically-oriented way". ARC is on the verge of becoming affordable at a design stage, thanks to the continuously increasing available computational resources. The goal of the present work is twofold. A first objective is to test and validate efficient techniques and tools by which detailed chemistries are reduced to an LES-compliant format. To do so, the multi-step reduction tool YARC is selected and employed to derive and validate a series of ARC specifically designed to retrieve correct flame structures. A second objective is to investigate the overall feasibility and benefits of using ARC, combined to the Thickened Flame model (DTFLES), in performing LES of configurations of increasing complexity. The first configuration is a sooting swirl-stabilized non-premixed aero-engine combustor experimentally studied at DLR, burning ethylene. LES of this configuration is performed with the AVBP solver, in which ARC has been implemented. By comparison with global chemistry and tabulated chemistry, results highlight the importance of accurately capturing the flow-flame interactions for a good prediction of pollutants and soot. The second configuration is a swirled twophase flow burner featuring a lean direct injection system and burning Jet-A2. A novel methodology to real fuel modeling (HyChem approach) is employed, which allows subsequent ARC derivation. The excellent results in comparison with measurements constitute an additional validation of the methodology, and provide valuable qualitative and quantitative insights on the flame-spray interactions and on the pollutant formation (NOx) mechanisms in complex flame configurations.
24

Optimization and testing of a low NOx hydrogen fuelled gas turbine

Borner, Sebastian 08 April 2013 (has links)
A lot of research effort is spent worldwide in order to reduce the environmental impact of the transportation and power generation sector. To minimize the environmental pollution the role of hydrogen fuelled gas turbines is intensively discussed in several research scenarios, like the IGCC-technology or the application of hydrogen as large scale storage for renewable energy sources. The adaptation of the applied gas turbine combustion chamber technology and control technology is mandatory for a stable and secure low NOx operation of a hydrogen fuelled gas turbine.<p>The micromix combustion principle was invented at Aachen University of Applied Sciences and achieves a significant reduction of the NOx-emissions by the application of multi miniaturized diffusion-type flamelets. Based on the research experiences, gained during the two European hydrogen research programs EQHHPP and Cryoplane at Aachen University of Applied Sciences, the intention of this thesis was to continue the scientific research work on low NOx hydrogen fuelled gas turbines. This included the experimental characterization of the micromix combustion principle, the design of an improved combustion chamber, based on the micromix combustion principle, for industrial gas turbine applications and the improvement of the gas turbine’s control and metering technology.<p>The experimental characterization of the micromix combustion principle investigated the impact of several key parameters, which influence the formation of the NOx-emissions, and allows therefore the definition of boundary conditions and design laws, in which a low NOx operation of the micromix combustion principle is practicable. In addition the ability of the micromix combustion principle to operate at elevated energy densities up to 15 MW/(m2bar) was successfully demonstrated. The improved combustion chamber design concept includes the experiences gained during the experimental characterization and covers the industrial needs regarding scalability and manufacturability.<p>The optimization and testing is done with an Auxiliary Power Unit GTCP 36-300. The original kerosene fuelled gas turbine was modified for the hydrogen application. Therefore several hardware and software modifications were realized. The improved gas turbine’s control and metering technology enables stable and comparable operational characteristics as in kerosene reference. An improved hydrogen metering unit, which is controlled by the industrial Versatile Engine Control Box, was successfully implemented. <p>The combination of the micromix combustion technology and of the optimized control and metering technology allows a stable, secure and low NOx hydrogen fuelled gas turbine operation.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
25

Development and testing of hydrogen fuelled combustion chambers for the possible use in an ultra micro gas turbine

Robinson, Alexander 14 May 2012 (has links)
The growing need of mobile power sources with high energy density and the robustness to operate also in the harshest environmental surroundings lead to the idea of downscaling gas turbines to ì-scale. Classified as PowerMEMS devices, a couple of design attempts have emerged in the last decade. One of these attempts was the Belgian “PowerMEMS” design started back in 2003 and aiming towards a ì-scale gas turbine rated at 1 kW of electrical power output.<p>This PhD thesis presents the scientific evaluation and development history of different combustion chamber designs based upon the “PowerMEMS” design parameters. With hydrogen as chosen fuel, the non-premixed diffusive “micromix” concept was selected as combustion principle. Originally designed for full scale gas turbine applications in two different variants, consequently the microcombustor development had to start with the downscaling of these two principles towards ì-scale. Both principles have the advantage to be inherently safe against flashback, due to the non-premixed concept, which is an important issue even in this small scale application when burning hydrogen. By means of water analogy and CFD simulations the hydrogen injection system and the chamber geometry could be validated and optimized. Besides the specific design topics that emerged during the downscaling process of the chosen combustion concepts, the general difficulties of microcombustor design like e.g. high power density, low Reynolds numbers, short residence time, and manufacturing restrictions had to be tackled as well.<p>As full scale experimental test campaigns are still mandatory in the field of combustion research, extensive experimental testing of the different prototypes was performed. All test campaigns were conducted with a newly designed test rig in a combustion lab modified for microcombustion investigations, allowing testing of miniaturized combustors according to full engine requirements with regard to mass flow, inlet temperature, and chamber pressure. The main results regarding efficiency, equivalence ratio, and combustion temperature were obtained by evaluating the measured exhaust gas composition. Together with the performed ignition and extinction trials, the evaluation and analysis of the obtained test results leads to a full characterization of each tested prototype and delivered vital information about the possible operating regime in a later UMGT application. In addition to the stability and efficiency characteristics, another critical parameter in combustor research, the NOx emissions, was investigated and analyzed for the different combustor prototypes.<p>As an advancement of the initial downscaled micromix prototypes, the following microcombustor prototype was not only a combustion demonstrator any more, but already aimed for easy module integration into the real UMGT. With a further optimized combustion efficiency, it also featured an innovative recuperative cooling of the chamber walls and thus allowing an cost effective all stainless steel design.<p>Finally, a statement about the pros and cons of the different micromix combustion concepts and their correspondent combustor designs towards a possible ì-scale application could be given. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
26

LES based aerothermal modeling of turbine blade cooling systems / Simulation aux Grandes Échelles pour la modélisation aérothermique des aubages de turbines refroidies

Fransen, Rémy 13 June 2013 (has links)
Ce travail de thèse, réalisé dans le cadre d’une convention CIFRE entre TURBOMECA et le CERFACS et en partenariat avec l’IVK, se place dans un contexte d’amélioration des performances des turbines axiales équipant les turboréacteurs d’hélicoptère. Un des points critiques du dimensionnement de tels moteurs est la maitrise de la durée de vie des pales de la turbine haute pression qui font face à de très hautes températures provenant de la chambre de combustion. Les prédictions numériques de l’environnement aérothermique des pales (écoulements dans la veine et système de refroidissement) sont réalisées aujourd’hui dans le milieu industriel à l’aide de la modélisation Reynolds Averaged Navier-Stokes (RANS). Grâce à des capacités de calculs grandissantes, l’approche Simulation aux Grandes Echelles (SGE) offre désormais un nouveau potentiel de prédictions d’écoulements. Les travaux de cette thèse s’intéressent ainsi à la capacité de la SGE à prédire l’écoulement du circuit de refroidissement interne d’une pale de turbine. Pour simplifier l’analyse de ce problème ou plusieurs phénomènes physiques sont en jeu, une progression en trois parties est proposée. La première s’intéresse à l’étude aérothermique de géométries simplifiées de canaux de refroidissement (coude à 180° et canal avec promoteurs de turbulence) en configuration statique. Aux régimes d’écoulement considérés, une approche résolue en paroi avec maillage non-structuré hybride est proposée et validée en vue d’une application industrielle facilitée. La seconde partie étend l’analyse de l’écoulement à un cas de canal avec promoteurs de turbulence en rotation utilisant une méthode de résolution numérique dans un repère absolu. Les investigations des résultats de la SGE fournissent des prédictions moyennes et instationnaires en bon accord avec les expériences disponibles et les travaux précédents aussi bien pour la dynamique de l’écoulement que les transferts de chaleur. Enfin, une troisième partie présente une application de la méthode sur un cas de pale réelle avec couplage thermique entre le circuit de refroidissement et le solide de la pale. Cette dernière partie classée confidentielle n’est pas présente dans le manuscrit disponible publiquement. Les résultats de l’approche résolue en paroi et de la rotation dans le repère absolu comparés aux résultats RANS disponibles pour le cas applicatif montrent d’importante différences locales et ainsi le potentiel de la méthode proposée. / This PhD dissertation, conducted as part of a CIFRE research project between TURBOMECA and CERFACS in partnership with the VKI, deals with improving performance of axial turbines from helicopter engines. One of the most critical design points of such engines is the control of the high pressure turbine blade lifetime which face the high temperatures from the combustor. Today, industrial numerical aerothermal predictions of the flows around the blade (in the vein and in its cooling system) are performed with the Reynolds Averaged Navier-Stokes (RANS). Thanks to the increasing computational power, Large Eddy Simulation (LES) becomes affordable to offer further flow predictions. Therefore, this thesis focuses on the capabilities of the LES to estimate the flow in turbine blade internal cooling channels. To simplify this analysis where several physical phenomenon are present, the problem is described in three parts with increasing complexity. The first part addresses simplified typical geometries of cooling channel (U-bend and ribbed channel) in a static configuration. Considering the flow regime, a wall-resolved approach using a hybrid unstructured mesh is proposed in view of the application on an industrial case. The second part extends the study of the ribbed channel in rotation using an inertial reference frame. LES provides mean and unsteady results in good agreement with the available experimental data and previous works, for the flow dynamic and the heat transfer. Finally, the third part presents the application of the method to an industrial case with conjugate heat transfer between a complex cooling channel and the blade. This last section is not present in the public manuscrit for confidential reasons. Results of the use of the wall-resolved approach in rotation in an inertial frame of reference are compared to RANS predictions and show the potential of the method with high local differences.
27

Development of a ballistic hybrid fabric model for aeroengine fan blade containment application

Saint-Marc, Jean-Charles 18 April 2018 (has links)
Ce mémoire présente les travaux de recherche effectués au sein du département de Génie Mécanique de l’Université Laval dans le cadre du projet « Impact modeling of Composite Aircraft Structure », IMCAS du Consortium de Recherche et d’Innovation en Aérospatiale (CRIAQ). Le but de ces travaux était de créer une loi de comportement pour les composites tissés sec mous et de les implanter dans un élément coque reproduisant le comportement dynamique d’un croisement de fibres dans un pli typique sous impact balistique et en fonction de certains paramètres géométriques propres au tissé. La création d’une loi de comportement de l’usager dans le logiciel d’analyse par éléments finis Abaqus a été nécessaire pour mener à bien ce projet. La méthodologie de développement de la sous-routine de l’usager, qui définit le matériau tissé et est utilisée en conjonction avec l’élément shell S4R, est basée sur les récents travaux de Grujicic et al (1) et Shahkarami et al (2). La validation de ce modèle a été réalisée en vérifiant la validité de sa réponse à certaines sollicitations rencontrées dans des études simples d’impact. Le résultat final de ces tests numériques d’impact a permis de démontrer que nous obtenons des résultats similaires à ceux de Shahkarami pour les mêmes paramètres d’expérimentation. Enfin, après cette dernière validation, nous avons appliqué l’outil développé à l’étude, en dynamique explicite, de l’impact d’une pale de soufflante sur un caisson de confinement hybride. Ce caisson est composé d’une première couche intérieure en coque métallique et sur laquelle s’empilent plusieurs couches de kevlar. Tout au long de ce mémoire, nous avons détaillé toutes les hypothèses, les démarches et les outils utilisés pour réaliser ce travail. Nos résultats montrent finalement qu’il est possible de reproduire les phénomènes physiques à une échelle méso-mécanique lors d’un impact haute vitesse sur un matériau composite tissé multicouche tout en minimisant le temps de calcul nécessaire. / This thesis presents the work that has been carried out inside the Mechanical Engineering Department of Laval University within a CRIAQ project related to Impact Modeling of Composite Aircraft Structure (IMCAS). The main goal of this work was to develop a dry fabric model for ballistic impact application and to implement it into a shell element capable of reproducing the dynamic behavior of a yarn crossover point with due account of some specific geometric and material parameters. The development of a material user subroutine (VUMAT user subroutine) was necessary to carry out this project. The methodology employed for the development of the user subroutine to be used with the S4R shell element available in Abaqus is based upon the works of Grujicic et al (1) and Shahkarami et al (2). The validity of the mesomechanical model created was carried out in order to assess the accuracy of its behavior under elementary loadings. Subsequently, using the same parameters to set up the analysis, the developed model has been applied in simple impact problems in Abaqus to demonstrate that we are able to obtain the same results as in the work of Shahkarami (2) used as a reference. Finally, after this last validation, the model is used in the impact study of an aeronautical engine’s fan blade containment problem using a hybrid casing. In our problem the casing’s inner shell is metallic and multiple Kevlar fabric layers are wrapped around it to contribute to the energy absorption and containment of the fan blade debris released outward at high speed. In this thesis all the assumptions, process and tools necessary to carry out every analysis have been described in details. Our results demonstrate that it is possible to capture the physical phenomenon happening at the yarn’s mesoscopic level during a high-velocity impact on a dry fabric while minimizing the computation time.
28

Simulation aux Grandes Échelles pour la modélisation aérothermique des aubages de turbines refroidies

Fransen, Rémy 13 June 2013 (has links) (PDF)
Ce travail de thèse, réalisé dans le cadre d'une convention CIFRE entre TURBOMECA et le CERFACS et en partenariat avec l'IVK, se place dans un contexte d'amélioration des performances des turbines axiales équipant les turboréacteurs d'hélicoptère. Un des points critiques du dimensionnement de tels moteurs est la maitrise de la durée de vie des pales de la turbine haute pression qui font face à de très hautes températures provenant de la chambre de combustion. Les prédictions numériques de l'environnement aérothermique des pales (écoulements dans la veine et système de refroidissement) sont réalisées aujourd'hui dans le milieu industriel à l'aide de la modélisation Reynolds Averaged Navier-Stokes (RANS). Grâce à des capacités de calculs grandissantes, l'approche Simulation aux Grandes Echelles (SGE) offre désormais un nouveau potentiel de prédictions d'écoulements. Les travaux de cette thèse s'intéressent ainsi à la capacité de la SGE à prédire l'écoulement du circuit de refroidissement interne d'une pale de turbine. Pour simplifier l'analyse de ce problème ou plusieurs phénomènes physiques sont en jeu, une progression en trois parties est proposée. La première s'intéresse à l'étude aérothermique de géométries simplifiées de canaux de refroidissement (coude à 180° et canal avec promoteurs de turbulence) en configuration statique. Aux régimes d'écoulement considérés, une approche résolue en paroi avec maillage non-structuré hybride est proposée et validée en vue d'une application industrielle facilitée. La seconde partie étend l'analyse de l'écoulement à un cas de canal avec promoteurs de turbulence en rotation utilisant une méthode de résolution numérique dans un repère absolu. Les investigations des résultats de la SGE fournissent des prédictions moyennes et instationnaires en bon accord avec les expériences disponibles et les travaux précédents aussi bien pour la dynamique de l'écoulement que les transferts de chaleur. Enfin, une troisième partie présente une application de la méthode sur un cas de pale réelle avec couplage thermique entre le circuit de refroidissement et le solide de la pale. Cette dernière partie classée confidentielle n'est pas présente dans le manuscrit disponible publiquement. Les résultats de l'approche résolue en paroi et de la rotation dans le repère absolu comparés aux résultats RANS disponibles pour le cas applicatif montrent d'importante différences locales et ainsi le potentiel de la méthode proposée.

Page generated in 0.0472 seconds